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ABSTRACT
Let Dg (1 < p < =) be the class of functions f, f(z) = X a 2" such that X jayv, |P
n n

©
< e, where {v_ 1, . is any fixed sequence of nonzero complex numbers satisfying: lim
inf{vy =1 (0 <r < o). D" under suitable topological and algebraic structures forms a
P

Banach algebra without identify. The properties pertaining to quasi-invertible elements, topolo-
gical zero divisors etc. have been studied. Multipliers and matrix transformations between

A
DP and various other known Fréchet spaces have been discussed.

1. Let {vy} be any fixed sequence of non-zero complex numbers
n=o

satisfying
lim inf |vp |l = r (0 <r < o)
n > 00
n
Detine a function A : C»C by A (z)= = : . Obviously, A is
n n

rualytic in the dise Er= {z:|z| <r} . We consider the set
Dy = {f:f(z) = Z ayz® such that T japvy [P < o0, 1 < p < w}.
n n

It is easily seen that D} forms a vector space with respect to usual
point wise scalar multiplication and pointwise addition.

Define, for f,g € D}, f(z) = £ apz®, gz) = I bpz®
n n
1.1y [fl=( Z [|anva[P)I/P
n

and
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(1:2) (F+g) ()= = apbyvun

[Through out this paper summation without limits runs from 0 to oo ]
Clearly, (Dg, [ .]) is a Banach space and (Dg, [ . ], ¥) is a Branch
algebra without identity. The space Dg was introduced and discussed
by Srivastava et. al. [1983] and subsequently Nanda et. al. [1984] ob-
tained some imore interesting results for Dg . In continuation, we obtain
some further results for it in this paper. In Section 1 we characterize
quasi-invertible elements and tepological zero divisors. Sections 2 and 3
deal with multipliers, point wise multipliers and matrix transformations.

Some results of this paper generalise the corresponding results of
Somasundaram [1974], Agarwal and Srivastava [1983]. We have

THEOREM 1.1. The set of all two sided topological divisors of
zero. of D} is the set D} itself.
" Proof. Let f(z) = X apz? be an arbitrary element of Dg.

n

- n
Consider the sequence {gn}, gn(z) = Z . Obviousl » € D? and
q gn} > gn(2) - Y 8 b

n
”gn ” = 1, for every n > 0. Further
 (frg)(®) = (g 1) (2) = anz
Hence
|f«gn = |gn«f|= |anvn | >0 as n— co.

Hence the theorem.
THEOREM 1.2. An element f(z) = % auz® of Dg is
o B n )
quasi-invertible if
(£.3). vinf {|agvp+ 1]} =k >0,
n

the quasi-inverse of f(z) being the function g(z) = X byz" where

— an

(]. -4‘) bn - m
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1

On the otherhand, if there exists n such that a; — —- ,
y Vo

then f(z) is not quasi-invertible.
Proof. Suppose thé inequality (1.3) holds. "The function g(z)
detined by (1.4) belongs to Dy . Also by (1.4) we have
f+gt+teg) (1) =0=(+g+g=1) (2
Hence g(z) is a quasi-inverse of f(z). ‘
. . . 1.
Because of (1 .4), if there exists n with a; = — < it
: N

then trivially holds that f(z) has no quasi-inverse.

2. This section is devoted to the study of multipliers.

Let X and Y be two Fréchet spaces of sequences X = { {on} }
and Y = { {84} }. A sequence {A,} is said to be a sequential multiplier
(simply “multiplier”) from X to Y if {dppn} € Y whenever {on} € X.
Multiplier can be treated as an operator By: X — Y defined as By {on}
= {A pn}. Here we study the multipliers from D7 to Dg and then
from HP, the Hardy class with pth mean bounded, 0 < p <1, to

Dg and from BP (0 < p < 1) to D;. The Hardy class HP is defined as

2w 3
He = {f: M (r.f) = % —2i_ I | f(r ei6) [P dB}1/P < o0 as r-> 1
I
o
and a larger class BP is defined as

1
BP = {f:] (1-9ip2 M, (1) dr < o0) }.
0 .

We have
THEOREM 2.1. A function A; A(z) = X 2pz® is a multiplier
n

: i .
from D to D, if and only if

)

Proof. Let A(z) be a multiplier from Dj to D .

Vn

@1 = 0(

4n

Applying closed graph theorem to the operator
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By : D} - D}, we get
2 i)\np.nan lp S k Z lanVn lp
n n

where f(z) = X apz® is an arbitrary member of Dg. Putting
n

f =38, 8i(z) = z,i = 0, 1,... we get
upha [P < k Ivp [P for all n > 0.
Hence (2.1) holds.

n

Let, on the otherhand (2.1) hold. Let f(z) = X ayz" be an

arbitrary member of Dg. Then

D
pn P =k X |apvn [P
n

p
Ef] = T Paapua® <k T JagjP
u n n

< oo since f € Dy .
Hence A. f €D} whenever f ¢ Dj.
THEOREM 2 .2. (a) A necessary and sufficient condition for a

sequence {An} to be a multiplier of H? (0 < p < 1) into D}
(0 <p<q<o)is that

N
2 .2) X nad | rvp 0= O(N)

n=]

(b) ¥1 < q < o, {\n}is a multiplier of BP(0 < p < 1) into Dy if
and only if (2.2) holds.

(¢) If q <p, the condition (2.2) dces not imply that {};} multiplics
HP into D2, nor does it imply that {);} multiplies B? into Dy if q < 1.

The proof follows in similar lines as done by Duren and Shields
[1970].

3. This section now deals with the pointwise multipliers. A function

h, h(z) = X cpz™ is said to be a pointwise multiplier from a space
m

X to another space Y if h.f € Y whenever f = ¥ apz? € X. The
n
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The product h.f is defined by

08 (@) = = (% Cman_m )zn.

m=0
We have

THEOREM 3 .1. If h(z) is a pointwise multiplier from D} to . g' p
ngm len-mpn [P < k |vp [P for every m > 0.
Proof. Applying closed graph theorem to the operator
By : D) - DY, defined by By (f) = h.t
we get

bt < kt/p |f|, for every f D2, for

for some constant k, i.e.,

n
(3 .1) Z “Ln lp I z Cn—-m 8m ’p S k Z IanVn ip .
n n

m=0

Let f = 27, then from (3.1) we get the result.

4. Let X and Y be any two nonempty subsets of the space of all comp-

lex sequences and let A = (apx) be an infinite matrix of complex num-

bers. We write Ax = (Ap(x)) if Ay (x) = 2 apg X converges for
. v

each n and call Ax the A transform of x. If x = (xx) € X implies that
Ax = (Ay(x)) € Y, then we say that A defines a matrix transformation
from X into Y and we denote it by A: X - Y. By (X, Y) we mean the
class of matrices A such that A:X — Y. In X and Y if there are some
notions of limit or sum we write (X,Y,P) to denote the subset of (X, Y)
which preserves the limit or sum. '

In this section we view Dy as a sequence space and present some

results on matrix transformations connecting Dﬁ. Note that

DII: == {a = (an): Z ]anVnIp < o0 }
n

and
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A
D, = {a= (ap): sup |agvp| < © }.
n
Now we state a theorem which is required in the sequel.

THEOREM 4.1. [Maddox[ 1970], p. 114)]. Let X be a second
category p-normed space. Suppose F is a family {q} of lower semicon-
tinuous seminorms ¢ such that

q(x) < H(x) < o,
for each x € X and all q € F.
Then there exists a constant H, independent of x and ( such that
() < H |x |im
for all x € X and all q € F.
We have
THEOREM 4.2. Let 1 < p < co. Then A € (D}, Dp) if and
only if

p
< 0.

4.1) sup X |apk |P
k n

z
Proof. Let b = {bx} € D] ie. ¥ |bpvi]| < o .
k

Assume that the condition (4.1) holds. Now

(2 | 2 apygbevy P)IP << X (X Jag,k bgva [P)L/P
n k . n
o

< (2 bve]) ( T Japx|P p)i/p
. k n

Vn

< (2 |bgvk|) sup ( = |apxk|P p) 1/p
k K n

<

Hence Ap(b) € Dy. To prove the necessity, suppose A € (D}, Dp),
so that

S |Afb)vi|P < oo on D!
i
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where Aib) = ¥ ajbk.
k
Now define

@b) = ( T AGMPIP =12, ..)

i=1
By Minkowski’s inequality we see that ¢, is subadditive. Thus since
qn(x b) = [A| qu(b), we bave that each qy is a seminorm on D?.
Moreover the fact that each A; is a bounded linear functional on D}
implies that each ¢, is bounded on Df’

Hence we have a sequence {q,} of continuous seminorms on
A
D7 such that

sup qn(b) = X ( [Ai(b)v;[P) I/P <
n i

for each b ¢ Df . Applying Theorem 4.1 we obtain a constant H such
that ‘

% |Aib)vi[P < HP |b| on Di.
i
Putting bv = ex, k = 1,2, .... we get (4.1).

COROLLARY 4.1. A e (1, Dp) if and only if

sup X lapxvp P < o .
K n

COROLLARY 4.2. A e (D7, ) if and only if

p

an,k
..__,_ <w‘

5
su P
p VE

k n

COROLLARY 4 .3. [Maddox [1970], p. 167]. A € (i, 1p) if and
only if

sup X |apx /P < oo .
X n

THEOREM 4.3. (a) A € (D}, D{, P) if and only if

Vn
sup X lapyx —| < o,
n Vk

k
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A%

Y apg — = 1 for all k.
n Vk

\(ii) (D#, D4, P) is closed and convex in (D], D?).

This can be obtained by standard arguments and hence we omit
the proof.

THEOREM 4 4. (i) A ¢ (D2, D) if and only if

Vn
4 .4 D> x — < ,
(4 .4) s1;p > an,k v o'e)
(1) A e (D2 (p), D) if and only if
sup X | any B ONYR, <
n | Vk

for every integer N > 1.

PROOF. (i) SUFFICIENCY. Let b = {by} € Dg and let
the condition hold. We have

) (sup | bivi | )
k

sup | Ay(b) | = sup | 2 ap,xbxvn | < sup (2 o
n n k n \k k

an,k ——
V

Therefore {Ap(b)} € D® and hence A e (D), D2 ).

The necessity can be obtained by arguing as in Theorem 4.2 and
by an application of Theorem 4.1.

(ii) For sufficiency take an integer

N > max (1, sup |bgvk [PX) where b = {bx} € D2 (p).
k

Let the condition hold. Then for every n,

sup | Ap(b)va] < sup = | anx % sup | bgevy |
< sup X |ank Mo Nirg < 0
Vk

and therefore A € (D2 (p), D2)
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For the necessity suppose that A € (D2 (p), D2), but there is an
integer N > 1 such that

sup > an,i ._v_n_. Ni/py = o0
n k Vk
Then the matrix (an,k \—n ) ¢ (D:, Di) and so there is a
'k
b € D2 with |b | = 1 such that

Vn
b Pk T Nt /pk
k Vi

is not bounded. Hence although a = (N1/py by) € D2 (p) the sequence
Ap(a) ¢ DA, This contradicts the fact that A ¢ (D2 (p), DA) and
completes the proof.

COROLLARY 4.4. A e (D2, i) if and only if

ansk
Vk

sup X < o .
n  k

COROLLARY 4.5. A € (1x, D2 ) if and only if

sup X |apxvn | < o .
n k

COROLLARY 4.6. [Lascarides and Maddox [1970], p. 102].
A € (to(p), tw) it and only if

sup X |anyg | NI/PK < oo .
n k

COROLLARY 4.7 [Stieglitz and Tietz [1977]].
A € (tw, two) if and only if

sup X |apk | < o .
n k

THEOREM 4.5. Let 1 <p < « . Suppose that
A € (D4, D) < (D2, D2). Then A ¢ (D3, D}) .
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The proof uses Theorem 4.2 with p == 1 and Theorem 4 .4 (i) and fol-
lows from a simple application of Holder’s inequality.

COROLLARY 4.8. [Maddox [1970] ].

Let 1 < p < « and suppose that A € (tw, to) N (45, t1). Then
A S (Lp, Lp).

We conclude this paper with one more theorem on matrix trans
formations.

THEOREM 4.6. (i) A ¢ (D3, D) if and only if

Vo
sup {apg — | << 0,
nk Vk

(i) A e (D2, D) if and only if

Vn .
> X |lagpg— | < o .
n k Vk

Proof. We only prove (i) . (ii) can be proved in a similar manner.

Let b € D} and let the condition hold. We have

Vn

) S by vic| < oo
k

sup | X apcbgvn | < sup (|ank|
n k

nk oy

and therefore A € (D4, D2).
To prove the necessity suppose that A € (D, D2); so that

sup | An(b)vy | < 00 on D}.
n

Define qu(b) = | An(b)vn |.
Clearly each qn is a continuous seminorm on D‘l‘ and sup qn (b) <
n

oo for each b & D4. Therefore by Theorem. 4 .1 there exists a constant
H such that

qu(b) < H ||b | on D% .

Now putting by = ex we obtain the condition and this completes the
proof of (i).
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