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Abstract

The tidal wave function y (x) is a solution to an inhomogeneous, linear, second-order diffe-
rential equation with variable coefficient. Numerical values for the height-dependence terms, in
the observed tides, have been utilized in finding y (x) as a solution to an initial-value ,-problem.
Complex Fast Fourier Transform technique is also used to obtain the solution in a complex form.

Based on a realistic temperature structure, the atmospherebelow -110 km- has been divided
into layers with distinct characteristics, and thus the technique of propagation in stratified media
has been applied. The reduced homogeneous equation assumes the form of Helmholtz equatlon
and with initial conditions the general solution is obtained.

1. INTRODUCTION

In the development of the tidal theoryll,2], the assumption is made
such that the dependence of the tides on height, co-latitude and longi-
tude are separable.

The latitude-dependences of the tidal fields are expressed in terms
of the Hough functions, which are solutions of Laplace’s tidal equation.
It is an eigenvalue-eigenfunction problem and has been the subject of
extensive study during the last decadel3.4.5:61,

The vertical structure of the tidal wave propagation, on the other
hand, is expressed in terms of the wave function y (x), which is the solu-

*International Centre for Theoretical Physics, Preprint IC/81 /145, Trieste, Italy
*Accepted for presentation at XV Biennial Fluid Dynamic Symposium, Poland, Sep. 1981.



96 SAMUEL H. MAKARIOUS

tion of the Radial Wave equation. For a given mode of oscillation, the
variable coefficient, in that equation, depends solely on the vertical tem-
perature distribution. Previous investigatorel7,89.10ladopted, however,
simplified vertical temperature structure in order to render the ma-
thematical treatment more tractable.

Classical tidal theory has, therefore, limitations, arising out of the
assumptions on which it is based, which need to be recogrized when
making close comparison with the observational datallll. With a rea-
listic temperature structure, however, no closed form solution-to the
vertical wave equation-exists and the solution has to be approached
numerically. This is the goal of the present study.

Analytical expressions for the general solution, in conformity with
the observed tidal oscillations in the atmosphere, have been obtained.
The numerical solutions for the oscillatory and trapped modes of tidal
wave propagation have also been presented and discussed.

2. THE RADIAL WAVE EQUATION

The basic equation of the theory of atmospheric tides are given in
Siebert[tland their derivations need not, therefore be repeated. The
wave function yp(x) is expressed in terms of the velocity divergence
yn(x) and the rate of heating Jy(x), per unit mass, as

yn(x) = [xa— kJn/ gH] /| exp (x/2) 1
where x, the reduced height, is defined by
x = [z’ H (Z) ' )

H(Z) = RT (Z) /g and k = 2/7T = (y - 1) | v. n refers to the mode num-
ber, and may take negative sign-depending on that of the equivalent
depth of the mode, hy; the latter is the eigenvalue, obtained through the
solution of Laplace’s tidal equation, which depends only on the period
of the mode. We refer, thereafter, to the modes by the symbols (S, n);
S is the longitudinal wavenumber. In the present study, we deal with .
the most important modes of the migrating solar diurnal (1,- 2), (1,1)
and semidiurnal (2,2) oscillations; hy= — 12.2287, 0.6988 and 7.9175 km,
respectivelyl6l.

The wave function y,(x) is a solution tc the Radial wave Equation,
written in the form:
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dyn | dx2-} [1- 4 ha(kH + dH /dx) ] yn— (k f¢ gha) Jn() /2 (3)
Subject to the usual boundary conditions:

(i) Zero vertical motion at the surfacel12), this requires that:

dfdx-ynf2 | = ~(H (0) / bn) yu (0) )

and
(ii) ynis bounded and the flow of energy is in the upward direction, at
sufficiently high levels, Z ~ 100 km8].

In order to evaluate the reduced height (Eq. 2) realistic temperature
data are utilized. [1314] The scale height H (x) has then been obtained,
by using quadratic interpolating formula, at x = 0 (0.1) 17. By least
squares approximation H (x) is found to be respresented fairly accura-
tely by a fourth degree polynomial in the region 0 < x < 15.6. At x >
15.6, a constant temperature gradient (8.5°k /km, i.e. dH /dZ = 0.25)
is assumed. The approximated scale height H (x), thus obtained, is given
in table la.

The variable -coefficient of yn(Eq. 3):

w2u(x) = ~ } [ 1 - 4/hy(kH + dH/dx) ] (5)
has been evaluated and presented in table 1b, for the modes under con-
sideration. (The subscript n will be dropped, there-after, for simplicity
in writing, and we deal with one mode at a time).

The region below x = 15.6 has been, further, divided into 13 equ-
ally spaced subregions, for each of which:

pAx) = Px - q (6)
The results for P are also given in table 1b, from which it can be inferred
that the atmosphere is divided into four distinct regions, with regard to
the characteristics of its refractive index, p2(x), to the different modes.
These regions are separated by the levels x = 4.8, 9.6 and 12.0. At levels
x > 15.6. the temperature model assumes the form dH [dZ = e, and
the corresponding expression for ulis, therefore;

p2(x) = Eetx_ ¢ (M

3. THE AUXILIARY FIRST-ORDER DIFFERENTIAL EQUATION

The vertical dependence-terms in the tidal fields are usually exp-
ressed in terms of the solution y (x), to Eq.(3), as:
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(dy [dx -y [x)ex/2= £ (x) e!¥(x) (8)
These terms had been previously obtained at Z = 2.5 (2.5) 60 km in
analysing 6 years of horizontal wind date(15], and at Z = 0 using the best
available data of surface pressure amplitudes and phases [1617], By

Lagrangian quadratic interpolation, the vertical dependence terms
(Eq. 8) are therefore evaluated at x = 0 (0.1) 8.4.

With the inhomogeneous terms being given in tabulated forms, at
A x = 0.1, the linear first-order differential equation, (Eq.-8), has been
integrated numericallyl18], using Simpson’s rule, and its solution is:
¥ (x) = e*/2{y(0) — of*E (x') exp (i3(x) - x) d x'} )
The initial values y (o) satisfy the lower boundary condition (4). The

numerical values for the solution at x = 0 (1.2) 8.4 are presented in tab-
le 2.

On the other hand, if the inhomogeneous term (Eq. 8) attains a
reasonable analytical form, the integral in (9) can also be evaluated.
By inspection, it was found that this term can be approximated fairly
accurately - by Complex Fourier Series expansion -in the form:

(dyjdx -y [2) ex2= g (x) B0 = T Cpelax (10)
The complex coefficients C (= a,+ ib,) are obtained for the two
regions 0 < x < 4.8 and 4.8 < x < 9.6, independently, using the
Complex Fast Fourier Transform Technique, usually used in Compu-
tational Complex analysis(19]. The two regions are chosen this way
as they are characterized by the different temperature structure (Eq.
6) and consequently different wavelengths, for each mode.
With this analytical expression (10), the corresponding solution
y (%) is, therefore, given by:
y (X) =Y (xo) exp (X - Xo) /2 - eX/Z{e'XZCv/ ( imv_ 1) eioth.. e %o ZCU

[ (i~ 1) } (11)
The initial values y (x,) are those obtained by the integration method
(9) at x,= 4.8. The numerical values for the solution (11) are also pre-
sented in table 2, and they are found to be comparable, within differen-
ces & 0.5 % — on the average, with those obtained by direct integration
(9). This reflects the validity of the approximation (10) and also the nu-
merical stability of the solution.
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On the other hand, the inhomogeneous term (Eq. 10) corresponds
to the applied tidal force. Therefore, in differentiating both sides of (10)
and substituting into the radial wave equation (3), we can express the
general solution y(x) as:

Vo(x) = Q (x) / (2(x) + 1) - e™/2E ia,Cpel®,* [ (u(x) + 2) (12)

where
Q (x) = (kjygh)J (x) ex/2 (13)

At high levels (70-80 km), it is generally accepted(*10.11] that the
applied tidal force J (x) vanishes. Assume that this occurs at x*(= 12
say, corresponding to Z ~ 82 km). In the intervening region we may,
therefore, write:

(dy Jdx — y[2) ex/2= C (x — x*) el* (14)
9.6 < x < x* .
Therefore, the solution in this region, is:
Yo(x) = Q (x) [ (u3(x) + 1) —e7*/2Ce! [ (2(x) + 1) (15)
With given values of Q (x) the general solution can be obtained
numerically. Nevertheless, such function is given in the literature — in
rather simplified analytical forms which do not conform with the ob-

servations. Consequently, another approach is given to obtain the general
solution of the inhomogeneous equation (3).

4. THE REDUCED HOMOGENEOUS EQUATION:

Basically, the general solution of Eq. (3) may be expressed as the
sum of the complementary function and a particular integral. The comp-
lementary function is the general solution of the reduced homogeneous
equation:

a2y [dx2+ wix) y = 0 (16)
An examination of this reduced equation (16) shows that there is a simple
analogy with propagation of plane waves in a medium of varying ref-
ractive index p2(x)[12], This state of affairs can then be described by the
Helmholtz equation, which in general, is a typical one for oscillating,
systems!20],

In order to obtain exact solutions to the Helmholtz equation, the
variable coefficient u2(x) has been replaced by a collection of continuous
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functions (Eqgs. 6 and 7), whick look like acceptable approximation
to p2(x). It has been shown [21] that the general solutions of the reduced
homogeneous equation (16) are expressed in terms of:

(i) Bessel functions J+1/3and I41/3 in case u2> 0 and u?< 0, res-
pectively, for 0< x < 15.6.

and

(ii) Bessel functions J,, y,(or modified Bessel functions I, k) of the
first and second kinds, in case of p2> 0 (or u2< 0), for 15.6 <x <
16.8. In the former case (u2> 0), the solution is oscillatory and the
requirement that y (x) is bounded for large x is met. But in the
latter case (u2< 0), the modified Bessel function of the first
kind grows indefinitely with x, and its coefficient is set to zero to
conform with the requirement of the bounded solution.

To conclude, the general solution to the homogeneous equation (16)
has been represented in the form:

Ye(x) = ayi(x) + byy(x) (7)
where y, and y, are the two linearly independent solutions, expressed in
terms of the appropriate Bessel functions, and a ( = Aei%), b (= BeiB)
are two complex integration constants.

Imposing the lower boundary conditions (4) on the solution (17),
the two constants a and b are related and we may write:
Ye(x) = Bv (x) el (18)

A second alternative technique to solve the homogeneous equation
with arbitrary p2(x), is the WKB approximation method[20], It consists
in assuming that the changes in w (x) became small enough over a wave-
length in the vertical, i.e.

[lTjud/dx In p | €1 (19)
It has been found that this is the case for the modes under consideration,

except for the mode (2,2) at x = 2.4, 7.2. & 14. 4, where p2= 0, and
and WKB approximation breaks down.

In the WKB approximation, the general solution of the homogene-
ous equation can then be written in the form:

Yo(x) = W/juliZe-ipx; 2> 0 (20)

or
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Ye(x) = WAl2ex 5 p2< 0 (= 52 - @D
Signs in (20) and (21) are chosen to conform with the boundness of y (x)
and upward flow of energy at great altitudes; W is a constant of integra-
tion. Comparisons of the exact solution (18) with the approximate so-
lution (20), or (21), enable us to relate the constants W and b.

5. THE GENERAL SOLUTION:

Turning now to the inhomogeneous equation (3), we find that solu-
tions in the form (12), or (15) can be written in the form:

Ye(x) = yc(¥)- u (%) (22)

where y(x) is any solution of the homogeneous equation (16) and u (x)
is a particular solution. Substitution into (3) yields:

yo(d2u /dx?) - 2 dy /dx) (du /dx) - (d2yc[dx2+ plygu = Q (x)  (28)
The coefficient of u being zero since y¢is the complementary funetion;
and we obtain a linear equation for (du /dx) with an integrating factor

exp {[ 2 (dyc/dx) [ yedx} = ¥

Therefore, Eq. (23) can be integrated outright, without separate cal-
culations of a particular integral and the complementary function. Upon
integration we get

du/dx = 1/y2; [*yQ dx + K/y2
andu (x) = [*ljy.{ [FyQdx}dx + K f=(1/y2) dx + A
Thus:

Ye(x) = y¢ P‘ 1/y2 f\ veQ dx} dx + Ky, " (1/y2e )dx + Ay (24)

The integrals in equatlon (24) can be evaluated numencally, provided
Q (x) is given.

Let us consider the approximate solution to the homogeneous equ-
ation y.(Eqgs. (20) or (21) ), obtained through the WKB approximation

of constant ., over a short range of x. Thus we may approximate Q (x)
(13), within this range in the form:

Q (x) = ge /2 (25)
On substitution, Eq. (24) takes, therefore, the form:
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Ye(x) = Q (x) [ (u2+ }) + iK 2Wpl/Ze~ux - AW [u1/2ei; u2> 0. (26)
or
Yo = Q (%) | (=22+ 1) + K[2W ai2ehx 4 AW 42 o7 < 0
(= -12)

_ (27)
The middle term in (26) (or 27) vanishes in order to conform with the up-
per boundary condition of finite solution and upward energy at great
altitudes.
Furthermore the general solution to the inhomogeneus equation (3) is
identical to the general solution of the reduced homogeneous equation
(16), where Q = 0, i.e. A = 1. :

Consequently, we obtain for yg(x) similar expressions to those
obtained in (12) and (15). Through that comparison, the constant W is
evaluated, and hence the homogeneous solution can be evaluated nume-
rically.

This completes the method of numerical solution to the differential
equation (3).

6. RESULTS AND DISCUSSION:

In this paper we presented a numerical method of solving linear in-
homogeneous second-order differential equation with a variable coeffi-
cient, as applied to the vertical tidal-wave propagation. Two solutions
are obtained, a particular solution, that is derived from the observed
tidal motion, and a homogeneous solution, using the characteristics of
the atmospheric structure.

As an illustration to the vertical behaviour of the solutions, the
results for two modes of the diurnal oscillation (1,-2) and (1,1) and for
the main semidiurnal mode (2,2) are presented in table 2.

It can be inferred from table 2, that the solution grows exponent-
tially with x and has greater values for the trapped mode (1,-2) than
the oscillating one, reflecting the effectiveness of the former mode to
the excitation. Although the (1,1) mode is a propagating one, the cons-
tancy in phase is due to its large wavelength which is about 43 km in the
troposphere and 25 km in the stratosphere. For the main semidiurnal
mode (2,2), p2y(x) is almost zero through most of the stratasphere; i.e.
extremely long vertical wavelength ( ~ 150 km). Thus not enly does
this mode receive the bulk of semidiurnal oscillation, but it must also
respond to the excitation with particular efficiency.
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With respect to the homogeneous solution, the function y (x) has been
found to be non-oscillatory and the amplitude is exponentially increa-
sing for 0 < x < 4.8 and decreasing above; in the latter region the
energy is trapped a feature associated with the negative mode. For the
oscillating mode the function y (x) is in general oscillatory and thus it is
very sensitive to the variation in temperature.

To conclude, with such a method of solution, a general solution to
the radial equation can be expressed analytically. It will be interesting
to show how this solution can be used to evaluate the thermal drive for
the atmospheric tides. This will be the subject of the forthcoming work.
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TABLE 1. THE MODEL ATMOSPHERE

1. a The Reduced Height 1. b The Refractive Index Characteristic
x [ ZGm) | H@m) | @2y [Py | W | P oo |Biem | Pes
0.0 0.0 8.4742 | —0.2887 0.4280 -0.1896
-0.050 0.870 0.077
1.2 9.0027 | 6.8966 | ~0.3484 1.4721 -0.0967
-0.040 0.707 0.063
2.4 16.9021 | 6.4497 | —0.3969 2.3205 1 ~0.0212
~0.027 ] 0.475 0.042
3.6 24.7208 | 6.6345 | -0.4295 2.8909 0.0296
-~0.012 0.210 0.019
4.8 32.9472 | 7.0523 | —0.4439 3.1430 0.0520
0.003 —0.054 -0.005
6.0 41.6587 | 7.4077 | -0.4402 3.0785 0.0463
0.016 C | ~0.281 ~0.025
7.2 50.6448 | 7.5080 ; -0.4209 2.7411 0.0163
0.023 —0.437 -0.039
8.4 59.5307 | 7.2630 | ~0.3909 | 2.2166 —0.0304
0.028 ~0.487 0,043
9.6 | 67.9003 | 6.6857 | -0.3576 1.6324 -0.0824
0.023 |. -0.395 -0.035
10.8 75.4192 | 5.8913 | -0.3305 1.1585 ~0.1246
0.007 -0.127 -0.011
12.0 81.9589 | 5.0979 | -0.3218 1.0063 -0.1382
—0.020 0.353 0.031
13.2 87.7188 | 4.6265 | ~0.3460 1.4296 -0.1005
. -0.062 1.079 0.096
14.4 93.3506 | 4.9006 | -0.4200 2.7241 0.01471 -
-0.119 2.086 0.186
15.6 | 100.0805 | 6.4465 | ~0.5630 5.2273 0.2376
16.8 | 109.2152 | 8.7018 | -0.6312 6.4210 0.3438

*P as obtained using Eq. (6)
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TABLE 2. THE NUMERICAL SOLUTION TO AUXILIARY WAVE EQUATION (8)

Diurnal Oscillation Semidiurnal Oscillation
S 1.-2) 1.1) (2,2)

x y** y* @* y** y# (D* yﬁﬁ y* @*
0 0.016 0.016 { 0.53 | 0.006 0.006 | 0.53 0.123 0.123 | 0.94
1.2 0.159 0.178 | 0.90 | 0.074 0.177 ] 0.08 0.580 0.576 | 0.74
2.4 0.506 0.517 | 0.88 | 0.352 0.326 | 0.20 1.507 1.404 | 0.73
3.6 0.964 0.969 | 0.88 | 0.582 0.582 | 0.20 2.847 2.847 | 0.73
4.8 1.771 1.771 | 0.88 | 1.082 1.082 { 0.20 5.213 5.213 1 0.73
6.0 3.239 3.239 | 0.88 | 1.969 1.939 | 0.21 9.432 9.503 | 0.73
7.2 5.912 5.925 | 0.88 | 3.582 3.520 | 0.21 | 17.190 | 17.305 | 0.73
8.4 10.758 | 10.795 | 0.88 | 6.519 6.411 | 0.12 | 31.314 | 31.541 | 0.73
9.6 | —-r 19.662 | 0.88 | —— 11.679 | 0.21 | —— 57.453 | 6.73

*Values obtained from the integration, using the approximation given by Eq. (10).
**Values obtained from the integration (9), as obtained from the observations.
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