COMMUNICATIONS

DE LA FACULTÉ DES SCIENCES DE L'UNIVERSITÉ D'ANKARA

Séries A_{1} : Mathematique

SOLIDITY AND SOME SEQUENCE SPACES

By
K. CHANDRASEKHARA RAO
and
A. ALFRED GURUSINGH

1

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie

Communications dé la Faculté dés Sciéncés dé I'Univérsité d'Ankara

Comite de Redaction de la Serie A_{1} C. Uluçay, H.H.Hacısalihoğlu, C. Kart.
Secretaire de Publication
Ö. Çakar

La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les diciplines scientifiques représentées à la Faculté dus Sciences de l'Université d'Ankara.

La Revue, jusqu'à 1975 a l'exception des tomes, I, II, III etait composée de trois séries

Série A : Mathématiques, Physique et Astronomie,
Série B : Chimie,
Série C : Sciences Naturelles.
A partir de 1975 la Revue comprend sept séries:
Série A_{1} : Mathématiques,
Série \mathbf{A}_{2} Physique,
Série \mathbf{A}_{3} : Astronomie,
Série B : Chimie,
Série C_{1} : Géologie,
Série C_{2} : Botanique,
Série C_{3} : Zoologie.
A partir de 1983 les séries de C_{2} Botanique et C_{3} Zoologie ont été réunies sous la seule série Biologie C et les numéros de Tome commencerons par le numéro 1.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté des Sciences de l'Université d'Ankara. Elle accepte cependant, dans la mesure de la place disponible les communications des auteurs étrangers. Les langues Allemende, Anglaise et Française seront acceptées indifféremment. Tout article doit être accompagné d'un resumé.

Les articles soumis pour publications doivent être remis en trois exemplaires dactylographiés et ne pas dépasser 25 pages des Communications, les dessins et figures portés sur les feuilles séparées devant pouvoir être reproduits sans modifications.

Les auteurs reģoivent 25 extraits sans couverture.

[^0]
SOLIDITY AND SOME SEQUENCE SPACES

K. CHANDRASEKHARA RAO and A. ALFRED GURUSINGH
(Received June 3, 1985; accepted November 6, 1985)

ABSTRACT:

In this paper we investigate the solidity (normality) of the sequence spaces $\mathrm{C}_{\mathrm{A}}, \mathrm{l}_{\mathrm{A}}, \mathrm{m}_{\mathrm{A}}$ and Γ_{A}.

1. INTRODUCTION AND NOTATION

We require the following sequence spaces:
c: the space of all convergent sequences.
m : the space of all bounded sequences.
l: the space of all sequences $x=\left\{x_{k}\right\}$ such that

$$
\sum_{k=1}^{\infty}\left|\mathbf{x}_{k}\right| \text { converges. }
$$

Γ : the space of all sequences $x=\left\{x_{k}\right\}$ such that

$$
\left|\mathrm{x}_{\mathrm{k}}\right|^{1 / \mathrm{k}} \rightarrow 0 \text { as } \mathrm{k} \rightarrow \infty
$$

ω : the space of all sequences.
Let $\mathbf{A}=\left(\mathrm{a}_{\mathrm{nk}}\right),(\mathbf{n}, \mathbf{k}=1,2, \ldots \ldots \ldots)$ be an infinite matrix. Given a sequence $x=\left\{x_{k}\right\}$ we write formally

$$
y_{n}=A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} \cdot x_{k},(n=1,2, \ldots \ldots .)
$$

The sequence $\left\{y_{n}\right\}=\left\{A_{n}(x)\right\}$ will be denoted by $A x$ or y. Let X be a sequence space and let X_{A} be the set of all those sequences $x=\left\{x_{k}\right\}$ for which $A x \in X$.

The set of all matrices transforming X into X will be denoted by (X, X). We recall the following:

A sequence space X is called solid (or normal) if an only if

$$
m X \subset X
$$

Any matrix in (c, c) is called a conservative matrix.
A conservative matrix which preserves the limit is said to be a Toeplitzmatrix.

2. RESULTS

PROPOSITION 1. If A is a conservative matrix, which fails to sum a bounded sequence, then c_{A} is not solid.

Proof.
The constant sequence $e=\{1,1, \ldots \ldots\}$ is in c_{A}.
By our hypothesis, there exists a bounded sequence b such that $b \notin c_{A}$. That is $b . e \notin c_{A}$ Therefore, $m . c_{A} \not \& c_{A}$ showing that c_{A} is not solid.

COROLLARY. If A is a Toeplitz matrix, then c_{A} is not solid.
PROPOSITION 2. If $\mathrm{A} \in(l, l)$, then l_{A} is in general, not solid.
Proof.
Let

$$
A=\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & 1 & \cdots
\end{array}\right)
$$

That is $a_{n}, 2_{n-1}=1,(n=1,2, \ldots)$

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{n}}, 2 \mathrm{n}=1,(\mathbf{n}=1,2, \ldots) \\
& \mathbf{a}_{\mathrm{n}, \mathrm{k}}=0, \text { otherwise. }
\end{aligned}
$$

Then

$$
\sum_{n=1}^{\infty}\left|a_{n k}\right|=1 \text { for each fixed } k \text {, showing that } A \in(l, l)
$$

We note that
$\mathrm{x} \in l_{\mathrm{A}}$ if and only if $\sum_{\mathrm{k}==1}^{\infty}\left|\mathrm{x}_{2 \mathrm{k}} 1+\mathrm{x}_{2 \mathrm{k}}\right|$ converges.
Take $x=\{1,-1, J,-1, \ldots\}$ so that $x \in l_{A}$.
Take $b=\{1,-1,1,-1, \ldots\}=x$. Then b is in m.
Now, $y=b x=\{1,1,1, \ldots\}=c$.
For e, we have $\sum_{\mathrm{k}=1}^{\infty}\left|\mathrm{y}_{2 \mathrm{k}-1}+\mathrm{y}_{2 \mathrm{k}}\right|=2+2+\ldots .$.
which is a divergent series.
Thus $m . l_{\mathrm{A}} \subset l_{\mathrm{A}}$. Hence, l_{A} is not solid.
PROPOSITION 3. If $A \in(m, m)$, then m_{A} is in general, not solid.
Proof.
Let $\mathrm{A}=$

$$
\left(\begin{array}{rrrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & -1 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & 1 & \ldots \\
\ldots & & \ldots & & \ldots & \ldots
\end{array}\right)
$$

In other words,

$$
\begin{aligned}
& \mathbf{A}=\left(\mathbf{a}_{\mathrm{n} k}\right) \text { is defined by } \\
& \mathbf{a}_{\mathrm{n}, 2 \mathrm{n}-1}=-\mathbf{1},(\mathbf{n}=1,2, \ldots \ldots \ldots) \\
& \mathbf{a}_{\mathrm{n}, 2 \mathrm{n}}=1,(\mathbf{n}=1,2, \ldots \ldots) \\
& \mathbf{a}_{\mathrm{n}, \mathrm{k}}=0, \text { otherwise. }
\end{aligned}
$$

Then

$$
\sum_{k=1}^{\infty}\left|a_{n k}\right|=2 \text { for each fixed } n
$$

Consequently, $\mathbf{A} \in(\mathbf{m}, \mathbf{m})$.
Note that $x \in m_{A}$ if and only if
$A x=\left\{-x_{1}+x_{2},-x_{3}+x_{4},-x_{5}+x_{6}, \ldots\right\} \in m$
We take $x=\{1,2,3, \ldots \ldots)$ so that
$A x=\{1,1,1, \ldots\}$ and $x \in m_{A}$.
Take $b=\{-1,1,-1,1, \ldots \ldots\}$ in m.
Then $b x=\{-1,1,-3,4, \ldots\}$ and
$\mathrm{A}(\mathrm{bx})=\{3,7,11, \ldots .4 \mathrm{n}-1, \ldots.\} \notin \mathrm{m}$.
Thus $\mathrm{m} \mathrm{m}_{\mathrm{A}} \notin \mathrm{m}_{\mathrm{A}}$.
Hence m_{A} is not a solid space.
It is known [1] that a matrix $A=\left(a_{n k}\right)$ is in (Γ, Γ) if and only if for each positive integer q there exists $p(q) \geq q$ and a constant $M(p, q)$ such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|a_{n k}\right| q^{n}}{p^{k}}<M(p, q) \tag{1}
\end{equation*}
$$

for $k=0,1,2, \ldots \ldots$
Here we take $A=\left(a_{n k}\right),(n, k=0,1,2, \ldots)$
The above characterisation of the class (Γ, Γ) is equivalent to the following assertion, which we state as a Lemma.

LEMMA. Let $\mathbf{A}=\left(\mathrm{a}_{\mathrm{nk}}\right),(\mathrm{n}, \mathrm{k}=0,1,2, \ldots$.$) be an infinite matrix. In$ order that the matrix A is in (Γ, Γ) it is necessary and sufficient that given any $\varepsilon>0$, there is an $M>0$, depending on ε, such that uniformly in n and k

$$
\begin{equation*}
\mathrm{a}_{\mathrm{nk}}=\mathbf{O}\left(\mathrm{s}^{\mathrm{n}} \mathrm{M}^{\mathrm{k}}\right) \tag{2}
\end{equation*}
$$

Proof:
Suppose that (1) holris. Since the terms in the sum on the left are all non negative, each term is less than or equal to the sum, so that (1) implies that uniformly in n and k

$$
\begin{equation*}
\mathbf{a}_{\mathrm{nk}} \cdot \mathrm{q}^{\mathrm{n}}=O\left(\mathbf{p}^{\mathrm{k}}\right) \tag{3}
\end{equation*}
$$

Given any $\varepsilon>0$, choose an integer q with $q>1 / \varepsilon$ and then choose p as in (1). Since $q \geq 1 / \varepsilon(3)$ gives us (2) with $M=p$.

Conversely, suppose that (2) holds. Given any positive integer I choose $\varepsilon<1 / \mathrm{q}$, and then choose M as in (2).

Then

$$
\begin{aligned}
\sum_{\mathrm{n}=0}^{\infty} \mid \mathbf{a}_{\mathrm{nk}}: \mathbf{I}^{\mathrm{n}}= & 0\left\{\mathbf{M}^{\mathrm{k}} \sum_{\mathrm{n}=0}^{\infty} \varepsilon^{\mathrm{n}} \cdot \mathrm{q}^{\mathrm{n}}\right\} \\
& =0\left(\mathbf{M}^{\mathrm{k}}\right)
\end{aligned}
$$

Since $\sum_{n=0}^{\infty} \varepsilon^{n} \cdot q^{n}$ converges (because $\varepsilon<1 / q$), it is equal to a constant. Thus if we take $p \geq M$, then (1) holds, Hence the lemma. PROPOSITION 4. If $A \in(\Gamma, \Gamma)$, then Γ_{A} is not necessarily solid.

Proof.

Take A as in Proposition 3.
Writing $\left\{t_{m}\right\}$ for the transform of $\left\{x_{n}\right\}$, so that

$$
\mathrm{t}_{\mathrm{n}}=-\mathrm{x}_{2 \mathrm{n}-1}+\mathrm{x}_{2 \mathrm{n}},(\mathrm{n}=0,1,2, \ldots)
$$

we can verify directly that
$\left|\mathrm{x}_{\mathrm{n}}\right|^{1 / \mathrm{n}} \rightarrow 0 \Rightarrow\left|\mathrm{t}_{\mathrm{n}}\right|^{1 / \mathrm{n}} \rightarrow 0(\mathrm{n} \rightarrow \infty)$
For, if $n<1$, then $|\mathbf{a}+\mathbf{b}|^{n}<|\mathbf{a}|^{n}+|\mathbf{b}|^{n}$
so that
$\left|\mathrm{t}_{\mathrm{n}}\right|^{1 / \mathrm{n}}<\left|\mathrm{x}_{2 \mathrm{n}-1}\right|^{1 / \mathrm{n}}+\left|\mathrm{x}_{2 \mathrm{n}}\right|^{1 / \mathrm{n}}$
since $\left|x_{n}\right|^{1 / n} \rightarrow 0(n \rightarrow \infty)$, we have $\left|x_{n}\right|<1$
for sufficiently large n. Supposing that n is large enough for $\left|\mathbf{x}_{2 \mathrm{n}-1}\right|<1,\left|\mathrm{x}_{2 \mathrm{n}}\right|<1$, $\left|\mathrm{t}_{\mathrm{n}}\right|^{1 / \mathrm{n}}<\left|\mathrm{x}_{2 \mathrm{n}}-\mathbf{l}\right|^{1 / 2 \mathrm{n}-1}+\left|\mathrm{x}_{2 \mathrm{n}}\right|^{1 / 2 \mathrm{n}}$

Hence, if $\left|\mathrm{x}_{\mathrm{n}}\right|^{1 / \mathrm{n}} \rightarrow \mathbf{0}$, then $\left|\mathrm{t}_{\mathrm{n}}\right|^{1 / \mathrm{n}} \rightarrow \mathbf{0}(\mathrm{n} \rightarrow \infty)$
It is now trivial that $\{1,1,1, \ldots\}$ belongs to Γ_{A} but $\{-1,1,-1,1, \ldots\}$ does not. Here we have $b=\{-1,1,-1,1, \ldots\}$ in m.
So, Γ_{A} is not solid.

3. REMARK

These results suggest some problems for consideration, which seem to be much harder. Take, for example, Proposition 2. Supposing that $A \in(l, l)$, then l_{A} is not necessarily solid. But it may be solid. If $\mathbf{1}_{\mathrm{A}}$
$=l$ (as happens, for example, when \mathbf{A} is the identity transformation, though it will happen in some other cases as well), then l_{A} solid.
Again, suppose that $l_{\mathrm{A}}=\omega$.
It is easily seen that this will occur if an only if there is some k_{o} such that
$\mathrm{a}_{\mathrm{nk}}=0$ for $\mathrm{k}>\mathrm{k}_{\mathrm{o}}$ and all n ;
and for each fixed $k \leq k_{0}$, we have $\left\{a_{n k}\right\} \in l$
In this case also l_{A} is solid.
It seems that there is a plausible conjecture that these are the only cases. In other words we have the following conjecture.

CONJECTURE 1. Let $\mathrm{A} \in(l, l)$. Then l_{A} is solid if and only if either $l_{\mathrm{A}}=\boldsymbol{l}$ or $l_{\mathrm{A}}=\omega$.

Analogous remarks apply to other propositions. There is, however one difference. In the case in which A gives the identity transformation, $l_{\mathrm{A}}=l$, which is solid. But $\mathrm{c}_{\mathrm{A}}=\mathrm{c}$, which is not solid. So, the corresponding conjecture in the case of Proposition 1 would be the following.

CONJECTURE 2. Let $A \in(c, c)$. Then c_{A} is solid if and only if $c_{\mathrm{A}}=\omega$.

ADDENTUM.

$$
\begin{aligned}
& \text { Take } A=\left(a_{n k}\right),(n, k=1,2,3, \ldots) \text { as } \\
& \left.\begin{array}{l}
\mathbf{a}_{\mathrm{nn}}=\frac{1}{\mathrm{n}} \quad \\
\mathbf{a}_{\mathrm{nk}}=0 \quad \text { if } \mathrm{k}=\mathbf{n}
\end{array}\right\} \quad(\mathrm{n}, \mathrm{k}=1,2,3, \ldots) .
\end{aligned}
$$

'Then certainly $\mathbf{A} \in(l, l)$. Also

$$
l_{\mathrm{A}}=\left\{\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right): \quad \sum_{\mathrm{k}=1}^{\infty} \quad \frac{\left|\mathrm{x}_{\mathrm{k}}\right|}{\mathrm{k}} \text { converges }\right\} .
$$

so that l_{A} is solid. However, $l_{\mathrm{A}} \neq l$
(take $\mathrm{x}_{\mathrm{k}}=\frac{1}{\mathrm{k}}$ for $\mathrm{k}=1,2,3, \ldots$). and $l_{\mathrm{A}} \neq \mathrm{w}$ (take $\mathrm{x}_{\mathrm{k}}=1$ for $k=1,2,3, \ldots)$ So the first conjecture false.

We thank Professor Brian Kuttner for his interest in this work.

REFERENCES

1 BROWN, H.I.: Entire Methods of Summation, Comp. Math. 21 (1969), 35-42
2 COOKE, R.G.: Infinite matrices and sequence spaces, Dover, 1955
3 WILANSKY, A.: Functional Analysis, Blaisdill, 1964.

St. Xavier's College	Nazareth Margoschis College
Palayamkottai $-627002, \quad$ and \quad	Nazareth 628617
India,	
India.	

[^0]: I'Adresse: Dergi Yayn Sekreteri
 Ankara Üniversitesi,
 Fen Fakültesi,
 Beşevler-Ankara
 turquie

