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ABSTRACT

Let Xı, X .. be a sequence of Bernoulli trials governed by a homogeneous third-order 
lwo-state Markov chain. The probabilirty function of the number of occurrences in n succes- 
sive trials, is obtained. In addition to this, assuming that steady State is already attained the li-
miting function of is obtained under the condition that nP (Xj = 1) = u as n 00, Finally
we can note that this limiting probabüity function can be generalized in terms of Leguerre poly- 
nomials as already shown in the relevant literatüre.
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INTRODUCTION

It is well known that for the independent Bemoulli sequence, the
limit of the prohabdity function of Sn is Poisson with parameter u.
In 1960, Edwards [3] formulated the problem as a Markov chain for 
the Bernoulli sequence with a correlation between trials and callcd 
such a sequence of dependent random variables “Markov Bernoulli
sequence”. The unconditional probabilitics of this sequence are
P(Xi 1) = P and P(Xi 0) = q = 1 - p for ali i = 1, 2... .

Wang [4] obtained the limiting probabüity function of Sn for 
the Bernoulli sequence governed by a first-order two-state Markov 
chain. Brainerd and Chang [1] derived the probabüity function of 
Sn in the case of the second-order Markov chain and Brainerd [2] 
obtained the limit of this probabüity function.

THE DISTRIBUTION OF S„ IN THE THIRD-ORDER CASE

Let Xı, X.■2’ • .. be a Markov BemouUi sequence governed by a
third-order Markov chain. Denote the unconditional probabilitics of
Xı by P (Xı = 1) p, P (Xi = 0) = q = (1-p) and the conditional
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probabilities by P(Xi
Xi_ı = 
P(Xı = 
P(Xı =

0) P(X1
0/ Xı^ı = 0) =w.

O/Xi_, = 1) =
0/Xi_3 = 1,

P(Xi
Xı.i-2

P(Xı = 0/Xı_2 = 1,
= o,

0/Xi_2 = o,
Xı_ı = 0) = §, 
Xi_ı = 0) = X,

o / Xi_3 = o, Xı_2 = o, Xi_ı = 0) = s for ali i = 1, 2, .
These probabilities are independent of i. In the third—order Markov
chain the following identities can be written immediately:

Xi.

P(Xı_ı = 0, Xi 1) P(Xı_ı = 1, Xı

P(Xi_2 = o, Xı_ı = 0, X,
0), (1)

l)=P(Xi_.2=l, Xı_ı = 0,Xı=0) {2)

P(Xi_3 = 0, X^2 =0, Xı^ı = 0, Xı 1) = P(Xi_3 = 1,

■i~2 = o, X, 0)
Let

Y = The number of trials to observe the first occurrence of 1,
after i. The conditional probabilities of Y are

P (Y

P (Y

P (Y

0/Xı

1/Xı

2/Xı

1) = o, 

!)=!-«,

1) = a (M),

P (Y k/Xi= 1)

= 0, Xi_ı

a

and

P (Y = 0) = 0,

P (Y = 1 / Xı

P (Y

0) = l-w,

0) = w (1 - X),

P (Y = k/Xi = 0) \ 8’^-3w

The probability generating functions of Y are for P (Y k/Xi = 1)
00

gı (t) = 2
k=0

P (Y = k / Xi 1) tk

(l-a)t + [g (M) - 8(1 - oc) ]t2 + [g ^(l-§) - g 8(1 - ;3) ] t^
1 - 8t

[g (i § (1-8) - ap (l-§) 8] t4

+

1 - St (4)
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for P (Y = k / Xı = 0)

go (t)
00
s 

k=o
P (Y = k / Xi 0) tk

(l-w)t + [w(l-X) - S(l-w)]t2 -|- [wX(l-S) - w8 (1-X)] t^

and for P (Y = k)

g (t)
00
s

k=0
P (Y = k)t>^ P(Xi = 1) gı(t) + P(Xı = 0) go(t)

pt + p(a - S)t2 4- p(a Ş - aS)t^ -|- p [a/3(§ - S)]!"* __ (5)

where the following identities obtained from (1), (2) and (3) have been 
used:

«p = q (i-w), a/îp = wp. «/5§p Xwq (1-S). (6)
Let

Yjj = The number of trials to observe the k th occurrence of 1 
after i th trial. At the initial trial Xi is 1 or 0. Thus we can write

Yk = Y + (k - 1) Y.
Yfe is equal to the sum of k independent random variables. The proba-
bility generating function of Yjj is for k

4 (t)
00
E 

n=o
P(Yı, n) t"

Since

P (Sn = k) = P (Sn > k) - P (S„ k + 1)

g(t) [gı (t)]’''i-

1

= P (Yk < n) - P (Yk+ı <n)
the probability generating function of Sn is of the form

Gk(t) = S 
n=o

P(Sn k)t” = S 
n=o

00

P( Yk < n)!’^ - L P(Yk+ı < n)t n̂
n=^o (7)

fk(t)
1 - t

fk+1 (t) 

1 - t
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g (t) [gı (t)]^~^ - g (t) [gı (t)]k
1 -t

g (t) [gı (t)]^ » [1 - gı (t)]

From (4) and (5)

1-t

we can obtain pt[l-gj (t)] = (1-t) g(t) and aceording
to this eguation, (t) can be written

Gk (t) - [g (t)]2 [gı (t)]fc-l
pt

= pt*' (a 4- kt + ct2 -|- dt3)2 (f -b ht 4- lt2 -|- dt^)^”!
(l-8)k+ı
(l-8t)’<+ı

(8)
where

a 1
1 -8 ’

b = a — 8 c
KjS - a8 
1-8

d = (§ - 8) 
1-8

f = 1 - « h = « (1 - /g) - 8 (1 - a)
1-8

1 (!-§)- (1 - Ş)
1-8

In (8) (f ht + lt2 dt^)^~^ is the probability generating function
of the multinomial distribution and (1 - 8)*^+^) (1 - St)*^+* is the pro-
babUity generating function of the negative binomial distribution.
From (7) it can be shown that P (Sn = k) is the coefficient of t®.

The expansion of the Gk(t) allows us to write for k 1

P (Sn — k) — p[a2Cn_k + 2ab Cn-k-ı (1*2 + l^n-k-2 +

(2ad -j“ 2bc) Cn—k—3 4“ (c^ 2bd) Cn_k-4 4“ ^cd Cn-k-s 4" 8.2 Cn-k—gl*

(9)
and for k = 0

P(Sn = 
where

0) = P(X1 = 0, Xı+, 0. ..Xı+n = 0) = qwX8“-2 (10)

Cn-k-r
k—1 m 1 

= S L S
k-l k+n-k-m-I-j-r j i—j m—i k—1—m n—k—m—i—j—r

dİ h f
nı=o 1=0 i=o\i,i-i,m-ı n-k-m-l-j-r (11)

8
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LIMITING probability FUNCTION

nIf np = u is held fixed as 00 from (6) we can write

1 - w au
n — u

a/3 u 
w(n-u) ’ 1 -s = Xw (n - u) • (12)1 - X =

The equations in (12) show that w,X and S approach 1 as n -> oc and 
we can also obtain

lim
n^oo

p = lim
n->oo

— = 0, n lim
n->x<

lim
M-^co

S" = lim
îl->x Xw (n - u)

1 -

q = 1

]
n

If we rearrange the expression (II) and let n->“ we obtain

'k — lim
n^oo

Cn-k-r 

1-5

k-l 
S 

m=o

k-l
= aj8§ue''“®§"

m

(1 - (a2^2§2u) k-l-m

(k - m)!

ıvhich is independent of r. From (9) and (10) it can be written for k > 1

lim P (Sn = k) = lim
ll->oo Il->oo

-2- [1 + («-S) + (§-5)]2
n

Xw (n-u)
Ln-k-r

1-5
= a/3§Cı,

= a2^2§2ue“«3u§
k-l
S 

ın=o
(k-l)! 

m! (k-l-m)!
(l-«^§)®(«^^u)k-l.-m

(k m)! (13)

and for k = O

lim P (Sn = 0) = lim 1- «/?§U
Xw (n-u).

n-2

Il->co

In (13) by taking k-l-m = j it is obtained

lim P(S„ == k) = 
11-^00

a2/32§2u (l-a^§)k-l k-l 
e ='->5'’ S

3=0

k!
j! (j+1)! (k-l-m)!k

«2p2§2u 

1-aP

j
(14)
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Since

(1)
Lr(y) = S 

i=o
(r+l)! (-y)^

(r-i)!i! (1+i)! ’ r = 0, 1, 2, ...
r

is the first-order Leguerre polynomials (see [2]), it can be shown that 
(14) is of the form

hm P(Sn = k) = 
n->oo

(1)
‘k-1

) • (15 .)
k e"“P§« I.

CONCLUDING REMARKS

In the second-order Markov chain § = 8 = X. For this case, from 
(15) we can obtain for k > 1

a^jS^u (l-a/9)k-ı
lim P(S„ = k) 
n->oo

L]'k-l , (16)k

and for k = 0

lim P(Sn = k) = 
n->co

g-a@u

Expression (16) is the limiting probability function in [2] for the second 
order case.

Comparing (16) and (15) shows that we can write the folloving
expres8İon in the case of the v th-order Markov chain for k 1

lim P(Sn = k) 
n->oo

aj2 . , . a^yU (1—«1 . . . a- ■) k—1 e-aı - . .KyU (1)
:-lk

«1^ ... ay2u

l-Kj .

and for k = 0

lim P(Sn =
n^oo

k) -«I • ■e . KyU

where for j = 1,2, . . ., v

aj = P(Xı = QIXi^i =1 , = 0 , Xuı —Xı_j_ı 0).
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