ON THE LIMITING DISTRIBUTION FOR BERNOULLI TRIALS WITHIN A MARKOV CHAIN CONTEXT

CEYHAN INAL
Department of Statistics, Hacettepe University Ankara, Türkey

Abstract

Let $X_{1}, \mathbf{X}_{1}, \ldots$ be a sequence of Bernoulli trials governed by a homogeneous third-order two-state Markov chain. The probabilirty function of S_{n}, the number of occurrences in n successive trials, is obtained. In addition to this, assuming that steady state is already attained the limiting function of S_{n} is obtained under the condition that $n \mathbf{P}\left(X_{i}=1\right)=u$ as $\mathbf{n} \rightarrow \infty$. Finally we can note that this limiting probability function can be generalized in terms of Leguerre polynomials as already shown in the relevant literature.

KEY WORDS: Third-Order Markov Chain, Markov Bernoulli Sequence

INTRODUCTION

It is well known that for the independent Bernoulli sequence, the limit of the probability function of S_{n} is Poisson with parameter u. In 1960, Edwards [3] formulated the problem as a Markov chain for the Bernoulli sequence with a correlation between trials and called such a sequence of dependent random variables "Markov Bernoulli sequence". The unconditional probabilities of this sequence are $P\left(X_{i}=1\right)=p$ and $P\left(X_{i}=0\right)=q=1-p$ for all $i=1,2 \ldots$.

Wang [4] obtained the limiting probability function of S_{n} for the Bernoulli sequence governed by a first-order two-state Markov chain. Brainerd and Chang [1] derived the probability function of S_{n} in the case of the second-order Markov chain and Brainerd [2] obtained the limit of this probability function.

THE DISTRIBUTION OF S_{n} IN THE THIRD-ORDER CASE

Let X_{1}, X_{2}, \ldots be a Markov Bernoulli sequence governed by a third-order Markov chain. Denote the unconditional probabilities of X_{i} by $P\left(X_{i}=1\right)=p, P\left(X_{i}=0\right)=q=(1-p)$ and the conditional
probabilities by $\mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=0 / \mathbf{X}_{\mathbf{i}-1}=1\right)=\alpha, \quad \mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=0 / \mathbf{X}_{\mathbf{i}-2}=1\right.$, $\left.\mathbf{X}_{\mathbf{i}-1}=0\right)=\beta, \quad \mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=0 / \mathbf{X}_{\mathbf{i}-\mathbf{3}}=1, \quad \mathbf{X}_{\mathbf{i}-2}=\mathbf{0}, \quad \mathbf{X}_{\mathbf{i}-1}=0\right)=\S$, $\mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=0 / \mathbf{X}_{\mathbf{i}-1}=0\right)=\mathbf{w}, \quad \mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=0 / \mathbf{X}_{\mathbf{i}-\mathbf{2}}=0, \quad \mathbf{X}_{\mathbf{i}-1}=0\right)=\lambda$, $\mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=0 / \mathbf{X}_{\mathbf{i}-3}=0, \mathbf{X}_{\mathbf{i}-2}=0, \mathbf{X}_{\mathbf{i}-1}=0\right)=\delta$ for all $\mathbf{i}=\mathbf{1}, 2, \ldots$ These probabilities are independent of i. In the third-order Markov chain the following identities can be written immediately:

$$
\begin{align*}
& \mathbf{P}\left(\mathbf{X}_{\mathbf{i}-1}=0, \mathbf{X}_{\mathbf{i}}=1\right)=\mathbf{P}\left(\mathbf{X}_{\mathbf{i}-1}=1, \mathbf{X}_{\mathbf{i}}=0\right) \tag{1}\\
& \mathbf{P}\left(\mathbf{X}_{\mathbf{i}-2}=0, \mathbf{X}_{\mathbf{i}-1}=0, \mathbf{X}_{\mathbf{i}}=1\right)=\mathbf{P}\left(\mathbf{X}_{\mathbf{i}-2}=1, \mathbf{X}_{\mathbf{i}-1}=0, \mathbf{X}_{\mathbf{i}}=0\right) \tag{2}\\
& \mathbf{P}\left(\mathbf{X}_{\mathbf{i}-3}=0, \mathbf{X}_{\mathbf{i}-2}=0, \quad \mathbf{X}_{\mathbf{i}-1}=0, \mathbf{X}_{\mathbf{i}}=1\right)=\mathbf{P}\left(\mathbf{X}_{\mathbf{i}-\mathbf{3}}=1\right. \\
& \left.\mathbf{X}_{\mathbf{i}-2}=0, \mathbf{X}_{\mathbf{i}_{-1}}=0, \mathbf{X}_{\mathbf{i}}=0\right) \tag{3}
\end{align*}
$$

Let
$Y=$ The number of trials to observe the first occurrence of 1 , after i. The conditional probabilities of Y are

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{Y}=\mathbf{0} / \mathbf{X}_{\mathbf{i}}=\mathbf{1}\right)=0 \\
& \mathbf{P}\left(\mathbf{Y}=\mathbf{1} / \mathbf{X}_{\mathbf{i}}=1\right)=1-\alpha \\
& \mathbf{P}\left(\mathbf{Y}=2 / \mathbf{X}_{\mathbf{i}}=1\right)=\alpha(1-\beta) \\
& \vdots \\
& \mathbf{P}\left(\mathbf{Y}=\mathbf{k} / \mathbf{X}_{\mathbf{i}}=1\right)=\alpha \beta \S \delta^{\mathrm{k}-4}(1-\delta)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{Y}=0 / \mathbf{X}_{\mathbf{i}}=0\right)=0 \\
& \mathbf{P}\left(\mathbf{Y}=\mathbf{1} / \mathbf{X}_{\mathbf{i}}=0\right)=\mathbf{l}-\mathbf{w} \\
& \mathbf{P}\left(\mathbf{Y}=2 / \mathbf{X}_{\mathbf{i}}=0\right)=\mathbf{w}(\mathbf{1}-\lambda)
\end{aligned}
$$

$$
\vdots
$$

$$
\mathbf{P}\left(\mathbf{Y}=\mathbf{k} / \mathbf{X}_{\mathrm{i}}=0\right)=\mathbf{w} \lambda \delta^{\mathrm{k}-3}(1-\delta)
$$

The probability generating functions of Y are for $P\left(Y=k / X_{i}=1\right)$

$$
\begin{align*}
\mathbf{g}_{1}(\mathrm{t})= & \sum_{\mathbf{k}=0}^{\infty} \quad \mathbf{P}\left(\mathbf{Y}=\mathbf{k} / \mathbf{X}_{\mathrm{i}}=\mathbf{1}\right) \mathbf{t}^{\mathbf{k}} \\
= & \frac{(1-\alpha) \mathbf{t}+[\alpha(1-\beta)-\delta(1-\alpha)] \mathbf{t}^{2}+[\alpha \beta(1-\S)-\alpha \delta(1-\beta)] \mathbf{t}^{3}}{1-\delta \mathbf{t}}+ \\
& \frac{[\alpha \beta \S(1-\delta)-\alpha \beta(1-\S) \delta] \mathbf{t}^{4}}{1-\delta \mathbf{t}} \tag{4}
\end{align*}
$$

for $\mathbf{P}\left(\mathbf{Y}=\mathbf{k} / \mathbf{X}_{\mathrm{i}}=0\right)$

$$
\begin{aligned}
\mathbf{g}_{0}(\mathbf{t}) & =\sum_{\mathbf{k}=0}^{\infty} \quad \mathbf{P}\left(\mathbf{Y}=\mathbf{k} / \mathbf{X}_{\mathbf{i}}=0\right) \mathbf{t}^{\mathbf{k}} \\
= & \frac{(1-\mathbf{w}) \mathbf{t}+[\mathbf{w}(\mathbf{l}-\lambda)-\delta(\mathbf{1}-\mathbf{w})] \mathbf{t}^{2}+[\mathbf{w} \lambda(1-\delta)-\mathbf{w} \delta(1-\lambda)] \mathbf{t}^{3}}{1-\delta \mathbf{t}}
\end{aligned}
$$

and for $\mathrm{P}(\mathrm{Y}=\mathrm{k})$

$$
\begin{align*}
\mathbf{g}(\mathbf{t}) & =\sum_{\mathbf{k}=0}^{\infty} \quad \mathbf{P}(\mathbf{Y}=\mathbf{k}) \mathbf{t}^{\mathbf{k}}=\mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=1\right) \mathbf{g}_{1}(\mathbf{t})+\mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=\mathbf{0}\right) \mathbf{g}_{0}(\mathbf{t}) \\
= & \frac{\mathbf{p} \mathbf{t}+\mathbf{p}(\alpha-\delta) \mathbf{t}^{2}+\mathbf{p}(\alpha \beta-\alpha \delta) \mathbf{t}^{3}+\mathbf{p}[\alpha \beta(\S-\delta)] \mathbf{t}^{4}}{1-\delta \mathbf{t}} \tag{5}
\end{align*}
$$

where the following identities obtained from (1), (2) and (3) have been used:

$$
\begin{equation*}
\alpha \mathbf{p}=q(1-w), \quad \alpha \beta p=(1-\lambda) w p, \quad \alpha \beta \S p=\lambda w q(1-\delta) \tag{6}
\end{equation*}
$$

Let
$\mathbf{Y}_{\mathbf{k}}=$ The number of trials to observe the \mathbf{k} th occurrence of 1 after i th trial. At the initial trial X_{i} is 1 or 0 . Thus we can write

$$
\mathbf{Y}_{\mathrm{k}}=\mathbf{Y}+(\mathbf{k}-1) \mathbf{Y}
$$

Y_{k} is equal to the sum of k independent random variables. The probability generating function of Y_{k} is for $k \geq 1$

$$
\begin{aligned}
\mathbf{f}_{\mathrm{k}}(\mathrm{t}) & =\sum_{\mathrm{n}=0}^{\infty} \quad P\left(Y_{k}=\mathbf{n}\right) \mathbf{t}^{\mathrm{n}} \\
& =\mathrm{g}(\mathrm{t})\left[\mathrm{g}_{1}(\mathrm{t})\right]^{\mathrm{k}-1}
\end{aligned}
$$

Since

$$
\begin{aligned}
\mathbf{P}\left(\mathrm{S}_{\mathrm{n}}=\mathrm{k}\right) & =\mathbf{P}\left(\mathbf{S}_{\mathrm{n}} \geq \mathbf{k}\right)-\mathbf{P}\left(\mathbf{S}_{\mathrm{n}} \geq \mathbf{k}+\mathbf{1}\right) \\
& =\mathbf{P}\left(\mathbf{Y}_{\mathrm{k}} \leq \mathbf{n}\right)-\mathbf{P}\left(\mathbf{Y}_{\mathrm{k}+1} \leq \mathbf{n}\right)
\end{aligned}
$$

the probability generating function of S_{n} is of the form

$$
\begin{aligned}
\mathrm{G}_{\mathrm{k}}(\mathrm{t}) & =\sum_{\mathrm{n}=0}^{\infty} \mathrm{P}\left(\mathrm{~S}_{\mathrm{n}}=\mathbf{k}\right) \mathrm{t}^{\mathrm{n}}=\sum_{\mathrm{n}=0}^{\infty} P\left(\mathrm{Y}_{\mathrm{k}} \leq \mathbf{n}\right) \mathrm{t}^{\mathrm{n}}-\sum_{\mathrm{n}=0}^{\infty} \mathrm{P}\left(\mathrm{Y}_{\mathrm{k}+1} \leq \mathbf{n}\right) \mathrm{t}^{\mathrm{n}} \\
& =\frac{\mathrm{f}_{\mathrm{k}}(\mathrm{t})}{1-\mathrm{t}}-\frac{\mathrm{f}_{\mathrm{k}+1}(\mathrm{t})}{1-\mathrm{t}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{g(t)\left[g_{1}(t)\right]^{\mathrm{k}-1}-g(t)\left[g_{1}(t)\right]^{\mathrm{k}}}{1-t} \\
& =\frac{g(t)\left[g_{1}(t)\right]^{\mathrm{k}-1}\left[1-\mathrm{g}_{1}(\mathrm{t})\right]}{1-t}
\end{aligned}
$$

From (4) and (5) we can obtain pt[1-g1 $(t)]=(1-t) g(t)$ and according to this equation, $G_{k}(t)$ can be written

$$
\begin{align*}
& \mathrm{G}_{\mathrm{k}}(\mathrm{t})=\frac{[\mathrm{g}(\mathrm{t})]^{2}\left[\mathrm{~g}_{1}(\mathrm{t})\right]^{\mathrm{k}-1}}{\mathrm{pt}} \\
& \quad=\mathbf{p t}^{\mathrm{k}}\left(\mathbf{a}+\mathbf{b t}+\mathbf{c t}^{2}+\mathbf{d} \mathbf{t}^{3}\right)^{2}\left(\mathbf{f}+\mathbf{h t}+\mathbf{l} \mathbf{t}^{2}+\mathbf{d} \mathbf{t}^{3}\right)^{\mathrm{k}-1} \frac{(\mathbf{l}-\delta)^{\mathrm{k}+1}}{(\mathbf{1}-\delta \mathbf{t})^{\mathrm{k}+1}} \tag{8}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathbf{a}=\frac{1}{1-\delta}, \quad \mathbf{b}=\frac{\alpha-\delta}{1-\delta}, \quad \mathbf{c}=\frac{\alpha \beta-\alpha \delta}{1-\delta}, \quad \mathbf{d}=\frac{\alpha \beta(\S-\delta)}{1-\delta} \\
& \mathbf{f}=\frac{1-\alpha}{1-\delta}, \quad \mathbf{h}=\frac{\alpha(1-\beta)-\delta(1-\alpha)}{1-\delta} \\
& \mathbf{l}=\frac{\alpha \beta(1-\S)-\alpha \beta(1-\beta)}{1-\delta} .
\end{aligned}
$$

In (8) $\left(f+h t+h t^{2}+d t^{3}\right)^{k-1}$ is the probability generating function of the multinomial distribution and $(1-\delta)^{k+1} /(1-\delta t)^{k+1}$ is the probability generating function of the negative binomial distribution. From (7) it can be shown that $P\left(S_{n}=k\right)$ is the coefficient of t^{n}.

The expansion of the $G_{k}(t)$ allows us to write for $k \geq 1$

$$
P\left(S_{n}=k\right)=P\left[a^{2} C_{n-k}+2 a b C_{n-k-1}+\left(b^{2}+\mathbf{a c}\right) C_{n-k-2}+\right.
$$ $\left.(2 a d+2 b c) \mathrm{C}_{\mathrm{n}-\mathrm{k}-3}+\left(\mathrm{c}^{2}+2 b \mathrm{~b}\right) \mathrm{C}_{\mathrm{n}-\mathrm{k}-4}+2 \mathbf{c d} \mathrm{C}_{\mathrm{n}-\mathrm{k}-5}+\mathrm{d}^{2} \mathrm{C}_{\mathrm{n}-\mathrm{k}-6}\right]$,

and for $k=0$
$\mathbf{P}\left(\mathbf{S}_{\mathbf{n}}=0\right)=\mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=0, \quad \mathbf{X}_{\mathbf{i}+1}=0, \ldots, \mathbf{X}_{\mathbf{i}+\mathbf{n}}=0\right)=\mathbf{q w}^{\mathbf{n}} \delta^{\mathbf{n}-2}$
where
$C_{n-k-r}=\sum_{m=0}^{k-1} \sum_{i=0}^{m} \sum_{j=0}^{i}\binom{k-1}{i, i-j, m-i}\binom{k+n-k-m-i-j-r}{n-k-m-i-j-r} d^{j} l^{i-j} h^{m-i} \underset{f}{f^{k-1-m} n-k-m-i-j-r}$

LIMITING PROBABILITY FUNCTION

If $n p=u$ is held fixed as $n \rightarrow \infty$ from (6) we can write
$1-\mathbf{w}=\frac{\alpha \mathbf{u}}{\mathbf{n}-\mathbf{u}}, \quad 1-\lambda=\frac{\alpha \beta \mathbf{u}}{\mathbf{w}(\mathbf{n}-\mathbf{u})}, \quad 1-\delta=\frac{\alpha \beta \S \mathbf{u}}{\lambda \mathbf{w}(\mathbf{n}-\mathbf{u})}$.
The equations in (12) show that w, λ and δ approach 1 as $n \rightarrow \infty$ and we can also obtain
$\lim _{\mathrm{n} \rightarrow \infty} \quad \mathrm{p}=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathbf{u}}{\mathrm{n}}=0, \quad \lim _{\mathrm{n} \rightarrow \infty} \quad \mathrm{q}=1$,
$\lim _{n \rightarrow \infty} \quad \delta^{n}=\lim _{n \rightarrow \infty}\left[1-\frac{\alpha \beta \delta u}{\lambda \cdot \mathbf{w}(\mathbf{n}-\mathbf{u})}\right]^{n}=e^{-\alpha \beta \delta \delta^{u}}$.
If we rearrange the expression (11) and let $n \rightarrow \infty$ we obtain
$\mathrm{C}_{\mathrm{k}}^{\prime}=\lim _{\mathrm{n} \rightarrow \infty} \quad \frac{\mathrm{C}_{\mathrm{n}-\mathrm{k}-\mathrm{r}}}{1-\delta}=\alpha \beta \xi_{\mathbf{u} e^{-\alpha \beta} \beta_{\mathrm{u}}}^{\sum_{\mathrm{m}=0}^{\mathrm{k}-1}}\binom{\mathrm{k}-1}{\mathrm{~m}}$
$\frac{(1-\alpha \beta \S)^{\mathrm{m}}\left(\alpha^{2} \beta^{2} \S^{2} \mathbf{u}\right)^{\mathrm{k}-1-\mathrm{m}}}{(\mathbf{k}-\mathbf{m})!}$
which is independent of \mathbf{r}. From (9) and (10) it can be written for $k \geq 1$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} P\left(S_{n}=k\right)=\lim _{n \rightarrow \infty} \frac{\frac{u}{n}[1+(\alpha-\delta)+(\alpha \beta-\alpha \delta)+\alpha \beta(\S-\delta)]^{2}}{\frac{\alpha \beta \S}{\lambda w(n-u)}} . \\
\frac{C_{n-k-r}}{1-\delta}=\alpha \beta \S G_{k}
\end{gathered}
$$

$$
\begin{equation*}
=\alpha^{2} \beta^{2} \S^{2} \mathrm{ue}^{-\alpha \beta_{\mathrm{u}} \S} \sum_{\mathrm{m}=0}^{\mathrm{k}-1} \frac{(\mathrm{k}-1)!}{\mathrm{m}!(\mathrm{k}-1-\mathrm{m})!} \frac{(1-\alpha \beta \S)^{\mathrm{m}}\left(\alpha^{2} \beta^{2} \S^{2} \mathrm{u}\right)^{\mathrm{k}-1-\mathrm{m}}}{(\mathrm{k}-\mathrm{m})!} \tag{13}
\end{equation*}
$$

and for $\quad k=0$
$\lim _{\mathrm{n} \rightarrow \infty} \mathbf{P}\left(\mathrm{S}_{\mathrm{n}}=0\right)=\lim _{\mathrm{n} \rightarrow \infty}\left(1-\frac{\mathbf{u}}{\mathbf{n}}\right) w \lambda\left[1-\frac{\alpha \beta \xi u}{\lambda w(n-u)}\right]^{\mathbf{n}-2}=e^{-\alpha \beta \S \mathbf{u}}$.
In (13) by taking $k-1-m=j$ it is obtained

$$
\begin{gather*}
\lim _{\mathrm{n} \rightarrow \infty} P\left(\mathrm{~S}_{\mathrm{n}}=k\right)=\frac{\alpha^{2} \beta^{2} \S^{2} \mathbf{u}(1-\alpha \beta \S)^{k-1}}{k} e^{-\alpha \beta \S^{u}} \sum_{j=0}^{k-1} \frac{k!}{j!(j+1)!(k-1-m)!} \\
\left(\frac{\alpha^{2} \beta^{2} \S^{2} \mathbf{u}}{1-\alpha \beta}\right)^{j} \tag{14}
\end{gather*}
$$

Since
$\mathbf{L}_{\mathrm{r}}^{(\mathrm{y}}(\mathrm{y})=\sum_{\mathrm{i}=0}^{\mathbf{r}} \frac{(\mathbf{r}+\mathbf{1})!(-\mathrm{y})^{\mathbf{i}}}{(\mathbf{r}-\mathrm{i})!\mathrm{i}!(\mathrm{l}+\mathrm{i})!}, \quad \mathbf{r}=0,1,2, \ldots$
is the first-order Leguerre polynomials (see [2]), it can be shown that (14) is of the form
$\lim _{\mathrm{n} \rightarrow \infty} \mathbf{P}\left(\mathrm{S}_{\mathrm{n}}=\mathbf{k}\right)=\frac{\alpha^{2} \beta^{2} \S^{2} \mathbf{u}(1-\alpha \beta \S)^{k-1}}{\mathbf{k}} \mathrm{e}^{-\alpha \beta \S \mathbf{u}} \mathbf{L}_{\mathbf{k}-1}^{(1)}\left(-\frac{\alpha^{2} \beta^{2} \S^{2} \mathbf{u}}{1-\alpha \beta \S}\right)$.

CONCLUDING REMARKS

In the second-order Markov chain $\S=\delta=\lambda$. For this case, from (15) we can obtain for $k \geq 1$
$\lim _{\mathbf{n} \rightarrow \infty} \mathbf{P}\left(\mathbf{S}_{\mathbf{n}}=\mathbf{k}\right)=\frac{\alpha^{2} \beta^{2} \mathbf{u}(1-\alpha \beta)^{\mathbf{k}-1}}{\mathbf{k}} \mathbf{e}^{-\alpha \beta \mathbf{u}} \mathbf{L}_{\mathbf{k}-1}\left(-\frac{\alpha^{2} \beta^{2} \mathbf{u}}{1-\alpha \beta}\right)$,
and for $k=0$

$$
\lim _{n \rightarrow \infty} P\left(S_{n}=k\right)=e^{-\alpha \beta u}
$$

Expression (16) is the limiting probability function in [2] for the second order case.

Comparing (16) and (15) shows that we can write the following expression in the case of the v th-order Markov chain for $k \geq 1$

$$
\begin{aligned}
\lim _{\mathrm{n} \rightarrow \infty} & P\left(\mathrm{~S}_{\mathrm{n}}=k\right)=\frac{\alpha_{1}^{2} \ldots \alpha_{\mathrm{v}}^{2} \mathrm{u}\left(1-\alpha_{1} \ldots \alpha_{\mathrm{v}}\right)^{\mathbf{k}-1}}{k} e^{-\alpha_{1} \ldots \alpha_{\mathrm{v}} \mathbf{u}} \mathrm{~L}_{\mathrm{k}-1}^{(1)} \\
& \left(-\frac{\alpha_{1}^{2} \ldots \alpha_{\mathrm{v}}^{2} \mathrm{u}}{1-\alpha_{1} \ldots \alpha_{\mathrm{v}}}\right)
\end{aligned}
$$

and for $k=0$

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathbf{P}\left(\mathbf{S}_{\mathrm{n}}=\mathbf{k}\right)=\mathrm{e}^{-\alpha_{1}} \ldots \alpha_{\mathrm{v}} \mathbf{u}
$$

where for $\mathrm{j}=1,2, \ldots, \mathrm{v}$

$$
\alpha_{\mathbf{j}}=\mathbf{P}\left(\mathbf{X}_{\mathbf{i}}=0 / \mathbf{X}_{\mathbf{i}-\mathbf{j}}=1, \quad \mathbf{X}_{\mathbf{i}-\mathbf{j}-1}=0, \quad \mathbf{X}_{\mathbf{i}-1}=0\right)
$$

REFERENCES

BRAINERD, B. and CHANG, S.M. 1983. Number of Occerrences in Two-State Markov Chains, With An Application in Linguistics. Canad, J. Statist., 10, 225-231.

BRAINERD, B. 1983. A Limiting Distribution For Bernoulli Trials With Second-Order Markov Dependence. J. Appl. Prob., 20, 419-422.

EDWARDS, A.W.F. 1960. The Meaning of Binomial Distribution. Nature London, 1861074.
WANG, Y.H. 1981. On The Limit of The Markov Binomial Distribution. J. Appl. Prob., 18, 937-942.

