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SUMMARY

Let X be a locally arcwise conmected topological space. In paper [1], we constructed *the
sheaf of the fundamental groups” on X and gave some characterizations. In paper [2], we first
gave some characterizations which are the converses of the characterizations in paper {1] and
obtained some results related with the group of sections. In this paper, we first construct the
sheaf H* = H; @ H, by defining “the Generalized Whitney Sum’ and show that the sheaf H*
is isomorphic to the sheaf H;xH; which is direct product of the sheaves H; and H, on Xj and
X, respectively. Finally ,we prove that, if (X4, H;) and (X, H,) are any two pairs, then H* is iso-
morphic to the pairs (H, X; xX5).

I. INTRODUCTION.

Let X be a locally arcwise connected topological spac: and
7 (X,x) be the fundamental group at x for any point x € X, then the
disjoint union H = V 7; (X,x) is a set over X with natural projection
XeX
¢:H— X mapping each o, = [2]; onto the base point.
We introduced on H a natural topology as follows [1]:

Let xeX be an arbitrary fixed point. Then there exists an arcwise con-
nected open neighborhood U=U(x). If [x], € 7; (X,x) is an arbitrary
fixed element and y € U is any point, then there exists an element Bly
e m(X, y) which uniquely corresponds to [«],, since m(X,x) 7
71(X, y). Therefore we can define a mapping s: U — H withs(y) = [8]y
for any y e U such that ¢ 0s = 1 and s (x) = [« ]y € s(U) = H. It should
be noticed that s is related with the homotopy class [«], but does not -
related with the homotopy class of § which is an arc with initial point x
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and terminal point y, since the homotopy class [3] is same fixed for every

s [6,7].

For each x € X all such sets s(U) form a system of neighborhood
of [« ]y € H which induces a topology in H. In this topology sis contin-
uous and o is a locally topological maping. s is called a section over U
and the totality of sections over U is denoted by I'(U,H). For the defi-
nition of a section over any open set W <X see[1]. In paper[1 ] we proved
that, if W< X is any open set, then I' (W, H) is a group. Therefore the
operation of multiplication on each stalk ©:H @ H — H is continuous
and so H is a sheaf with an algebraic structure. We call this sheaf as
“The Sheaf of the Fundamental Groups” [3.4].

2. SOME THEOREMS ON THE SHEAF OF THE FUNDAMENTAL
GROUPS.

Let the pairs (X, H;), (X,,H,) be given. Consider the sets of the
sections I' {(W,H;) and I'y(W,,H,) being W; < X, and W= X, are
open sets. Let My, = I') (W, Hj) x [',(Wy,H,) such that W = W; x W,
< X;xX,. For an element s = (s1,5;) €Mw and an open set VoW (V=
VixVy; Vic Wy, Vo W, are open sets) let vy (s) = vw,v ( (s1-82))
= (Ywi,v1 (G0 Ywa,vz (82)) = (81| V1, 52| V2). Then, the system {X;xX,,
My» Yw,v} is a presheaf. Thus, forming inductive limit, a sheaf is ob-
tained from the pre-sheaf {X; xX,, My, vy v} [3]. Now, we can give
the following definition.

Definition 2,1, The sheaf which is obtained from the pre-sheaf
{X1xX,, My, Yy.v} by forming inductive limit is called “the Generali-
zed Whitney Sum” of the sheaves H; and H,, and denoted by H* =
H, & H,. '

Let us now show that, the stalk H* y,,x,) has a group structure
for each (x1,xp) € X xXs. In fact, if H* (x;,xy) = { (W, (51> 82)) xpxp)®
W = W((x1,x5)) < X1xX, is an open} and (W, (s1, 82)) (xpx2)> (W5 (8"1
5'2)) (x1ox2) € H*(xpoxy) are any two elements, then let (W,(81552)) (x12x2)-
(W, (s"1.8"2)) (x1°x2) — (W7, (s1.8"1,82.82)) (x12%2) where W' = W',
x W’ and W' = W; n Wy, Wih=W, n W, That is, (W,
(31:52)) (xpxpy- (W5 (8'1:8")) xoxy = (W', (ywpwi'/(s1). ywpwy"”
(81> Yworws (82)- Ywa'owa (s2)). Thus, si.s1’” € (W, Hy), sp.s)
e T'y(W",,H,). Therefore, the operation of multiplication defined
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above is well-defined and closed in H*(y,,). It is esialy established
that H* (5, y,) is a group with respect to this operation of multiplication.

On the other hand, if we define an other operation of multipli-
cation on (H,)x; x (Hy)x, as (61, 62). (61, 6'2) = (61.6"2, G2.") for any
two elements (1, 63), (61, 6'2) € (Hj)x; X (Hy)x,, then the defined ope-
ration of multiplication is well-defined and closed in (Hyjx, x (Hy)x,,
since 01.0'; € (Hy)xy, 62.6"5 € (Hy)x,.It is esialy shown that (Hp)y,
x (H,)x, is a group with this operation of multiplication [4].

We can now give the following theorem.

Theorem 2,1, Let the pairs (X, H;) and (X,, H,) be given such
that H* = H; ® H,. Then, for each (x;, x;) € X xX, the mapping
keH* (x0xg) = (Hi)x; x (Hy)x, defined by (W,(s1,82)) (xqoxp) = (s1(x1)>
83(%,)) is an isomorphism. :

Proof 1. Let (x4, x;) € X xX, any point and W, W’ he any two open

. . (x1,%2)
neighborhoods of (x;, x;). It is known that; (W, s = (s1,83)) ~
(W', 8" = (8’1, s;)) if and only if there exists a neighborhood V((x1,x,))
< W n W such that s|V = s’ |V. This is also equivalent to the state-
ment s(x) = s'(x). Therefore k is well-defined and injective. '

2. Let 6= (61, 67) € (Hy)x; x (H)x,. Then, there exists the open
neighborbhoods W, < X, W,<X, such that si(x{) = o1, 85 (x)) =
6, for the sections sy € I' | (W, Hy), s, € I', (W5, Hy). Thus, W=W;x
W, is open neighborhood of (x;, x,) and s (x;, X5) = (s{ (x1), 83 (x3)) for
s = (s1, s2), 1.e., s € My,. Hence vs is a section over W such that ys(x)
=vs ((x, x3)) = (W, s = (s1- SZ))(X19X2) and k((W. s = (s1,8))
(x1-x2)) = (s1(x1), 82(%2)) = o. Therefore k is a sarjective mapping.

3. For ‘any elements (W, (s1,5)), (W', (s'1.82)) € H¥x1.x9)
k(Wy(s1582)) « (W', (s1,82)) = k (W, (s1.8"1, 52.8"2)) = (s4{x1) - 8'(x1),
52 (%2)8"2 (x2)) = (s1(x1), 32(%2))-(8"1 (x1), 8'2(x2)) = k (W, (515 82)))-
k (W, (s'1, 8'2)). Thus, k is a homomorphism.

Therefore k is an isomorphism.
From now on, we identify H* ..., with (Hy)y, x (Hp),,.

Now, let the pairs (X, H,), (Xo, Hy) be given. Then, Hy— V_ (H)x,,
’ it 1

H2 =z XZ‘EZXZ (HZ)XZ' Hence, HIXHZ = (Xl,x2)¥X1xx’, (HI)XIX(H2)X2'
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Thus, HxH, is also a set over the topological space X xX,. Mcreover,
H,;xH, is also a topological space, since H,H, are topological spaces.
Let us now define a mapping ®:H;xH, - X xX,; as follows:

If (61, 6;) € HixH,, then let ®((s4, 52)) = (pilo1). 92 (52)) =
(x1,x2) € X x Xo.

-We assert that ® = (g;, ¢,) is a locally topological mapping. In
fact, if (61, 62) € HyxH,, then ®((5;, 62)) == (¢1 (51), @a(62)) = (X1, X2).
Since the mappings ¢ : Hy > X, ¢, : Hy > X, are locally topological,
there exists open neighborhoods Uy (67) © Hy, Wi(x)) < X3, U (02) <
H,, W, (x;) = X; such that ¢y |U;:U; - Wy, 92| U,:U, - W are topo-
logical. Therefore U(sy,6,) = Ui(o;) xUs(sr) and W = Wi(xj)x
Wy(x,) are open neighborhoods of the points (51, 53) and (x;, x,), respec-
tively. Finally, it is clearly seen that ®|U:U - W is a topological map-
ping.

Thus, (H;xH,, ®) is a sheaf over X;xX,. Moreover, I'(W,H; x H,)
is a group, for any open W < X;xX,. Hence, the operation of multipli-
cation is continouous on each stalk with respect to the topology of Hyx
H,. Therefore, HxH, is a sheaf with algebraic structure [4].

Definition 2,2, Let the pairs (X, H,) and (X;, H,) be given. Then
the sheaf HyxH, is called the Direct Sum of the sheaves H; and H,.

We can now give the following theorem.

Theorem 2,2, Let the pairs (X, Hy), (X;, Hj) be given.- Then the
sheaves H* = H; @ H, and H;xH, are isomorphic.

Proof, Let us assume that, H* = (H*, ¢*) and HixH, = (H;xH,,
D = (91, 92))-

First show that the mapping K:H* -> H xH, defined by (W, (s, s5))

(x1> x) = (81 (X1), 82(x2)) is continuous. Now, let U= K(H*) is an open,

ie, U= UxU, U=y Wy, Uy =u s3V,). Hence U=
i ies

1
51 (W), Uy = s, (V) and U = s, (W) x s, (V), where s; € (W, Hy), s, €
P(V,H;) and W = yW;, V = ~UJVj [1]. So ®(U) = WxV.
lel le
Show that, K™t (U) © H* is an open set. In fact, if ¢* € K-1 (U),
then there exists an element ¢ € U such that K (¢*) = . Therefore, if
o* = (@ (U), (51, 82)) (xpoxz)» then K (%) = (s1 (x1), 82(x2)) (xyoxp) € U
and @ (K(c*)) = (x}, xp) € ®(U). Thus, there exists a section y s ==
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Y(815 82): @ (U) — H* such thatys ((x1, x5)) = (®(U), (815 82)) (xprxp)=
c* € v s (®(U)). Therefore, K-1 (U) = v s (®D(U)), since c* is an
arbitrary element. On the other hand, if 6*' €y s (@ (U)), then o*' =
(@ (U), (s1:52) (xy "y and @* (6%) = (x'1,x') € @ (U). So (51 (x'y),
s2(x'3)) € U. However, K (c*) = (s (x'1), 83 (x'5)). Therefore o* ¢
K-{U) and vy s (® (U)) =« K-1(U) = H* is an open set.

By Theorem 2.1., the mapping K is a bijection since K |H* x5z
= K, for each stalk H*(x;-x;) < H*. On the other hand, K is a stalk
preserving mapping, since (® oK) (6*) = ¢* (c*), for every o* ¢ H*.
Therefore K is a sheaf morphism. Moreover K 1is continuous, since K
is an open mapping.

Thus, the mapping K is a sheaf isomorphism. From now on, we
identify H* with H xH,.

We can now state the following theorem.

Theorem 2.3, I'(W, H*) is isomorphic to I'(W, H;xH,), for each
open set W < X;xX,.

We can now give the following theorem.

Theorem 2.4, Let the pairs (X, H;) and (X,, H,) be given. Then
the mapping P=(pl, p;) (H;xH,, X;xX,) = (H;, X;) is a homomorphism,
i=1, 2.

Proof, Let us first show that p! is a stalk prése‘rving mapping with
respect to p;. In fact, (p; o @) '(61, 62) = pi (D (61, 62)) = pi (X1-X2) = x4
and (piop’) (61, 62) = @i (Po1, 02)) = @i (61) = xi and so poP=
eiopt, for each element (5, 5,) € H xH,.

p' is a homomorphism on each stalk. Indeed, p'((sy, 0,). (6", 6'2))
= p! ((61.6'1, 02.6"3)) = 6j.6"3, i=1, 2. However, ci.0i' = p' (o1,
62). P (¢'1, 6'5), i=1,2. Therefore, p' is a homomorphism on each stalk.,

The mappings p': HixH, - Hj, p;: XlxXz - Xj are contmuous,
since they are projections.

Thus P is a homomorphism between the pairs (HxH,,XxX,) and
H;, Xj), i=1,2.
We can state the following theorem.

Theorem 2.5, Let the pairs (X, H;) and (X, H,) be given. Then the
mapping P*: (H*, XxX3) = (H;,X;) is a homomorphism,
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We can now give the following theorem.

Theorem 2.6, Let the pairs (X, H;) and (X,, H,) be given. Then the
sheaf H constructed over X xX, and the sheaf HxH, are isomorphic.

Proof, It is known that the projections p;:XxX,; - X; and p;:
X;xX, - X, are continuous. Let a:I - X;xX, be a closed are at (xq,
x,) for any point (x1, x;) € X;xX,. Then, the mappings p; o «:I - X,
p2 0 w:I > X, are also continuous and closed ares at x; € Xy, x5 € X3,
respectively, since py ( (0)) — p1 (4(1)) — x1. p2 (@(0)) = p2 (x(1)) =
x,.0n the other hand, if aq,x: I - X;xX, are closed arcs at (x3, X)
such that o;~ o, then pjo a; ~ p; 0 ay, and py 0 @y ~ ps 0 «y. There-
fore, the correspondence [o](x;,xy) > ([P1 0 @ 1x5» [P2 © 2 ]x,) is well-de-
fined, for an arbitrary fixed point (x, x,) € X xX,. Thatis, to the ele-
ment [«] there uniquely corresponds an element ([p; ox ]x;, [p2 0 2 ]xy)-
Since the point (x,x,) € X;xX, is an arbitrary point we obtain a map-
ping ¥ : H - H xH, such that ¥ (¢) = ¥ ([¢]) = ([p1 0 a], [p2 0 2]),
for any ¢ € H.

Let us now show that W is a sheaf isomorphism.

1. ¥ is a sheaf morphism. In fact, V' is a stalk preserving mapping, sin-
ce @ (=(o, 92)) 0 ¥ = ¢. On the other hand, if U < ¥ (H) is an open,
then I"-1(U) < H is an open. Because if, U = ¥(H) is an open, then
there exists the open sets U; and U, in H; and H, respectively, such
that U == U;xU,. Therefore, U; = s;(Wy), Uy = s,(W,) for the sec-
tions s; € [(W,H;) and s, € (W,, H,). Thus, U = s;(W;) xs,(W»)
and ® (U) = W xW,. However, s (W;xW,) < H is an open for any sec-
tion s € I(W;xW,, H). Let us now show that ¥'-1 (U) = s (W;xW,)
for a section s (W;xW5).

(i) If 6 = [ot](xqoxp) € ¥ (U), then there is at least one element
o* eUe W) =06* = ([p1o «]x;» [p20]xy). So, @ (6%) = (xy, x)
€ W, x W, and there exists a section s € I' (W1xWy,H) €5((x1,x3)) = o.
Therefore, 6 € s(WxW,) and ¥ —1 (U) < s (W;xW)).

(i) If ¢’ €5 (WxW,), then ¢’ = [ ](x; »x,) and ¢ ((¢') = (x'1.x"2)
e WxW,. However, ¥ (¢') = ¥ ([&' ](x;"-x2))) = ([P10 ]xy» [p20e’ 1x,)
and ¥ (¢’) € U. Therefore, ¢’ € ¥~1 (U) and s (W;xW,) < ¥-1 (U).

Thus, ¥ is a continuous mapping. So, it is a sheaf morphism.
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2. ¥is a sheaf homomorphism. In fact, ¥ I Hixpoxoy) = T*:
Hx{rxg) —>(H1)X1X(H2)X2 is a homomorphism for every (x,,%,) e XyxX,,
since
T ([oa] fe2]) = ¥4 [o1-a2]) = ([p1oeg.02], [paoo.ar]).
W ([ D) F*] (lo2]) = ( [proxs ], [p2oor ]). ([prooal, [paoay])
= ( [proar]. [proaa]), [p2owy]. [procs])
= ( [pioe1.proas], [prow;.prons])
= ( [pioor.on], [proxy.a,]).

3. W is an injection. Because if, ¥ ([«;]) = ¥ ([#2]) for any [ay],

lo2] € H, then ([pjoo;], [prou;]) = ([prox2l, 1p2ouz]) and |prox;]
= [p1oa2], [prom;] = [pyoe,]. Therefore, [p1oo; ] B2 [proc,] rel. x4

and [pyox;] ¥ [pyou,]rel. x,. Let us now define a hemotopy F: IxJ -
X1xX; by means of the homotopies F and F, as F (%, t) = (Fy (x,1), Fy
(x, t)). Then F is continuous. On the other hand,

F(x,0) = (F1(x,0), Fy(x,0)) = (prooy, prowy) = oy

F(x,1) = (Fi(x,1), Fa(x,1)) = (pjoay, proas) = ay
and .

F(0,t) = F(1,t) = (x1.x2).

F
Thus, a; ~ oy rel. (x1,x,) and so [e1] = |ea].
4. ¥ is a surjection. Because if, 8, and B, are closed ares at x; and

X2 respectively, then [B4 ]Xl G(Hl)xlo [32]){2 € (HZ)Xz and ([Bl]xl’
[B2]x,) € (Hl)xlx(Hz)xz- Let us now define a closed arc at (x1, x5) as

(B1(Zx)x), 0 <x <12
o (x) =
(Xl, Bz(zx—l), 1/2 < X < 1.
Therefore, [a] € Hixoxy and ¥ ([0]) = ([pyox], [p2o2]) = ([B,],
[B21)- So ¥ is onto, since (x1,%,) € X xX, is an arbitrary fixed element.
5. ¥ has an invers mapping W1 : HxH, - II, since ¥ is a bijec-
tion.¥"~1 is continuous, since ¥ is a sheaf morphism.

Thus V' is a sheaf isomorphism and H ~ H;xH,.
Let us now state the following theorem.

Theorem 2.7. Let the pairs (X, H;) and (X5, H,) be given. Then
the sheaf H and the sehaf H* = H; (@ H, are isomorphic.
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OZET

X lokal egrisel irtibath bir topolojik uzay olsun. [1] deki ¢ahsmarmzda X iizerinde Esas
Gruplarin Demetini inga edip baz karakterizasyonlar vermigtik. [2] deki ¢alismamizda ise
[1] de verilen karaktecizasyonlarra karsiclart verilmis ve kesitlerin grubu ile ilgili ban
neticeler elde edilmisti. Bu c¢ahsmamizda, «Genellestirilmiy Whitney Toplam’ tarifi veri-
lerek H* = H; @ H, demeti insa edilmis ve gosterilmistir ki bu demet H;xH, demetine
izomorftur. Burada H; ve H sirasiyla X; ve X, de[1] deki yontemle insa edilen demetlerdir.
Daha sonra, gosterdik ki, (X, H;), (X2.H) herhangi iki ¢ift olmak iizere, H* demeti, X;xX;

iizerinde {1] deki yontemle insa edilen H demetine izomorftur.
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