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ABSTRACT:

_The purpose of this paper is to present a summary of known results (chapter I, chapter 1I)
and to discuss the sectional curvatures of the fixed and the moving axoids correspond to each
other under a helical motion of order k in E™.

Moreover it is proven that the fixed and the moving axoids of E® are mapped upon each
other by the same values of the sectional carvature.

I. MOTIONS OF E®

A motion of E" is described in matrix notation by

(1) x =Ax + ¢, AAt =1
where A' is the transposed of the orthogonal matrix A and
2)A:)] —>0(m),c:J——IR2

are functions of differentiability class Cr (r>3) on a real interval J.
Considering a motion as a movement of the space E against the space
E the coordinate vector % in (1) describes a point of the so-called moving
space E and x a point of the so-called fixed space E.

Let % be fixed in E then (1) defines by (2) a parametrized curve in
E which we call the trajectory curve or path of X under the motion.
We get the (trajectory) velocity vector x in the path-point x from (1)
by differentiation (denoted by .) for x = 0 in the form: '
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(3) x =B (x—¢) + ¢,B =AA"L,
Since the matrix A is orthogonal, the matrix B is skew
(4) B + Bt =0.

Therefore only in the case of even dimension is it possible that the
determinant |B | may not vanish. If |B (t)| 7= O i1t € J, we get exactly
one solution p (i) of the equation

() B (1) (p—c(t)) + ¢ (t) = 0.

p (t) is the center of the instantaneous rotation of the motion in
t € J and is called the pole of the motion in t . At a pole p the velocity vector
vanishes by the equation (3). If |B| does not vainsh on J, by conside-
ring the regularity conditicn of the motion we get a differentiable curve:
J —— E of poles in the fixed space E, called the fixed pole curve. By (1)
there is uniquely determined moving pole curve p: J—— E from the
fixed pole curve point to point on J: p (t) = A (t) p (t) + ¢ (t).

Miiller proved in [4]: “Under the motions the fixed pole curve
and the moving pole curve are rolling on each other without sliding.
Merely in the case n==2 the motion is determined by a pair of rolling
pole curves”.

In all other cases (taht means |B| = O), especially for n odd, we
obtain by the rules of Linear Algebra: For every t € J there exist an
unit vector e (t) € kern B (t) and 2 (t) € IR so that the solutions y of
equation
(6) B(t) (y—c (1) + ¢ () =r()e(t)
determined linear subspace Eyx (t) < Er with the dimension k=n-
rank B. Ey (t) is the axis of the instantaneous screw (\ (t) 7% O) of the

motion or the axis of the instantaneous rotation () (t) =0)) and will be
called the instantaneous axis of the motion in t € J.

If |B| = O on the whole interval J under the regularity conditions
we obtain a generalized ruled surface of dimension k-1 in the fixed
space E generated by the instantaneous axes Ey (t), t € J, which we
call the fixed axoid @ of the motion. The fixed axoid @ determines the
the moving axoid @ in the moving space E gencrator to generator by
(1). @ and @ are mapped upon each other by the same values of para-
meter. In this second case Miiller proved in [4]: “The axoids ®, @ of
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a motion in E® touch each other along every common pair Ex (1) <
®, Ex (t) <= @ for all t € J by rolling and sliding upon each other under
the motion. Such a motion is called an (instantaneously) helical motion
of order k in En, [1].

An helical motion of order k is a pure rolling for A = O. In the spe-
cial case where the axoids of an helical motion have lines of striction these
lines are mapped on to each other point to point.

For the analytical representation of an axoid ® we choose a leading
curve y in the edge resp. central ruled surface Q < ® transversal to the
generator. In [2] it is shown that there exists a distinguished moving
orthonormal frame (ONF) of @ {ey, ez,...., ex} with properties:

(i) {es.ez...., ex} is an ONF of the Ey (t) = ®

(i) {em+1emyz5e.r €x}is an ONF of the edge space Kk resp. the
central space Zk-m < Ey (t) in E®

K
(iii) ¢ = X ogvey + Kgax,s . 1<o<m
V=]

m

émip = 151 Cmp) 1€ 1 <px <k-m

with Ks>0, 6y, = — 6445 6 (10) (mi) = O
(iv) {el,ez,...,ek,ak+1,...,ak+m} is an ONF.

A moving ONF of ® with the properties (i) — (iv) is called a princi-
pal frame of ®. If K; > ... > K, > O the principal frame of @ is deter-

mined up to the signs. By a given principal frame the vectors a, 1,...a .,
are well defined.

A leading curve y of an axiod @ is a leading curve of the edge
resp. central ruled surface Q < @ too iff its tangent vector has the from

(7) y = vOy + N m+1 F+m+l

1

5§ tam

where for », ., 7= O a ., is an unit vector well defined up to the sign
with the property that {ej,..., €. 1;eer akim, amtqt is an ONF of
the tangent bundle of ®. One shows: 7,,; (t) = O in t € J iff the gene-
rator Ey (t) < ® contains the edge space Kx_n (t).
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If 41 # O, we call the m magnitades 3¢ = 41 (Ko, 10,
the principal parameters of distribution. These parameters are direct
generalizations of the parameter of distribution of the ruled surfaces
in E3 (see [1]and [2]). An axoid with central ruled surface and no prin-
cipal parameter of distribution (m=O0) is a (k+-1)-dimensional cylinder

[7.

Let @ and @ be the corresponding axoids of the given helical mo-
motion of order k in E and {&;,..., &} a principal ONF of the moving
axoid ®. Then the equation (iii) hold for & with barred coefficients.
® has the paremeter representation on the interval J by

) & (tag o u) =5 (@) + 3 w3, (1), tel,welR
v=1

where ¥ is a leading curve of the edge resp. central ruled surface <= ®.
If we set

(9) Ag, =e, 1 <v<lk,

then we have the following results (see [1]):

(10) Be, =0,1 <v<k

(11) A8y = &y

(12) Asps =241 <o <m

(13) ay, =8y Ko = K6>0,1 <, v L <o <m

(14) Nt1 B = N mtt Ady g and |Nmiil = i |

(15) ¥ =%e + AF, E, = 0h, 4+ B e = 2 Aoy, e | = 1.
v=1

Therefore we can give the following theorem:

Theorem I.1: Under an helical motion of order k in E* the princi-
pal ONFs of the fixed axoid ® and the moving axoid correspond to
each other, the edge spaces (resp. the central spaces) of @,¢ are mapped
on each other point to peint. We have 35| = [5q| for the principal
parameters of distribution 35 of ® and §s of §, 1 < o < m, i1}
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IL The Sectional Curvatures Of The (k-1) -« Dimensional Ruled
Surfaces In The Euclldean Space E"

Let @ be a (k--1) -dimensional ruled surface in E". Then @ can
be locally represented by

(16) 2 (g, o uy) =y (1) + 3 we,.
" . - . . N V'=1

If Qc® is the (k—m--1) -dimensional ceniral ruled surface of @,
then the points of 2= ® can be characterized by the equation

(17) v =0,1 <o < m, (see [3]).

In this chapter we will assume that the leading curve y of @ is the
leading curve of Q<= ®. At each point p € @ there exist a uniquely de-
termined normal tangential vector n of ® which is orthogonal to the
E, (t) © © such that

(18) n = Z w Ky (t) agiq (8) + Mot (1) ak+m+1 (t)

At p € @ the section of the each plane (e n) is called the v-prmmpal
section of @ with respect to. the orthonormal frame {e; (t) ,..., ¢ (t)}
of E (1). For the v-principal section the pnnmpal sectional curvature
is given by

Ko [ E (K, + (nss) — (16Ko)2]
(19)K 6 (p) = — —s—"

B 1§1‘ (ule‘l?‘-\}; (Mar1)??

IME

and : B
(20) K 4o (0) = 0,1 < p < k-m, (see [3]).

Suppcse that ® is a (k1) -dimensional ruled surface of E™ and
Q<@ is a central ruled surface of . Then at a central ‘point z € Q the
prmclpal sectional -curvatures are given by

1
3o

2l K; (20 = — .1 <o <m

and
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(22) K 4o (2) = 0,1 < p < k—m, (see [3]).
On the other hand at the point z-}-ue 5, u € IR the sectional curva-
ture is
352
[uZ + 85272 °
Let e be an arbitrar& unit vector in E, (t). Then the sectional cur-
vature of the section (e,n) can be given by

(23) K 5 (z+ue) = — 1 <o <m.

(24) K; (e,n) =G§1(Cos 90)2 Kq (2)

k
wheree = X Cos ge,.
v=1

If 3 is the parameter of distribution for the generator Sp {e} pas-
sing through z € Q. then

25) K; (e;n) = — 31—2 , (see [3]).

Moreover at the point z Q< ® the sectional curvature of the ar-
bitrary section (e,a) is given by

_ (Cos Wo)2
(26) Kz (e,a) = W Kz (e,n)
where
k
27 a = CI(I)STTIi"n—}— % Cos Pyey, |a | =1.
v=1

In addition at the point z-{-ue; we have
(28) [1 — (Cos ¥)2] Ky vzo (e5,a) = (Cos ¥,)2 K 4 (z-+ueq),
zeQ < ®.1 <o < m,(see [3]).

Similarly at the arbitrary point p € @ with p ¢ Q the sectional
curvature of the section (e,a) is given by

29) K (e,8) = . (Cos F,)2

T— <eas? Srlon)
k4

where
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m
Y (K g Cos ¢g)2
(30) Ky (en) — — 2=
|§| (K1“1)2 + (Nm+1)?
m
2z (KsK,)2 Cos 95 Cos prusuy
+ o 1=I
[1221 (Ku)2 + (nne1)?])?
(sée [3]).

Let @ be a (k-+1( -dimensional ruled surface with the central ruled
surface Q< ® and let Ko (z), 1 < ¢ < m, be the principal sectional
curvatures of @ at a central point z € Q. Then the total sectional cur-
vature of @ can be defined by

B K = 2 Kq(2)

o=1
and the mean sectional curvature of @ can be defined by

B2)L = = Kg(2), (see [5])

=1

Moreover the total parameters of distribution of @ and the scalar
curvature of @, respectively, can be defined by

(33) D = % 3o
c=1

and

(B4 R = — 2 L , (see [5]).

III. The Sectional Curvatures of The Fixed And Moving Axoids
Under The Helical Motion Of Order k In The Euclidean Space En

In this chapter we will work on the sectional curvatures of the
fixed and moving axoids correspond to each other under the helical
motion of order k in E".
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Let ® and ¢ be (k-}1) -dimensional the fixed and the moving
axoids of ET correspond to each other and let Q<= ® and (< be
(k—m-}-1)-dimensional the ecentral ruled surfaces of the axoids. If
{e; (t)s..., ek (t)} and {81 (6)0nnsy (t)} are the fixed and moving principal
ONFS of O, respectively, then the following theorcms can be given.

Theorem II1.1: If Ko (z) and Ko (%) are the principal sectional curva-
tures of @ and @ at the points z €Q and z €02, then

Ko (z) = Ko (2). v

Proof: If we consider the equation (21) for the fixed axoid @ and
if we set |35] = |§G| in this equation we get

Ko(z) =—1/82,1 <6 <m.
This 1mphes that

o (z) = K (z), 1 <o <.

Theorem II1.2: If K o (z+ues) and K o (2+uéc) are the principal
sectional curvatures of ® and @ at the points z--ues €® and z 4 ude
€ @, then we have

(z+ue6) = K (z-+_uec) z ch(D erc(D, U L

Proof: From the (23) and Theorem .I.1. we 1mmed1ately observe
the proof of the theorem.

*- Theorenx IT1.3: At the points zeQ< ® and 7 Q< ® -~ - -
K, (e;n) — K3 (5,8 S
Proof: Let K; (&,0) be the sectional curvature of ®. Then by-
(24) we have

m — — k — '
(35) Kz (&,8) = X (Cos ¢5)2 Ky (2), 2 €28 = X Cosqf8,.
c=1 v=]
: k
If we set A§ =.¢, then we finde = X Cos ¢,e,. Hence since A
v=1i
is an orthogonal transformatlon and Aey = ev 1<v <k we observe

that



ON THE SECTIONAL CURVATURES... 233

(36) Cos oy = Cos oy, I<v<k.

On the other hand since @ is an orthogonal vector to the Ey (t),
the vector Afi = n is the orthogonal to the Ey (t) too. If we consider the
Theorem IIL.1. and (36) with the equation (35), we get by (24)

(37) K3 (en) = K; (en), 20y, zeLd.

Corollary IT1.1: If 3 and 3 are the parameters of distribution for the
generators Sp {e} and Sp {&}, passing through ze(Q) and zegy, then | 3|
=15l

Proof: From the Theorem IIL3. and because of (25) the proof of

the corollary is clear.

Now we would like to observe the sectional curvature of the arblt-
rary tangential section at the points zeQ and Ze() under the helical
motion of order k in E™.

Suppose that

— . B :
= T°-ﬁ+ X Cos¥,e, |a] =1
by (27). If we set Ad = a, then since

N k
Cos V', n+ X Cos ¥yey, Ha“ =1,

@a == 2+

we obtain
(40) Cos ¥y = Cos ¥}, 0 < i < k.
Therefore the following theorem can be given.
Theorem I11.4: R; (5,3) = K, (e,a), ze(y, ze
Proof: If we rewrite the equation (26) for the section (8,3) we ob-

serve that

(Cos F )2

41) K; (s.a ’= W K; (&.n), z € Q.
Moreover if the Theorem I11.3. and the equation (40) are consuiered
in this last equation, we get

R; (8,3) =K, (ea), 2 € Q,z € Q.
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In addition at points z-}-ué; and z+ue; we have the following
corollaries.

Corollary IT1.2: K;, -5 (85,3) = Ky yeo (€5.2)-

Proof: If we consider (28) and (40) together with the Theorem II1.2,
the proof of the Corollary II1.2. is clear.

Corollary I11.3: At the arbitrary points f)eé and pe® correspond
to each other under the helical motion of order k we have

K3 (&1) = Ky (e,n).

Proof: From (13), (14) and (36) and because of (30) the proof of the
Corollary IIL.3. is clear.
Corollary II.4: Kj (8,3) = K, (e,a), p e D, p € .

Proof: From the Corollary II1.3. and (41) the proof of the Corollary
is clear.

Corollary IIL.5: We have the following results.

1. K =K
2.L =1L
3. D =D
4. R R.
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