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ABSTRACT

An inequality sharper than that of Knopp’s Core inequality was proved in [3]. In the pre-
sent paper a generalised result of the above inequality for row finite matrices is proved with the
help of a sublinear functional Q5 Some sets which arise in connection with Qg are also charac-

terised.

INTRODUCTION

Let m denote the Banach space of all bounded real sequences
X = {xn}nZ,, normed by |x| = sup- We write
n

n
m, = {x em:sup | ¥ x| < oo}
n i=
Define L: m — R by L(x) = limp, sup x,. The space ¢ of all convergent

real sequences is a closed subspace of m.
Banach limits [17] are linear functionals G on the space m satis{-

ying conditions:
(x>0 = G(x) >0,
(i) Gle) =1,
(i) G(ox) = G(x),
) and 6: m — m is defined by (oxn) = xj. 1. Condition

wheree = (1,1 ...
(iii) is the same thing as saying that G is ¢ -invariant on m and o is cal-
led a shift operator. Let 8 denote the set of all Banach limits on m.
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If P is a sublinear functional on m, we write {m,P} to denote the
set of all linear functionals Q on m such that Q < P (that is, Q(x) <
P(x) for all x € m). A sublinear functional P on m generates Banach li-
mits if for a linear funciional G on m. G << P = G € B; (that is, if
{m,P} < B). A sublinear functional P dominates Banach limits if Gep
= G < P;(that is if 3 < {m,P}). Thus if P both dominates and gene-

rates Banach limits then 8§ = {m,P}.
Let A = (apy) be an infinite matrix of real numbers and write
[e o] . . .
Ap(x) = X apixk if it converges for alln > 0. We then write Ax =
k=1 ’

{An(x)}n21. Note that the matrix A is called regular if A: e > cand
lim Ax = lim x. The Silverman-Toeplitz conditions for a regular
matrix are the following:

@ JA] = sup = fan] < o,
n k
(i) im apr = 0, for fixed k,
n
(iii) Hm X an = 1.
n X

A matrix A is called strongly reguler [4]if it is regular and
lim £ |apx — anky1| = 0.
n k

We say that A = (anx) is almost positive if im X a7y = 0 (if X
n k
R, »* means max (2, 0) and A~ means max (— %, 0)). If A is regular,
it is almost positive if and only if lim X |apg| = 1 (see [7]).
n k

The main object of this paper is to establish an inequality for a
row finite matrix A and for a sublinear functional defined on mgy for a
vormal matrix B. This is proved in section 3, and it is a generalisation
of Theorem 2 of [3] for a row finite matrix. In section 4 sets which arise
in connection with Qp have been studied. Section 5 deals with ¢ set of
section 4 where mg is replaced by a bounded subspace V of m.

2. Let s be the set of all real sequences x = {Xn}:zl. We write

my = {x es: Ax em}, myo = {x €s: Ax e mo}. It is evident that my
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is a linear space and m g is a subspace, Further if we define, for x e m,,
|x| = sup |Z ankxk| then it is a seminorm on m,. It is a norm if
n ok

A is invertible. It is also familiar that

A:m —» s < X |angc| < o (for each n);
k
A: mo>m < [A] =sup T lapgg| < oo.
n ok

Let c4 be the summability field of A; that is,
ca = {x es: L(Ax) = — L (—Ax)}.
It is evident that
CA € my (21)
It is also easily seen that
m N my =m<e Al < oo (2.2)
It is in order to quote the following thecrem.

Theorem: (Mazur-Orlicz [6]). Let A be a regular matrix., Then
ca Ne # o = ca N m' # o; where ¢/ and m’ are the ccmplemen-
tary sets of ¢ and m respectively. In otherwords, if a regular matrix
evaluate some divergent sequence, then it must evaluate an unbounded
sequence; that is, if a regular matrix evaluates no unbounded sequence,
then it evaluates only convergent sequences. From (2.2) we have |A I
< © = m < my and there are important cases where m is a proper
subset of ma. For example, if A is regular such that A evaluates some
divergent sequence (infact, these cases are only important), then the abo-
ve theorem gives that ¢4 N m’ £ o and therefore from (2.1) we have
my N m' % g,

Let w: m — R be defined by
w(x) = inf L(x-}z)
Z € mg

It is easy to see that w is a sab-linear functional. The result which was
proved in [3] is the following:

Theorem: lim sup An(x) < w(x) (x ¢ m)
n

if and only if the matrix A is almost positive an strongly regular.
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The following lemmas are required to prove the main Theorem
and the proposition.

Lemma 1: (Knopp’s Core Theorem) L (Ax) < L(x) (x e m) if and
only if A is almost positive and regular.

Lemma 2: (Simons [7], Corollary 12, Theorem 11). 1f
(i) T lank| < o (for each n)
k

(i) apx — 0 (n - o0) for fixed k,
then there exists y ern :*;iy | < 1and

lim sup ¥ apg yx = lim sup 2 |ank |
n Kk n k

3. Now suppose that |B| < oo and we write, for any real matrix
B, and for x emp

Qp(x) = inf L(B(x-+z)). ‘ _ (3.1)
Z € MBop
The functien Qp: mg - R is well-defined if we suppose that

lim sup By z > 0, (z € mgo), (3.2)

n

(see Devi [3], regarding the functional qy before the statement of The-
orem 1).

" In the case
bpr - 0 (n - 0, k fixed)
by Abel’s transformation,

Byz = 2 (byx — bnxy1) Yo ¥y € m and z € mg
k

n
where y = {yn} = | 3 2y }

v=0

Further if

Iim X lbnk — bmk+1| = 0 f%%)
n k .
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then, since, for y € m. (that is. z € m,)
Bnz| < |vy| X |bsx — bnxyy s
. k ‘ ; .
it follows that, in the case (3.3) holds, lim Bpz == 0 (z € m,). Hence
n

in the case mp, < m, the requirement (3.2) is fulfilled. Now I am in a
position to state the first theorem:

* Theorem 1: Let B be a normal matrix such that condition (3.2) holds.
Then for a row finite matrix A o 7 v
LAY < Qe (x emp) . (34)
if and only if AB~1 is almost positive and strongly regular. .
Remark: By taking B =1 (ldentlty matnx) we obtain Theorem 3
of [3] for a row finite matrix.

For the proof of Theorem 1, I need to prove the following proposi-
tion which gives a theorem similar to the Knepp’s Core theorem in the
case B = I and A, a row finite matrix.

Propésitioﬁ 1: Let B be a normal matrix. vtheVn for a row finitg iﬁat-
rix A,
lim sup Aj(x) < lim sup By(x) for all X € mp (3.5)

n n
if and only if AB~1 is regular and almest positive. -

Proof: (Sufficiency) Since B is a normal matrix (see [5]) it is
row finite and B~1is also row finite. Let C = AB-1. Since CBx = (AB71)
Bx = A(B-1B) x = Ax; it follows that ..

L (Ax) = L (CBx) 4 ‘ ;(3.6)
The associative property of infinite matrices A, B~t and B is justified

for row finite matrices (see Cooke [2]). By the sufficiency part of Lem-
ma 1,

L(Cy) < L(y) for all y e m.

Since for allx emp, Bx ¢ m, we have from the above inequality that
L(CBx) < L(Bx).: v

As L(Ax) = L(CBx) by (3.6), we have proved the sufficiency.
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Necessity: —L (—Bx) < — L(—Ax) < L(Ax) < L(Bx), (x € mp).
Hence it follows that
L(Bx) = — L(—Bx) = L(Ax) = — L{—Ax),
that is, )
{x: Bx e ¢} = {x: Ax e ¢}
and
lm Bpx = lim Apx. (3.7
n n

If y ec, then y e m. As B is normal there is an x e ssuch that Bx = y
or x = B~1 y. Now by using (3.7) we have,

limy, =lmBpx =lim Apx =lim Ap(B-ly) ==lim (AB!)py =lim Cpy
Hence C = AB-! is a regular matrix.

Now since C is regular, the requirement of lemma 2 is satisfied.
Hence there exists y e m: |y < 1 and

LCy) = lilm sup E fenk | (3.8)

Now given y as above, define x by x = B~! v so that |Bx | < 1. Since
L(Bx) < 1, using (3.5) and (3.6) we get

L(Ax) = L(Cy) < 1. (3.9)
Now it follows from (3.8) and (3.9) that
lim sup ¥ jenx| << L. (3.10)
n k
But since

lm sup 2 fepk| > lim 2 epx =1
n k n k

it follows from (3.10) that

lim £ |eqx| = 1.
n k

Hence C is almost positive.

This completes the proof of the proposition.

Proof of the Theorem 1: (Sufficiency) Since C = AB-! is almost
positive and regular, it follows, by proposition 1, that

L(A(x+2z)) < L(B(x+2) (x € mp, z € mgg).



BANACH LIMITS AND INFINITES... 249

Now taking the infimum with respect to z ¢ mp, in the above inequality,
we have

Qa(x) < Qp(x). (3.11)
Since L(Ax) is sublinear, it follows that
Qa(x) > inf |L(Ax) —L(—Az)!. (3.12)
Z € MBo

But for z € mpy, Az == CBz = Dy
where '
D = (dnx) = (cnk — Cnoksy)s
y=lbal={ 2B} em (3.13)
Since C is strongly regular and y e m, it follows that
L(Az) = IL(Dy) = 0.
Hence it follows from (3.12) that
Qa(x) > inf L(Ax) = L(Ax). ‘ ' (3.14)
Z € Mmpo
Now the sufficiency follows from (3.11) and (3.14).

Necessity: Suppose that (3.4) holds, since trivially Qp(x) < L(Bx),
(x € mp) it follows from (3.4) thet L(Ax) < L(Bx) (x € mgz). Hence by
proposition 1, C = AB-1is almost positive and regular.

Since we know (see Devi [3], Theorem 1 (i))
Qp(x) = 0(x € mpy), it follows from (3.4) that
 L(Ax) < 0 (x e mpo);

that is,

L(CBx) < 0 (x = mpg);
that is,

LDy) < 0 (y € m), (3.15;
where D and y are given by (3.13). |

Now since the matrix D satisfies the conditions of Lemma 2 (as
C is regular) there exists y, e m: |y, | < 1 and



250 St SHANTL LATA "MISHRA-
L(Dye) = lim sup ¥ ldpx! = 0 - ot (3.16)
n k

Now define x, by

xo = B~ (6yo — Yol
so-that ,

6Y0 — Yo = Bx,.
Hence vy e m < Bx, € my < x, € mpg.

Now taking y to be vy, in (3.15) together with relation (3.16), we have

lim X !dnk{ = lim X !chk —_ cn,k”‘ =0,
n k n

Hence C is strongly regular.
This completes the proof. )
Corollary 1: Let the conditions of Theorem 1 hald. Then .
L(A%) < Qa(x) < Qu(x) = L(Bx).

-Proof: First inequality follows from (3.14), second inequality from
(3.11) and the last one is trivial. '

4. Itiseasy to see that

0 < T(AX) (x em) @
but by Theorem 3 of Devi [3], we have
L{Ax) < w(x) (x € m) o (42)

if and only if A is almost positive ‘and strongly regular. Hence combi-
ning (4.1) and (4.2) we have

Theorem 2: Let A be almost positive and sirongly regular. Then
Qulx) < w(x) (x  m). (4.3)
In other words,
fm, Q1) < B.
thaf is, Q5 generates Banach limits. Tlﬁé is justif.ied as
B = {m,w} (see Theorem 1°(i) [3]).

It is clear from (4.3) that
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—w(—x) < —Qp {(—x) < Qa(x) < w(k) (x € m)

Since w(x) == —w(—x) implies that —Q(—x) = Qa(x), it follows that
oem: wx) = —wlx)} < {x em: Qax) = — Qa ()}
that 1is, ]
¢ < 5,
i A is almost positi?e and strongly regular, where
¢ = |x e m: x 'has vnique Banach limit}
— e miw(x) = —w(—x)}.
—jxem "L‘i‘;f‘_nj.‘g%f‘“" P s 4 limit as p—o0, upiformly in n %
and ;
S: = {x e m: Qu(x) = — Qa(-x)}

¢ is called the set of all almost convergent sequences (see Lorentz [4]).
I what follows, we want to examine if the set S can have a simpler cha-
racterisation like the set é.

Write
So = {x e m: ¥ ang (xi -+ zk) converges uniformly in z € m,}
R k-
S, = {x e m: I apk (xx - zx) converges for all z € mg}.
k

We now prove

Theorem 3:

() So = 8

(i) §, = 8, if E lank — an,ky, | > 0 asn - co.

Proof: Given x ¢ S and ¢ > 0, there exists a positive integer
Ny = o (8): ‘ ’

5, —e < % ank (xx + zk) < s, + ¢ (4.4)
k. ;

for all z e m,, and for all n > n,, where
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sy = lim 2 ang (xx + zx),
n k

and s; is independent of z € m,. Taking lim sup over n and then the in-
fimum over z in (4.4) we obtain:

8, — & < — Qp (—x) < Qux) <58, + ¢ (4.5)

Since ¢ is arbitrary, we get the first inclusion relation.
Next suppose that x € S, and Q4 (x) = — Qa (—x) =s,. From

Qa(x) =s,, we obtain, given ¢ > 0 there exists z’ e m; and n,; ¢ N:

A, (X -+ Z,) = 2 ang (Xk -+ Z/k) << 8, + &, (46)

k

for all n > n,. Now for z « m,,

Ay (x + 2 = Ay (x + 2) + Ay (2 — 7). 4.7)
Since ¥ |apk — an.kyy ! — 0 as n - oo, we obtain

k
Ay (z —2z) >0 asn > oo,

that is, given ¢ > 0. there exisis n, € N:
Ap (z — 2) < e (n = ny). (4.8)
Now from (4.6), (4.7) and (4.8) we have

Ap (x 4+ 2z) < s + 2 ¢ for all n > n,; = max (n,,my).
Similarly we have

Ay (x+2z) >s1 — 2cforalln > n, e N,
so that

[Ap (x + 2z} — s, | < 2 ¢ for all n > ng = max (n3,ny).
Hence x € S, and this proves the second inclusion relation.

5. The set S, defined in Section 4 is usually empty. Infact it is non-
empty only if the matrix A has a finite number of non-zere rows. In
view of this it is evident that the inclusion (i) of Theorem 3 is proper

because when A is almost positive and strongly regular then ¢ < S,
(see below Theorem 2).

Now the natural question arises as to what sublinear functional
¥ will generate the set S, in the sense that
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So = xem: ¥V (x) = — ¥ {(—x)}
Towards this end, we define ¥'4: m — R by
Wa(x) = lim sup sup X apy (xx + Zk)
n zeV Kk

where V is a subspace of m.
Since

Wi (x) > lim sup T api xy
n k

and if x em, |A| < oo then ¥, is bounded from below. ¥, is also bo-
unded from above if V is a bounded subspace. In this case ¥, is well-
defined. Now we have the f:llowing

Theorem 4: Let V be a bounded subspace of m and let JA| < oo.
Write

SO = {x em: X apx(xx+2x) > a limit as n—+ oo uniformly in z € Vi.
k
Then
8 = Ixem: ¥y (x) = — ¥y (—x).
Proof: Suppose that T apg (xx -+ 2x) —> « uniformly in z € V.
k

Then given ¢ > O, there exists n, € N:
o —e<< Xang (xk + zx) << o+ cforallze V,n > n,.
k

Now taking sup. with respect to z and then lim sup. with respect to n,
we have

o —¢et < — ¥y (—x) < Wy x) < o+ =

Since ¢ is arbitrary, we obtain

¥ylx) = — Falx) = .
Conversely suppose that ¥'y(x) =2 = — ¥ (—x). Then we shall have
o — € <§ank(xk+zk) < a + ¢

foll all z € V, n > n,, from which follows that

2 apg (xx -+ zk) > « uniformly in z € V.
k

This completes the proof.
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