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ABSTRACT

Tweo improved numerical techiques are employed to compute MLE for the parameters of
the 3-parameter Weibull distribution using complete sample data of large sample size and of
large-valued inspection points. For the solution of estimates a new minimal functional is defined
and optimized by the descent method and the method of conjugate gradients. The result of
both techniques are compared. Asymptotic variance-covariance matrix of estimates for the

complete sample is included.

INTRODUCTION

The Weibull distiibution has many uses in engineering, reliability,
applied statistics and business studies. Despite the appropriateness
of the 3-parameter Weibull model in many practical cases, often 1-
and 2— parameter Weibull models are used. The reasons for this are
difficulties of analysing the 3-parameter model and of computational
procedures.

The well adapted computational procedure for estimating para-
meters is the maximum likelihood (ML). This method is used for several
reasons:

1- For large samples estimates are almost unbiased and have
minimum variance.

2— Estimates have the asymptotic properties of consistency have
s-normality.

3— For small samples, the ML estimators are generally comparable
with other estimates.

4— When the value of the shape parameter is greater than two,
the regularity of the distribution is usually satisfied.
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The number of papers published on computational techniques for
solving the ML equations for the 3—parameter Weibull model are scarce.
Iterative estimation procedure was applied by Harter and Moore [1]
for complete and censored data, by Wingo [2] for progressively censored
samples, by Zanakis [3] and Archer [4] for complete and grouped data,

In this paper two numerical techniques for computing the ML
estimates of the parameters of the 3— parameter Weibull distribution
for complete samples are discussed. The method of approximating
the variance and coveriance of estimates by the negative inverse of the
matrix formed by the second partial derivatives of the logarithm of
the likelihood function are examined.

THE MAXIMUM LIKELIOOD EOUATIONS

The 3-parameter Weibull survival function is

"R (% @, B, y) = exp {~[(x)/ 2]?} ()
with x > y; 2 8y > 0 where «, B and y are the scale, shape and
threshold parameteis, respectively. Using reparametrization

6= and o -=0'/®
for the complete samples the logarithm of the likelihood functions
n 1 n
In L=n Ing —nlnf— (f-1) X In (x5 - y) — -5 3 (xi—p)®B (2)
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yield the likelihood equations
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If the 3—parameter Weibull distribution has an interior relative
maximum, the solution to the likelihood equations renders the ML

estimators #, B and '} which maximize Eqn. (2).
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ITERATIVE ESTIMATION PROCEDURE

The nonlinear nature of the ML function implies many sharp or
flat maxima and minima, hence any iterative solution to the set of the
the ML equations necessitates selecting good initial estimates. This
provides lesser iterations for cenvergence.

The false position method is used by Harter and Moore [1] for the
solutions of the ML equations. This technique is a one-at-a-time para-
meter research whose convergence rate is slow. However it is more
stable to divergence than any other method. Wingo [2] applied the
modified Newton-Raphson method for the solution of the ML equations.
In this method the iteration step-size is adjusted to eliminate diver-
gence at the points close to the solution point. This method was found
to have high rate of convergence. Archer [4] combined both the false
position and the modified Newton-Raphson methods. His hybrid
technique was observed to be faster than the false position method
but slower than the modified Newton—Raphson technique.

In the present paper two iterative search techniques are given for
finding the estimates of 3—parameter Weibull parameters from the ML
estimators by (i) the method of conjugate gradients developed by Fletcher
and Reeves [6] requires lesser computer storage and iterates faster
as compared to (ii) the decent method described by Fletcher and Powell
[7]. However, both methods suffer as the selection of initial estimates
are forced to out of the constraints imposed on the parameters de-
fined by the experimental data.

Method of Solution

Solving Eqn. (3¢) for 6 and substituting it in Eqns. (3a) and (3b),
a new form of the ML equations follow

Hesp ) = Py (roy) - [l ] po (4a)
and

Ol ) = () B, (i) + 0 [2 025 (4b)
where

Py (x5 7) =

i

[In (xi- y)]x*

M=
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(xi= 9)® [1n (xi 7]
le (X; [))7 '}/) = N m 3
12 eane]

I =

—
—_

and
n
Rn(x;V)ZZIEL(XrWO‘W

The minimization procedures require the solution of a new function

Jes B y) = B2 (x5 8, 9) + G (x5 8, 9) = 0. (5)
Since this form of equation is noninteractive the solution exists at
one of those local minimums if the starting estimates for parameters

(@0, ;0) and hence the function J , are appropriately done.

Initial Estimates

1- In the present work a single starting estimate was selected
for only the threshold parameter y. The estimate for the shape para-
meter was obtained from the slope of the Weibull graph at points
[ F(x),(xi— ) ]o:s ana ¢-o> since the slopes at these points was generally

~
observed to be less affected with & an y values slected over wide
. ranges.

2— Another estimate for the iterative procedure was for the func-
tion J. Since each consitutent of it (Eqn. (5)) should necessarily ap-
roach to zero when the final convergence was achieved, a simple choice
for the estimate was zero.

Variances and Covariances of Estimates

The information on the variance-covariance of estimates was
suggested [8] to be approaximated from the asymptotic variance—
covariance matrix of the MLE by inverting the information matrix
whose elements are negatives of second partial derivatives of ML equ-
ations (Eqns. 3 (a)-3(c)).

Simple Computational Algorithm

For both irerative procedures sequences in computation is as
follows:



COMPUTATIONAL TECHNIQUES FOR MAKIMUM..... 147

1- J(x) and AJ(x) computed and values of jqest:O, limits of

iterations and other constraints are specified.
~
2— From the data (using v°, 3°) ¥° @0 are computed.

~
3— Correction for f° is made for a given value y° by using Newton-
Raphson estimation technique.

4— A new value for the function f is estimated, .f k. s, which re-
sults in new estimates (J3K, :{k) Now J k.t is closer to the solution
than joest = 0 assumption.

5- Optimization procedure either using conjugate gradients or
descent method is entered for the solution of @k an '\?k

6— If the outcomes of step 4 fails, a new estimate is computed for
I ke,

7— A new value of j K.st Is computed using

~ ~ ~

J¥esy = 1.5 JE - 0.5 Jk!
which is necessarily less than Jx,

8- Control js transferred to step 5 for a second run with slightly

~ ~ A 3 3 . .
corrected new values of B°, v° and J%g; if an optimum point is not
reached.

9- Inverse of the information matrix is computed to obtain vari-
. . Az
ances and covariances of estimates (2, B, ¥).

NUMERICAL RESULTS

Both optimization techniques were written in Fortran. The prog-
ram is capable of handling of sample size in the range of 5-1000. This
range is found to be affected with data values in samples due to over-
flows and underflows. Since the shape parameter is also another factor
governing the computational abnormalities, it is restricted to the
range of 0.1-20 that which is the case for most extreme Weibull
distributions. The number of iterations is limited to 50 in order to
initiate each run with better estimates.

Results of several runs of both numerical techniques for the data
set of 200 breakdowns obtained from conditioning tests of the high-
voltage gas—insulated cable [9] are illustrated in Table 1. At the final
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stage of computation variance-covariance matrix calculated from the
second derivatives of ML function using the results computed from
the method of conjugate gradients is given.

Table 1. Summary of optimized estimates and variance-covariance matrix with good initial

estimates.
A) Descent Method
Complete Sample of Size N = 200
Graphical Appox. Beta = 4.74 Gamma = 277.50
Newton-Raphson Approx. Beta = 4.29 Gamma = 277.50
*Run = 1
= Iteraion Beta Gamma Functional J
0 0.42877863 D - 01 0.27750487 D 4 03 0.27653412 D + 01
2 0.43597129 D + 01 0.27573636 D 4~ 03 0.85257283 D + 00
4 0.45081424 D + 01 0.27573156 D - 03 0.61884110 D + 00
5 0.48582565 D - 01 0.27294351 D + 03 0.22751899 D 4 00
6 0.48929624 D - 01 0.27244636 D + 03 0.13828115 D + 00
7 0.52304370 D 4 01 0.26957723 D + 03 0.68720760 D — 01
8 0.54757074 D 4 01 0.26721438 D + 03 0.32285576 D — 01
9 0.57642786 D - 01 0.26466921 D + 03 0.17284572 D — 01
10 0.66941134 D - 01 0.25603044 D - 03 0.38393291 D — 02
11 0.66600062 D 4- 01 0.25630253 D -+ 03 0.25175860 D — 02
12 0.72352804 D - 01 0.25091009 D + 03 0.11353897 D — 02
13 0.74886010 D - 01 0.24847470 D + 03 0.51848803 D — 03
14 0.78533588 D - 01 0.24503441 D 4 03 0.25581338 D — 03
15 0.85112786 D + 01 0.23876717 D 4 03 0.75761692 D — 04
16 0.84887887 D +- 01 0.23896882 D + 03 0.38109672 D — 04
17 0.88907091 D + 01 0.23513153 D + 03 0.11616282 D — 04
18 0.90177568 D - 01 0.23390883 D + 03 0.30850292 D — 05
19 0.91773187 D + 01 0.23238298 D 03 0.61481543 D — 06
20 0.92806495 D + 01 0.23139137 D 4- 03 0.15245532 D — 1¢
21 0.92810289 D - 01 0.23138774 D + 03 0.79470245 D — 13
22 0.92810699 D + 01 0.23138735 D + 03 0.10910647 D — 19
23 0.92816699 D + 01 0.23138735 D + 03 0.30677223 D — 24
(Estimated) Beta = 9.28106993 And Gamma = 231.38735027
Mimmized Functional J = 0.30677223D—23
Derivatives of Functional J = —0.36638073D—11 —0.38248740D—12
Alpha (Exp) = 0.27624867D-1-03 Alpha (Cal) = 0.93114677D-02
Determ = — 0.11027D—22 0.00000D--00) Cond1 = 0.11721D—40
Second Denvatives of MIE Func
@€ A, J) Var-Covmatrix (var-Cov)
1,1 0.41972558 D + 04 0.26746375 D + 00
1,2 —0.87178200 D + 02 ~0.11169905 D + 01
1,3 -0.48664048 D + 15 0.23062934 D + 19
2,1 —0.87178200 D + 02 —0.11169905 D + 01
2,2 0.11206462 D + 02 0.10710140 D + 00
2,3 0.10162173 D -+ 16 —0.11552647 D + 18
2,3 0.10162173 D — 15 -0.11552647 D 4 18
3.1 —0.48664048 D — 15 0.23062934 D + 19
3,2 0.10162173 D — 15 -0.11552647 D + 18
3,3 0.56472869 D — 34 0.19912389 D - 38
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B) Method Of Conjugate Gradients
Complete Sample Of Size N = 200
Graphical Appox. Beta = 4.74 Gamma = 277.50
Newton-Raphson Appox. Beta = 4.29 Gamma = 277.50
*Run = 1
= Iteraion Beta Gamma Functional J
0 0.42877863 D + 01 0.27750487 D + 03 0.27653412 D + 01
1 0.42719279 D + 01 0.27749575 D + 03 0.26889751 D 4 01
2 0.43733065 D + 01 0.27704709 D 4 03 0.19849247 D + 01
3 0.43960878 D 4 01 0.27648160 D 4 03 0.11108634 D 4- 01
4 0.44135438 D + 01 0.27648226 D 4- 03 0.10349142 D + 01
5 0.44463841 D 4 01 0.27605093 D + 03 0.87593812 D + 00
6 0.46333839 D -+ 01 0.27482135 D + 03 0.41598709 D + 00
7 0.46191319 D 4 01 0.27481918 D + 03 0.37240929 D + 00
8 0.46535459 D + 01 0.27460851 D 4 03 0.35257422 D + 00
9 0.56068265 D + 01 0.26615372 D + 03 0.30230934 D 4 01
10 0.55978776 D - 01 0.26615271 D 4~ 03 0.22008182 D — 01
1 0.56410172 D - 01 0.26578591 D + 03 0.21022338 D — 01
12 0.64063186 D -~ 01 0.25873153 D + 03 0.64187892 D — 02
13 0.64002760 D + 01 0.25873070 D + 03 0.41758250 D — 02
14 0.64980950 D - 01 0.25783890 D 4 03 0.37838839 D — 02
15 0.73157284 D + 01 0.25015492 D + 03 0.11339597 D — 02
16 0.73122612 D + 01 0.25015455 D + 03 0.69209458 D — 03
17 0.75185272 D + 01 0.24821736 D + 03 0.54422161 D — 03
18 0.83839128 D + 01 0.23998387 D 4 03 0.10212175 D — 03
19 0.83824146 D 4 01 0.23998372 D — 03 0.53517273 D — 04
20 0.87607091 D 4+ 01 0.23637617 D + 03 0.20724731 D — 04
21 0.90050780 D + o1 0.23402917 D 4 03 0.40971436 D — 05
22 0.90053305 D + 01 0.23402919 D 4 03 0.30518604 D — 05
23 0.92551522 D 4 01 0.23163651 D + 03 0.10054380 D — 06
24 0.92623514 D + 01 0.23156676 D + 03 0.11815555 D — 07
25 0.92623554 D + 01 0.23156676 D + 03 0.11577670 D — 07
26 0.92810129 D 4 01 0.23138791 D 4 03 0.22254628 D — 10
27 0.92810473 D + 01 0.23138757 D 4 03 0.16694901 D — 13
28 0.92810473 D 4 01 0.23138757 D 4 03 0.16663785 D — 13
(Estumated) Beta = 9.28104732 And Gamma = 231.38756701

Minmmzed Functional J = 0.16663785 D — 13

Dernivatives Of Functional J = —0.29099101 D — 10 -— ¢.15073425 D — 09
Alpha (Exp) = 0.27624867D--03 Alpha (Cal) — 0.93114450D+02
Determ = -—0.110280-—22 —0.00000D+00J Cond: = 0.11724D—40

Second Dervatives of MIE Func
(4 )} A@Y Var-Covmatrix (Var-Cov)
1,1 0.41972517 D + 04 0.26746249 D - 00
1,2 —0.86178140 D - 02 -0.11169909 D -+ 01
1.3 ~0.48670071 D — 15 0.23059948 D + 19
2,1 —0.87178140 D + 02 —0.11159909 D — 01
2,2 0.11206459 D - 02 0.10718142 D + 00
2,3 0.10163434 D — 16 -0.11551210 D + 18
3,1 —0.48670071 D — 15 0.23059948 D - 19
3,2 0.10163434 D — 15 —0.11551210 D 4- 18
| 3.3 0.56486904 D — 34 0.19907328 D - 38
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Table 2. Summary of optimized estimates and variance-covariance matrix with bad initial

estimates.

A) Descent Method

Complete Sample Of Size N = 200

Graphical Appox. Beta = 12.68 Gamma = 181.50

Newton-Raphson Approx. Beta = 14.45 Gamma == 181.50

* Run = 1

= JIteration Beta Gamma Functional J
0 0.14448848 D - 02 0.18150208 D - 03 0.47369863 D — 04
10 0.15824832 D + 02 0.16816618 D + 03 0.42430360 D — 04
20 0.18149397 D -4~ 02 0.14560410 D + 03 0.35235436 D — 04
30 0.17803644 D + 02 0.14895450 D 4 03 0.34401918 D — 04
40 0.19713324 D - 02 0.13039032 D + 03 0.26863918 D — 04
50 0.19713326 D + 02 0.13039030 D 4- 03 0.26863910 D — 04

Graphical Appox. Beta = 10.37 Gamma = 209.43

Newton-Raphson Approx. Beta = 11.56 Gamma = 209.43 °

*Run = 1 |

= Iteration Beta Gamma ‘ Functional J
0 0.11562847 D -4- 02 0.20942549 D + 03 ‘ 0.39225393 D — 04
10 0.92799149 D + 01 0.23139840 D + 03 | 0.96999067 D — 10

(Estimated) Beta = 9.28106993 And Gamma = 231.38735027
Mimmmzed Functional J = 0.66001783D—24

Derivatives Of Functional ] = —0.58501150D—11
Alpha (Exp) = 0.27624867D 103

—0.60992915D—12
Alpha (Cal) = 0.93114677D+02
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B) Method Of Conjugate Gradients
Complete Sample Of Size N = 200
Graphical Appox. Beta = 12.68 Gamma = 181.50
Newton-Raphson Approx. Beta == 14.45 Gamma = 181.50
*Run = 1
= Iteration Beta Gamma Functronal J
0 0.14448848 D + 02 0.18150208 D +- 03 0.47369863 D — 04
10 0.20032348 D + 02 0.12728396 D +- 03 0.25670930 D — 04
* Run = 2
= Iteration Beta Gamma Functional J
0 0.21151084 D + 02 - 0.11640272 D + 03 0.22281081 D — 04
* Run =
= Iteration Beta Gamma Functional J
0 0.21151084 D -+ 02 0.11640272 D + 03 0.22281081 D — 04
* Run = 4
= Iteration Beta Gamma Functional J
0 0.21151084 D + 02 0.11640272 D + 03 0.22281081 D — 04
Complete Sample Of Size N = 200
Graphical Approx. Beta = 10.37 Gamma = 209.43
Newton-Raphson Approx. Beta = 11.56 Gamma = 209.43
* Run = 5 ] .
= Iteration Beta l Gamma ' Functional J
0 I 0.11562847 D + 02 l 0.20942549 D + 03 | 0.39225393 D — 04

(Estimated) Beta = 9.93095648 And Gamma = 225.14885217
Mimmized Functional J = 0.86819247 D — 05

Denvatives of Functional J = —0.97239726 D — 06 -—0.22659340 D — 05
Alpha (Exp) = 0.27624867 D + 03  Alpha (Cal) = 0.99391819 D 4 02

CONCLUSION

In the present paper the difficult 3—parameter Weibull distribution
parameters are estimated by two iterative procedures for the shape
parameter values in 0.1-20 range and for large sample interval 5-1000.
The rate of convergence of the method of conjugate gradients, in cont-
rary to the findings of Fletcher and Reeves [6], is faster than the
descent method suggested by Fletcher and Powell [7], as initial esti-
mates to the shape parameter is correctly chosen. Otherwise the method
of conjugate gradients is found to approach to the result with better
convergence rate than the descent method. Also the former is more

stable and fast for correcting the initial estimates for each new start
iteration cycles

to
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