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SUMMARY

For the classical linear regression problem, a number of estimators alternative to least
squares have been proposed for situations in which multicollinearity is a problem. This paper
investigates mean square error properties of biased regression estimators and presents a proce-

dure for obtaining improved estimators.

INTRODUCTION

One of the problems that can occur in regression analysis is multi-
collinearity among the independent variables. In the presence of mul-
ticollinearity the least squares estimates of regression coefficients are
unstable in the sense that a different sample can produce dramatically
different parameter estimates; it is pessible that some will even have a
wrong sign. As a result, estimation is not precise and determination of
the relative influences of the individual variables is difficult. Also, the
proper specification of the model is difficult to achieve when multicol-
linearity is present.

Hoerl and Kennard in their papers [3], [4] gave the theoretical
basis for this difficulties and they presented a new estimation method-
ridge regression. Ridge regression, based on adding a small quantity
to the diagonal elements of a correlation matrix can reduce the variance
of estimators, but at the expence of introducing bias. Existence of bias
calls for mean square error as an adequate reliability measure.

In the next section we examine the effects of multicollinearity.
Mean square error properties of biased estimators are given in Section
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3. Section 4 presents a procedure for obtaining improved estimators.
Section 5 contains the concluding remarks. ‘

THE MODEL AND STATISTICAL CONSEQUENCES OF MUL-
TICOLLINEARITY

The standard linear regression model may be written,
X = X@ + g, E(e) =0, E(ec’) =1, (1)

where, Y is an nxl vector of observations on a dependent variable, X
is an nxp matrix of nonstechastic regressors, rank (X} =p, (n > p), 8
is a pxl vector of unknown regression coefficients and € is an nxl vector
of unobservable disturbances. It is assumed that X'X is in the form of
a correlation matrix. The objective is to estimate 8. The parameter

space is EP — p dimensional Euclidean space.

The model (1) can be reduced to an orthogonal form by using
X = UAY?V, the singular value decompasition of X, [8], [10]. Let
Z =UAY? =XV and o = V'8, Then (1) becomes

Y=22+¢ @

The type of estimators we select, depend upon the criterior we
adopt to assess their perfcrmance. The least squares estimator of « is,

|

= (ZZ)"ZY = AZY. )

In general,

1 >

— 7+Y (4)

—

where, 7+ = lim (Z’Z -+ kI;)~'7Z’ is the Moore-Pensore pseudoinver-
k-0

se matrix of Z, [1].
As is known & is minimum variance unbiased in the class of estima-
tors (& : 3% = AY. A is a pxp matrix}.
E@) =«

Cov(®) = >N~
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1Y
MSE(8) = E( Ji—= |2) = E(d—g) * (A—x) =62 3 (1)
? b2, b—e) " (G—a z

E(Ja ) =E([8]) = Jx) + o2 = (1)
I T -z i
However, in the presence of multicollinearity, that is in the presence
of small eigenvalues 2;, some of the least squares estimates have large
variances, implying that least squares produces unreliable point estima-
tes in the sense that the estimate may be far from the true value. In re-
peated sampling situations the estimates may vary substantially from
one sample to another. Also MSE(&) is going to be large, so |2 [is going
o be larger than | . - -

LINEAR BIASED ESTIMATORS

One approach to improve the least squares estimation procedure
centers at finding biased estimators, which have smaller MSE’s than
the least squares estimators. The most popular of these is the ridge
estimator propesed by Hoerl and Kennard [3], [4]. The shrunken least
squares estimator and estimators based on principal components also
fall into this category. These estimators are members of the class of esti-
mators,

z(B) = ‘B?_c : B = diag(b,,b,....bp),0 <b; < 1i=12.....,p} (5)
The class so defined is all those estimators obtained by shrinking one or
more of the components of 4. For these estimators,

E(B#) = Bu

Cov(B&) = 6B A-'B’

D
b -+ = (bi—1)P af

1 =1

MSE(B&) = o°

Mo

E([B&]2) = [«{> - MSE(B%)

Setting EﬁMSE(BgA{.)/abi ==90,1=1,2,...,p we obtain the values b;, that

give minimum MSE,

bi ES ‘Ai/(}'i —l“ O'Z/Of.iz) R i:1,2,. B (6)
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Steine-like shrunken estimators: For these estimators all the shrin-

kage factors are equal to a single constant, i.c.
B =5bl,0 <b <1

Use of a constant shrinkage factor is most appropriate when the inde-
g2 pprop
pendent variables are orthogonal or very nearly so, [6], [11].

Principal component estimators: In principal component estimation

the shrinkage factor for an individual component is equal to either zero
or one. If b; = 0 the component is deleted and if b; = 1 the component
is retained. There are numerous suggestions in the literature concer-
ning appropriate criteria for retention or deletion of components, [2],

[71, 91

Ridge regression estimators: The generalized ridge estimator is defi-

ned by
6\_C_(K) = (A + K)7'Z'Y (7)
where K = diag (k k,,... ky), ki > o, i=12,....pIf K = klLk > o

then the estimator is defined to be the simple ridge estimator or just
ridge estimator.

(7) can be written

oK) = B(3) (®)
where B = A (A -+ K)~'. The values which give minimum MSE for ge-
neralized ridge are k; = ¢2/0;2, i=1,2,...,p, [2], [3]. The preperties,
optimality conditions and problems associated with ridge estimators
have been investigated in more than a hundred papers. Hua and Gunst,

[5] in their paper extend generalized ridge regression to include nega-
tive values of the ridge parameter.

A DISCRETE SHRINKING METHOD AS ALTERNATIVE TO
LEAST SQUARES

Let §© be a fixed point in the parameter space EP. Consider the
sequence of estimators of B, (BM), which is defined as follows
B — (I—hX'X)fe-1 1+ hX'Y, n=12,... (9)
where h € R. Then
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V@f’” = (I~hV’X'X‘7)V'@(n"1) - hV'X'Y (10)

Write V,é(o) = 2(0), Vf%(n) = M, n==1.2,... . Thus it follows that
g — (I—h A)2Y L b A 2

= (I—h AP 8 | (I-h A)h g + h A 2

= [I—~(I—h A)] & + (I—h A) (9 n=12,... (11)

For 0 <h < 2/pax, I—h A | <1 and lim 2, = «;, i=12,....p.
R

We may take any point in the parameter space as initial solution (.
When doing this. our aim is to provide, that the estimators which we
are going to select from the sequence (2(), to overcome the problems
related to least squares estimator. Individual parameter estimator
&;(m, for 0 << h << 1 /apax can be considered as wieghted average and
fer some n might he an effective compromise between «® and 8. In
this paper we take as initial solution 2 = 0. Then, for 0 < h <
1 imax we obtain the sequence of estimators (20 (0)), where

20(0) = [I—(—h A)] & (12)

The estimator 2™ {0) is a linear transformation of 2. In addition

{2 0), n=12...7T % (B) and thus
B[a0 )] =2 — (I—h A) 2
Cov[@™(0)] = ¢* [I—(I—hA)RPA!

D 1Y
MSE[6®(0)] = o* ¥ [l—1—h)a]fyy &+ I (1—hw)?eg
- - j= j=1

o=

-

20O = & [I—(I—hA)r]? & < [af

K>
D

I

The first term in the expressicn for MSE is an increasing function of n
and the second term is a decreasing function of n.A sufficient condition

for MSE [_9_(11)(92] to be Iess than MSE(3) is

n > max
i

(1og ,1_—2___) flog(1-h2),i=12,...,p 2 (13)

o2 fa?
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Therefore if [o [is bounded there are values of n providing,
MSE[2M(0)] < MSE(z).

For individual parameters we obtain,

Bias(@1™(0) ) = E@™(0)) —or = —(1—ha)%ou, i=12,...p
lim Bias(2;(™(0)) = 0

Bias(8;™(0)) | > [Bias(%;0)(0)) [, n=12,...
Bias(2,(™(0)) | < [Bias(d™;,,(0)) 1, i=1,2,....p—1

]

Var(&l(n)(_(.).)) - 62(1_(1—h7‘i)n)2 /’7\j-,, i::1927- « P
lim Var(2;(0(0)) = Var(2;)

N

Var(3;(m0(0)) < Var(8;(0+9(0)), n=1,2,...

To summarize, the given procedure produces estimates &M (0)
which are biased, shorter than the least squares estimates, with smaller
variance and which are closer to the tree value of the coefficients, for a
suitable chosen value of h, he(0,1 [apax). However this procedure obeys
the same difficulties associated with other biased estimation procedures,
the choise of biasing parameters.

CONCLUSIONS

We have seen that biased, shrunken estimates can be used in the
cases of multicollinearity to obtain smaller mean squared errors than
least squares. It is necessary to provide some assurance that the benefit
of reduced sample total variance of estimates is not likely to be offset
by a large squared bias. The MSE’s of the biased estimators depend
not only on biasing parameters and the eigenvalues of X'X but also on
the unknown parameters of the medel, s the optimal estimates cannot
be obtained in practice. The members from the class of estimators &(B)
considered, are more precise and offer alternatives for those who feel
that multicollinearity has made their least squares results an unreliable
basis for decision making purposes. However they do not offer complete
solutions.
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OZET

1¢ iligkinin sorun oldugu durumlarda, lineer regresyon problemi i¢in en kiiciik kareler kes-

tiricisi yerine bircok kestirici dnerilmistir. Bu calisma vanh kestiricilerin hata kareleri ortalamas:

ozelliklerini incelemekte ve iyilestirilmis kestiriciler elde etmek icin bir yontem sunmaktadir,



