Commun. Fac. Sci. Univ. Ank., Series A₁ V. 35, pp. 94-100 (1986)

THE CESÀRO SPACE OF NULL SEQUENCES

K. CHANDRASEKHARA RAO

Postgraduate Department of Mathematics, Saint Xavier's College, Palayankottai, India (Received: August 13, 1985)

ABSTRACT

FK space inclusion, weak convergence, extreme points of the unit disc and other properties of the Cesàro space of the null sequences are discussed.

INTRODUCTION

A sequence whose k-th term is x_k is denoted by $\{x_k\}$ or simply x. We employ the following notation:

 \emptyset : the set of all finite sequences.

co : the set of all null sequences.

m : the set of all bounded sequences.

h: the set of all sequences x such that x is a null sequence and

$$\sum_{k=1}^{\infty} k \mid x_k - x_{k+1} \mid \text{converges.}$$

 δ^k : the sequence $\{0,0,\dots,1,0,\dots\},\ 1$ in the k-th place and zeros elsewhere. Here,k $=\ 1,\ 2,\ \dots$

 $\sigma(c_o)$: the BK-space of all sequences x such that the Cesàro transform $\{k^{-1} \ (x_1 + x_2 + \ldots + x_k)\}$ is a null sequence. The norm on σ (c_o) is given by

$$\parallel x \parallel = \sup_{(k)} k^{-1} \mid x_1 + x_2 + \ldots + x_k \mid$$

 σ (m): the BK-space of all sequences x such that the Cesàro transform $\{k^{-1} (x_1 + x_2 + \ldots + x_k)\}$ is a bounded sequence, with the same norm as in σ (c_o).

The space σ (co) is called the Cesàro space of the null sequences. Given a sequence space X we write

X' for the conjugate space of X;

 X^{α} for the α -dual space of X;

 X^{β} for the β -dual space of X;

 X^{γ} for the γ -dual space of X;

Xf for the f-dual space of X.

Here, it must be emphasized that X should contain \emptyset for X^f to be defined.

Let X be an FK-space containing \varnothing . Then F^+ (X) will be the set of all those sequences z such that the series

$$z_k = \sum_{k=1}^\infty z_k \cdot z_k \cdot f \cdot (\delta^k)$$
 . The second state $z_k \cdot z_k$

converges for every f in X'. For further notation and terminology, we refer the reader to [Goes and Goes(1970)] and [Wilansky (1984)].

We note that σ (c₀) is normal and hence it is monotone. Therefore,

$$[\sigma_{\alpha}(\mathbf{c}_{\alpha})]^{\alpha} = [\sigma_{\alpha}(\mathbf{c}_{\alpha})]^{\beta} = [\sigma_{\alpha}(\mathbf{c}_{\alpha})]^{\gamma}.$$

Also, σ (c_o) has monotone norm. Hence, by theorem 10.3.12 of Wilansky (1984), it follows that σ (c_o) has AB. Consequently,

$$[\sigma^{-}(c_{o})]^{p} = [\sigma^{-}(c_{o})]^{\gamma}$$

But from [Goes and Goes (1970), p. 97] we have that

$$[\sigma\ (e_o)]^\beta = h.$$

Thus, we conclude that

$$[\sigma (c_o)]^f = h.$$

The object of this paper is to investigate some properties of $\sigma(c_o)$.

RESULTS

PROPOSITION 1: Let X be an FK-space containing \varnothing . Then X contains σ (c_o) if and only if the sequence $\{f(\delta^k)\}$ belongs to h for every f in X'.

PROOF: First, σ (c_o) has AK. Hence, it has AD. Therefore, by theorem 8.6.1 of Wilansky (1984)

$$\begin{array}{l} \sigma \ (c_o) \ \subseteq \ X \ \Leftrightarrow \ X^f \ \subseteq \ [\sigma \ (c_o)]^f \ = \ h \\ \\ \Leftrightarrow \ \{f \ (\delta^k)\} \ \in \ h \ \ \text{for \ \ every \ \ } f \ \ \ in \ \ X'. \end{array}$$

This proves the proposition.

PROPOSITION 2: Let X be an FK-space containing \emptyset . Then X contains $\sigma(c_0)$ if and only if F^+ (X) contains σ (m).

PROOF: Suppose that X contains σ (c_o). Then F⁺ (X) contains F⁺ (σ (c_o)). But, by theorem 10.4.2 of Wilansky (1984) we have

$$F^+ (\sigma (c_0)) = [\sigma (c_0)]^{f\beta} = h^{\beta} = \sigma (m)$$

Hence, F^+ (X) contains σ (m).

Conversely, suppose that $F^+(X)$ contains σ (m). Then, $[\sigma$ (m)] $^{\beta}$ contains $[F^+(X)]^{\beta}$. But $[\sigma$ (m)] $^{\beta}$ = h. Therefore, h contains $[F^+(X)]^{\beta}$. Also, $X^f \subset X^{f\beta\beta} = [F^+(X)]^{\beta}$.

Thus, h contains Xf. But then, since h has AD, it follows that

$$\sigma (c_o) \subset \sigma (m) = h^f \subset X^{ff} \subset X$$

This completes the proof.

PROPOSITION 3: c_o is dense in σ (c_o).

PROOF: Let x be any element σ (c_o). Take the n-th section of x, namely,

$$\mathbf{x}^{[n]} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, 0, 0, \dots\}$$

Now the sequence of sequences $\{x^{[n]}\}$ is in c_o . Because $\sigma(c_o)$ has AK. $x^{[n]} \to x$ in $\sigma(c_o)$ as $n \to \infty$. Therefore, x belongs to the closure of c_o . Hence, c_o is dense in $\sigma(c_o)$. This proves the result.

PROPOSITION 4: σ (c_o) is the largest AD - space X such that $X^{\beta\beta} = \sigma$ (m).

PROOF: Let Y be an arbitrary AD- space such that

$$h = Y^{\beta} \subset Y^{f}$$

so that

$$\sigma_{\alpha}(m) = h^{\beta} = Y^{\beta\beta}$$
.

But $[\sigma(c_0)] = h$. Also Y has AD. Therefore, by theorem 8.6.1 of [Wilansky (1984)], we have

$$[\sigma (c_o)]^f \subset Y^f$$
 implies that $Y \subset \sigma (c_o)$.

This establishes the proposition.

PROPOSITION 5: Weak convergence does not imply strong convergence in σ (c_o).

PROOF: If weak convergence were to imply strong convergence in σ (c_o) we would have by [Wilansky (1984), p. 195]

$$[\sigma (c_o)]^{\beta\beta} = \sigma (c_o).$$

But.

$$[\sigma (c_o)]^{\beta\beta} = h^{\beta} = \sigma (m) \neq \sigma (c_o).$$

This contradiction shows that weak convergence does not imply strong convergence in σ (c_0), and hence the result follows.

PROPOSITION 6: Let $\triangle = \{\delta^1, \delta^2, \ldots\}$. Let $(X, \||\cdot\||)$ be a BK-space with basis \triangle . Then \triangle is bounded away from zero in X, that is,

$$\inf_{egin{pmatrix} (\mathbf{k}) \end{bmatrix}} \|\mathbf{k} \cdot \mathbf{k}\|_1 > 0$$

if $X \subseteq \sigma(c_o)$.

PROOF: Since $X \subset \sigma(c_o)$, we have that X is a BK-space having a topology stronger than $\sigma(c_o)$. Hence there exists an n such that for x in X

$$n \mid\mid\mid_{\alpha} x \mid\mid\mid_{\alpha} \geq \mid\mid_{\alpha} x \mid\mid_{\alpha} q$$

Here, $\|\cdot\|$ denotes the norm on $\sigma\left(c_{o}\right)$. Takin $x=\delta^{k},$ we obtain, for each k,

$$\| \delta \| \| \geq 1/\mathrm{kn}$$

Therefore, \triangle is bounded away from zero in X. This completes the proof.

PROPOSITION 7: The unit disc (closed unit sphere) D in σ (c_o) has no extreme points.

PROOF: Let $z \in D$.Let

$$\mathbf{k}^{-1} \mid \mathbf{z}_1 \, + \, \mathbf{z}_2 \, + \ldots + \, \mathbf{z}_k \mid \, < \, 1$$

for some $k=k_o$. This is possible, because the sequence $\{k^{-1} (z_1+z_2+\ldots+z_k)\}$ is a null sequence. Let $\epsilon>0$ be defined by

$$\epsilon < 1 - k_o^{-1} \mid z_1 + z_2 + \ldots + z_k \mid$$
 In case $k = k_o,$ we take

$$x = z + \varepsilon \delta^{k_0}$$

 $y = z - \varepsilon \delta^{k_0}$

But then

$$\begin{aligned} k_o^{-1} | \mathbf{x}_1 + \mathbf{x}_2 + \ldots + \mathbf{x}_{k_o} | &= k_o^{-1} (|\mathbf{z}_1 + \mathbf{z}_2 + \ldots + \mathbf{z}_{k_o}| + \epsilon) \\ &< k_o^{-1} | \mathbf{z}_1 + \mathbf{z}_2 + \ldots + \mathbf{z}_{k_o} | + \epsilon \\ &< 1 \end{aligned}$$

so that x is in D. Similarly it can be shown that y is in D. In case $k \neq k_0$, we take

$$\mathbf{x} = \mathbf{z} + \varepsilon \left(\delta^{\mathbf{k}_0} - \delta^{\mathbf{k}_0+1}\right)$$
 $\mathbf{y} + \mathbf{z} - \varepsilon \left(\delta^{\mathbf{k}_0} - \delta^{\mathbf{k}_0+1}\right)$

so that

$$|\mathbf{k}^{-1}| |\mathbf{x}_1 + \mathbf{x}_2 + \ldots + \mathbf{x}_k| \le \|\mathbf{z}\| \le 1 \text{ for } k \ne k_o.$$

Therefore, $\|x\| \le 1$, so that $x \in D$. A similar argument shows that $y \in D$. In either case, z = (x + y)/2. So, z is not an extreme point of D. Thus, D has no extreme points in σ (c₀). This establishes the result.

ACKNOWLEDGEMENT

I thank Professor Brian Kuttner for his interest in this work.

REFERENCES

GOES, G. and GOES, S., 1970. Sequences of bounded variation and sequences of Fourier coefficients, *Math. Zeitschrift*, 118, 93-102.

WILANSKY, A., 1984. Summability through Functional Analysis, North-Holland, Amsterdam.