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ABSTRACT

Statistical problems may sometimes reguire the use of ranks perhaps dne to the reason that 
the response can only be ranked but not mesasured. Yet in some other problems, the utilization
of ranked. data may be a desirable device to avoid 
in tlıe Analysis of Variance.

an unjustified assumption of normality, implicit

However, the analysis of ranked data may in turn lead to some complicated coınbinatioral 
problems. The author discusses some of these problems and presents theorems and formulations.

INTRODUCTION

analysis
The usual approach to statistical problems is to use regression

or analysis of variance tvhich in turn involve the application
of normal theory methods such as t-tests and F-tests. Frequently
however, the assumption of normality for the random variables are 
not justified. Many types of industrial, economic or social data are 
nonnormal.

When the data are sufficiently extensive to indicate nonnorma- 
lity, it might be desirable to use non-parametric methods where, ins- 
tead of using the original quantitative values, ranks might be assigned 
to measurements. In this way no assumption whatever is required for 
the distribution of the random variables. The application of ranks to
measurements may thus be 
assumptions.

a desirable device to avoid normality

Furthermore, the use of ranked data may sometimes be ines- 
capable because the random variable is a qualitative characteristic 
which can be ranked but not measured.
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This situation has conseguently forced researchers to develop 
nonparametric inferential methods based upon ranks. Friedman (1937) 
outlined a procedure whereby the analysis of ranked data could be 
employed in place of the ordinary analysis of variance when there 
•were two or more criteria of classification. Friedman’s test used the 
ranks within blocks to test for the main effects of a single factor. As 
Mehra and Sen (1969) showed this procedure causes Information about 
interblock differences to be lost.

Hora and Conover (1984) demonstrated that the limiting null 
distribution of the usual F-statistics for the main efects in the two- 
way layout had the same limiting distribution when applied to ranks.
Their procedure was to rank ali treatments simultaneously without
regard to block mcmbcrsbip or level of treatment. The usual para- 
metric analysis of variance was tben applied to the ranks.

Recently many other publications appeared in this area. Campbell
and SkiUings (1985) discussed a nonparametric multiple comparison
with particular emphasis given to stepwise procedures.

Cuzick (1985) studied asymptotic properties of censored linear
rank tests. Max (1985) gave an interpretation to the expected ranks
of k objects ordered by randomly generated observers.

Acar and Pettitt (1985) introduced a technique based on ranks
of observations which used an approximation to a nıarginal likelihood
of ranks to find predictive probabilities for a future response.

Şalter and Favvcett (1985) studied small sample robustncss and
power of an aligned rank transformation statistics, employing Monte
Carlo methods. Schluchter (1985) exteııded the aligned rank test of 
Hodges and Lehmann (1962) to censored survival data collected in 
matched pairs or randomized blocks.

Henery (1986) started with the average ranks allocated by m 
judges to k objects and used order statistics models to find a value
for the average of Kendall’s (1970) 
and the true ranking.

T between the judges’ rankings

Almost ali of the papers mentioned above discuss procedures that 
require a good background in statistics and a considerable amount 
of computations. To overcome this obstacle, the author has conducted 
studies in the development of some quick and easy to use significance 
tests based upon ranks sums.
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This paper aims at discussing only some of the combinatorial 
problems involved in a rank sum test in a two way classification.

However, to lay the necessary ground work for the analysis, 
first a description of the rank sum test will be given and then the com
binatorial problems analyzed. For consideration’s leading to the de- 
velopments in this study and complementary details, the reader is 
referred to Özkan’s (1975) previous work on this topic.

COMBINATORIAL PROBLEMS RELATED TO RANK SUMS IN 
A TWO-WAY LAYOUT

As stated in the introduction, the data for the problem under
sideration may originate from an experiment where the response

con-
can

only be ranked but not measured. In another instance the original 
data is in the form of measurements but the normal theory methods 
can not be applied because, assumptions of independence of observa-
tions, constancy of variance and normality can not be justified.

To show the basic structure of the problem let us consider the 
following two-way classification, where ali observations are ranked 
simultaneously, using positive integers from 1 to pb, without regards 
to the membership to the first or the second factors.

Table 1. The Structure of a Two-way Layout

Levels of second factor Totals
Tevels of first factor Xj 5^2 ’^bX ;J

Totals

^2

^P

Xı,X.

x„ 

^21

Jpi 
T,

^2

'^22

12

X,'P2
T,

x,i■ıj

X-ij

X,■pj
Tj

ıb

ib

X,■pb
Tb

u.

Up

The first and the second factors have levels Zj, Z
-2 • . ., Xj, respectively. The in the table shows the rank

chosen from positive integers from 1 to pb and assigned to the response 
for the Zjth level öf the first factor and Xjth level of the second factor. 
Ui is the sum of ranks for the Zjth level of the first factor. Tj is the sum

X,î

X X

., Zp and
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of ranks assigned to the Xj th level of the second factor. As an example
Zı might designate the treatments and Xj might show the hlocks in

randomized block design.

It is possible to develop a slippage test based upon the rank sums
Uı and Tj and test the hypothesis Hg, which States that the rankings
are chosen at random from the collection of ali permutation of numhers,
1, . . ., ph and they are independent. The test presented will be power-
ful especiaUy against the altematives that one level of a factor has
larger probability than the other ones of being ranked high (or low),
whilst the other (h-1) [or (p-1)] levels are ranked in a random order.
For the first factor Hg: Uj = U Up tvill he tested against
the p altematives that Ha: Uj is larger than the others, (i = 1, 2, . .
P) or it will be tested against the altematives that Ha: Uı are smaller

a

2 — •

than the others (i = 1, 2, . . ., p).

For the second factor, Hq: Tj = T2 = . = Tt, will be tested
against the alternative that H^: Tj (j = 1, 2, . . . , b) is larger that the 
others or Hg will be tested against the alternative that Ha: Tj (j = 
1, 2, . . ., b) is smaller than the others.

In this paper as stated before, we will only study the combinatorial 
problems related to Uı and Tp

For Uı we have.

b (b + 1) 
2

(2 bp - b + 1) b 
2 (1)

Since for the smallest value of Uı, the first b ranks; from the set 
of ranks ordered in the increasing order of magnitiude, must be summed. 
And for the largest Uj, the last b ranks, from this set would have to be
added up. Thus if U]nıax- designates the largest possible value of U.

U,max- (pb - b + 1) + (pb - b + 2) + .. . + [pb - b + (b-1)]

+ pb = (2pb - b + 1) (2)

And,
P 
S 

i = 1
Ui= - bp (pb + 1) 

2 (3)

which is the sum of numhers from 1 to pb. The average of Uı

Ü = pb (bp + 1) 
2p

b (pb + 1) 
2

(4)
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We also have bounds for the totals of Tj, Tj, T. .,Tb,

P (P + 1)
2 Tj

(2 pb - p + 1) p

2, . .

2 (5)

The smallest Tj is formed by the first p ranks and the largest Tj is the 
total of the last p ranks, in the ordered set.

Tmax- (pb -p + 1) + (pb - p • 2) + .. .4- [pb-p+ (p-1)] +pb

{2 pb-p + 1) (6)

p
S

i = 1
Tj =

pb (pb + 1) 
2 (7)

pb (bp + 1) 
2b

P (bp + 1)
2 (8)T =

The number of ways Uj can be formed is given by

pb
C 

b

(pb)!
b! (pb - b)! (9)

For exanıp]e for a randomized block design consisting of two
blocks and three treatments, the rank totals for blocks can be formed 
in C3Ö = 20 ways and they are, as in Table 1.:

Tj 6 7 8 9

3

10 11 12 13 14 15

Frequency : 1 12 11 2 3 3 3

We can express this in a combinatorial generating function form, that 
is named f (6-3), which shows aU possible rank sums of three ranks.
taken from 1, 2, . .., 6. To express f (6-3) we first write the possible
combinations of six ranks taken three at a time and then show the 
totals as powers of a Symbol, say (a). Thus we have.

f(6-3) = a® -|' aJ -î- a^ a® -j- a^ a^** a^ı -4 4-

4- a^5 a» a® 4' -4 a'** 4* + a^^ -j- a^^ +

+ al^ + al"* (10)

(10) can be put in a more compact form,

f (6-3) = a^ (1 4- a2 4- al + a^) (1 + a + a^ 4- a^ + a"*) 

As other examples we can write

(11)
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f(6-2) a3 (1 + a + -(- a"*) (1 a2 + a4) (12)
f(7-2) a3 (1 + a -|“ a^ a^ a4 -|- a®) (1 a2 + a4) (13)
For the general combinatorial problem of n ranks, 1, . . ., n, taken two 
at a time we State a theorem

Table 1. Combinations, Tj sums and symbols.

Combinations Sums (Tp Symbols

1
2
2
2

3
3
4
4
5 
,3

1
1
1
1
1
2 4

4
5
5

4
5
6
4
5
6
5
6
6
4
5
6
5
6
6
5
6
6
6

9
9

10
11
12
13
15

8
9

10
10
11
12
11
12
13
14

a a^a’ 
a a^a* 
a a^a^ 
a a^a® 
a^a^a* 
a^a^a^ 
a^a^a®

or a®
a’ 
a®
,9a-

10

a a*a^

a a’a'
a^a®a^ 
a^a®a® 
a’a®a® 
a’a^a®
a’a’a'
a^a^a® 
a^a^a^ 
a^a^a® 
a^a^a® 
a®a®a®

î»
»»

ai^
ai2

13

I5

.8a‘
a^

lO

al»

a"
12

11

12

13

ai^

1
1
1

3
3
4
1

2
2
3

2
2

3 6
7

2
2
3

3
3
4
4
5

8

«9

a

a'^a^a'
.^«5^6

a
a

a

a
a
a
a

Theorem 1.

The rank sums for ali possible combinations of ranks 1, 2, 3, . . .,
n, taken two at a time are given by the combinatorial gen er at in g func-
tion shows below in (14).

f (n-2) l + a-)-a2-|-a3 -(-a

+ a4 + aö + '. .. a

Before proving theorem 1 let us

2n-3- (-1)

2n-5- (-1) 
2

,n-l

1 ■ a2

(14)

Note that the first bracket contains terms which
examine the right side of (14).

are
as 1, a, a2, a^. ... To find the last term in the first bracket 
determine the power of the last term given by

multiples of (a),
we must

= a3 [ 2

[2n-3- (-1)"] / 2 (15)
If (15) is zero this means that there is only one term in the first bracket 
and it is equal to 1.
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For n = 2, (15) becomes zero, but it can not take negative values, 
for we must have n > 2, which means that to form combinations 
of two ranks, we must have at least two ranks to begin with. Thus in
general 2 n 4 and

2n-3- (-!)„ 0 (16)

To show (16) let n be even, thcn (-1)“ = 1 and consequently.

2n-3—1 = 2n-4 0

If n is odd (-1)“ -1 and we have 2n-3 -|- 1 = 2n — 2 0.

Thus we have shown that for n 2 there will be at least one term
in the first bracket of (14) and it is 1.

If (15) takes a value other than zero, say k, the first bracket of 
(14) will take the form [1 -|- a a^ -|- a^ + ... -t- a'^] and it will 
contain (k + 1) terms.

The second bracket on the right side of (14) contains a sequence 
of terms which are multiples of a^, as, 1, sfi, a^, a^, ... To find the last 
term in this sequence, we examine the power of the last term

[2n-5-(-l)n-i]/2 (17)

If (17) is zero this means there is only one term in the second
bracket of (14) and it is (1).

The value of (17) becomes zero for the smallest meaningful value
of n = 2. Hence for n = 2 (14) takes the form: f (2-2) = a3 (1) (1)
= a^, which shows that there is only one combination of ranks 1 and
2 and their sum is cqual to 3. This proves (14) for n = 2. (17) can not
become negative since, n > 2 and for n odd, n = i, 1,.. . 

2n-5-l >0

For n > 2 and even, (17) takes the form.

2n-5 1 = 2n-4 0

There are [2n-l-(-l)”] / 2 terms in the first bracket of (14).

Since, its terms start with 1 and contin ue as a, a^, a^, ..., thus the 
sequence contain one more term than the power of the last term. That is

[2n-3-(-l)’‘] / 2 + 1 = [2n-l-(-l)“] / 2 (18)

The number of terms in the second bracket is [2n-l-(-l)“~^)] 14. 
This is because its terms are in the form 1 -f- a^ a'* + a® +... and 
their number is equeal to the half of the power of the last term plus 1.
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(1/2) [2n-5-(-l)"--i]/2 + 1 [2n-l-(-l)"-i] / 4

We will now prove Theorem (1) by the method of induction.

1. We have already shown that (14) is true for the smallest me-
aningful value of n = 2. Next,

2. By assuming the expression shown in (14) to be true for n we 
have to show that it is also true for (n + 1).

Let’s assume that (14) is true for n. Next we increase n by 1 and 
examine the additional combinations of two ranks caused by this
change. The new enlarged set of ranks from which the combinations
of two will be formed is 1, 2, . . ., n, (n + 1). The combinations of 
this set taken two at a time, ’vvill inciude the combinations of the ele
ments of 1, 2, . . ., n taken two at a time plus the (n) combinations
of two of the rank (n 1) and ali the other elements from 1 to n.
Thus the additional combinations and their symbols are shovvn below:

[1, (n + 1)], [2, (n + 1)], [3, (n + 1)] . . . [n, (n + 1)]
a"+2. a'n+3', a"+4. .., a2n+ı

(19)

(20)

Hence, 

f[(n+l)-2] f (n-2) -)- the elements in (20) (21)

(20) can be written as,

a^. a’ (1 + a + a2 + ... + a" 1) (22)

Now (21) becomes),

f[(n + l)-2] = a^ [(1 + a + a2 + ... + a
2n-3-(-l)

) (1 + a2 + a-,4
**

2n-5-(-l)
I 2 ) 4- n-1 (l + a + a2+ . . . + a"-l)]

* t

For n, odd

2n-3-(-l)”

(23)

2n-3 + 1) 
a' 2 a""l (24)

a^ 4“ • ■ • + a

a 2

a

Thus in (23) the expre8sion.s shown by (**) and (*)

1 + a + a2 + . .. + a
2n-3-(-iy 

2
and

(25)
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1 -F a + a2 . .. 4- a"~l 

become equal, that is (25) takes the form

1 a j- a - a2 ... -|- a"“l

Furthermore for n odd

(26)

(27)

[2n-5- (-!)«-!] 12 = n-3

Thus (23) can be written as.

f [(n + l)-2] a3 (1 + a + a2+ ... + a“-i).

(1 + a2 + a4 + . .. + a“~3 a*^-!)

We substitute (n -|- 1) for n in (14) to 

(28)

see its form for (*1 + 1)
ranks. First we caleulate the following powers, where (n + 1) is even, 
since n is odd.

[2 (n + 1) -3- (-1)"+!] / 2 = n-1

[2 (n + 1) -5- (-1)"] 12 = n-1

(29)

(30)

Hence (14) becomes identicaUy equal to (28) and this proves the 
truth of (14) for n odd. No w we have to prove it for n even. For n even 
(15) becomes (n-2) and (17) also becomes (n-2). Therefore (14). the 
truth of which we assume for (n) takes the form,

f (n-2) = a3 (l-|-a-|-a2 a“~2) (I ^a^^a^ -)-•••+ a" 2) (31)

Now examining (22) which shows the additional tems caused by
going from n to (n + 1), we note that the number of terms is equal
to n, and by assumption n is even. We can therefore show the terms in 
(22) in two groups, each having n / 2 terms, as

a3. a^-l (1 + a2 -f- a4 • • • + a’' 2 | a + a^ -|- a^ -|- ... + a“ 1)

n I 2 terms

We can also express (32) as

n / 2 terms (32)

a3 (1 -f- a^ ... + a““2) (a“-l a”) (33)

Combining (31) and (33)

f [(n-+ l)-2] = a3 (l + a + a2 +...+ a”-2) (1 + a2 + a4 +...+ a®-2)

l“-2) (a"-l + a")+ a3 (1 -|- a2 a"* + ... + a’

= a3 (1 a + + • • • + a” 2 -|- a’' 1 a") (1 +

+ a4 + ... + a"-2)

a2

(34)
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We substitute (n + 1) in (14) where (n -|- 1) is odd, since n is even by 
assumption. The powers are calculated first

[2 (n + 1) -3- (-1)”+!] / 2 = n 

[2 (n + 1) -5- (-1)“] / 2 = n-2

(35)

(36)

We have, 

f[(n + l)-2] = a^ (l+a+a2 + ...+ a”) (l+a2+a4 + ... + a“-2) {31)

But (37) is identically the same as (34). This completes the proof 
of Theorem 1.

The combinatorial generating functions are needed to calculate
the percentage points for the slippage tests. As a simple demonstration
consider the case of dratving two ranks at random from ranks 1, 2, 
. . ., 6. The possible combinations and their sums are given by (14).

f(6-2) 4 (1 4- a A a2 a-’ 4“ a"*) (1 + a2 + a4) (38)a

or in a slightly different form,

f (6-2) = a^
T.

S ıı2'-- 
z = 0

(39)

In this product of two series each term has a coefficient of 1. For a 
rank sum of Tj we can write.

= Tj - 3 - 2z
(40)

(41)

The series in (39) have terms only for

y, z > 0 and y, z integers

(42)

(43)

an
a

The value of y in (41) can be substituted in (39) thereby resulting 
expression only in the variable z. But it seems better to conduct 
search as shown below.

Thus, using (38), the number of ways of getting a Tj = 8 can be
calculated. We start with z = 0 and from (41) we get, y = 8—3 = 5. 
But y=5, according to (42) itiş not permissible. Hence it is not possible
to form a rank sum of 8 by taking z = 0. Next we take z — 1, from
(41), we obtain y = 8-3-2 = 3, it is permissihle. Thus we have obtained
One combination to give a rank sum of 8. In the third step we take

2, and using it in (41), we obtain y = 8-3-4 = 1. This value of
y is also permissible. Thus we have obtained another combination to
z

y

Tj — 3 -|- y + 2z

y

y < 4 , z 2
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to give a rank sum. of 8, next we take z 3 and from (41) y = -1
which violates (43), and we stop here.

Therefore, we arrive at the conciusion that the probability of 
getting a rank sum of 8, in a random assignment of two ranks drawn 
from possible choices of 1, 2, .. ., 6 is 2 / C62 = 2^1 15.

In a problem where the number of combinations is largc, it would 
be practically impossible to enumerate ali possible rank sums and then 
calculate the probability of getting a particular one. Thus, a feasible 
solution to the general problem seems to be along the lines shovvn 
above.

If the possible choices of ranks are extended to incinde 1, 2, . . ., n, 
taken two at time, the combinatorial generating function takes the form.

' ı
S 

y = o

’ m
S 

z = o
f (n-2) a^ ay a2z (44)

where l = [2n-3- (-1)“]/ 2, m [2n-5- (-1)”-!] I 4 (45)

From (44) we infer that the maximum possible rank sum of two ranks 
is given by

Tmax — 3 + [2n-3- (-l)’i] I 2 + [2n-5- (-1)"-1] I 2 = 2n-l

Thus Tj < 2n-l. For y and z we can also impose the following rest- 
rictions

y, z > 0

y <[2n-3- (-!)«]/2

z < [2n-5- (-!)"-!] / 4

(46)

(47)

(48)

In this problem, if it is required to find the possible ways of forming
a particular tank sum Tp, we again start vith z = 0 and obtain y =
To -3-2z. If it is permissible with respect to (46) and (47), then it 
means that we have obtained a combination to give a rank sum of To-
At the next step we take z = 1 and continue untü ali the possible ways
of getting a rank sum of Tg are exhausted. Not e that this method of
search usually involves only one tail of the symmetric distributions
of the rank sums, and can be carried out in a reasonable amount of 
time as the applications show.

We continue our examples with the case where there are repli- 
cations. Supposing the experiment of our prevoius ex0mple, is rep-
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licated R times. Thus the combinatiorial generating function will rake 
the form.

f(n-2, R) l^a^ (1 + a + a2 -|- ... -|- a
2n-3- (-1) 

2
,n

)•

(1 -|- -j- a'* + ... + a
2n-5- (-1) 

2
,n-ı
)] (49)

R

In this form f (n-2, R) is not suitable for our iterative procedure 
for determining the number of combinations for a particular rank sum. 
We therefore put it in a different form to meet our requirements.

R R
f (n-2, R) = a3R 1-aP

(50)

■vvhere p = [2n-l- (-1)“] I 2 and w = [2n-l- (-!)“-!/2 (51)

We can also express (50) using the binomial series cxpansions 
given below;

X R
(l-aP)R =

00
s 

x=0
(-1) ( )

X
aPx (52)

(l-a"')R = S 
y=o

y R
(-1) ( ) 

y

(l-a)-R =
00
s

Z=o

R+z—1 
( a^ (54)

(l-a2)-R= oo

s
V=O

R+v-1
a2v (55)(

z
)

)

The series in (52) and (53) have finite number of terms for R a 
positive integer, and R is a positive integer in our case. The series 
in (54) and (55) are convergent for a- 1. But this is quite immaterial1

in our case. Because we are only interested in the powers of a’s resulting 
from the product of these series, and we pay no attention whatsoever
to the series heing convergent or divergent.

Now a search for a particular rank sum Tj will be conducted in 
(50), tvhere series expansions shown in (52), (53), (54) and (55) have 
been substituted. Note that there are four variables x, y. z and V and
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they ali have to be nonnegative integers, and 
X, y < R.

we must also have

For a given Tj we have

Tj = 3R + (x/ 2) [2n-l- (-l)“]4-(y/ 2) [2n-l- (-l)“-i] +z+2v (56)

The sum of the coefficients of terms containing a particular (a^i) 
will be calculated from (50).

For finding the number of ways of getting a particular rank sum 
Tj, a search for ali permissible values of x, y, z and v must be conducted. 
This procedure will be demonstrated by examples in the subsequent 
discussions. We now State another theorem that might be useful in 
determining the combinatorial generating functions.

Theorem 2. The rank sums for ali possible combinations of ranks
1, 2, 3, . . ., n, taken three at a time, 
binatorial generating function:

are given by the foUovving com-

f(n-3) ai+3 / + + ••• +»
2i - 5 + (-1)1

1 + a^ 4- a^ + a^ + ..
2i - 7 + (-1) 

2
|1-1

(58)

n
S

i = 3

. a

2

Avhere i = 1, 2, ... positive integers. We will prove (58) by induction.

1) We wiU assume (58) to be true for n 
will also be true for (n + 1).

and then prove that it

For n, (58) takes the following form:

f(n-3) a*! [ a^ (l | a + a2) + a» (l + a + a2) (l + a2) + . . .

1 + a + a2 . . . -4 a'
2n - 5 + (-1)“

1 + a2 4- -|- ... 4" a'
2n - 7 + (-1)“~1

(59)

. .. + a”+3 2

2

If we now increase n to (n -|- 1) and form combinations of three, 
these combinations vdll contain ali the combinations of three for n, 
plus the combinations of the rank (n 4“ 1) with the combinations of
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two taken from ranks 1, 2, . .n. Hence the additional combinations
of three ranks caused by gioing from n to (n 4“ 1) are equal to

a“+l f(n-2) or using (14) for f (n-2),

a«+l f (n-2) a(n+i)+3 I ]_ _j_ a _|_ a2 ... _|_a
2(n+l)-5 +(-1)^+1

1 + a2 + a4 a'
2 (n 4- 1) - 7 + (-l)(”+i)-ı

(60)

where v^e have used, -(-1)“ (-1)“+1 and -(-1)“"1 = (_l)(n+l)-l

2

2

Now summing (59) and (60), we get the expression for f [(n 4- 1)“3] 
f [(n + 1) -3] = a6 + a2 (1 4- a + a2) + a» (1 + a 4- a2) (1 + a2) + ...

+ a“+3 + a + a2 + ... 4- a
2n - 5 + (-1)°

1 + a2+ a-* + . .. + a + a("+l)+3 (1 + a

+ a2 4- ... 4- a'
2 (n + 1) - 5 + (-1)“+1

1 4“

+ a'* + • • • + a'
2 (n + l)-7 4-(-l)<“+0~^

(61)

2n - 7 4- (-l)^^l
2

2

2

2

But (61) is exactly what we would get if we had used (n 4- 1) in (58).
To complete the proof of Theorem 2,

2) We have to prove that (58) is türe for the smallest meaningful
value of n, which is 3 in this case. We know that for n = 3, that is
for ranks 1, 2, 3 the rank sum of three ranks will be 6, and this is the 
only sum of three ranks we can get in this case. Applying (58)

3
f (3-3) = L

i = 3
a3+3 (1) (1) a^

This completes the proof of Theorem 2. Replications are treated the 
same ^vay for f (n-3) as was done for f (n-2). For R replications of the 
experiment the combinatorial generating function is given by the 
R th power of f (n-3).
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f (n-3, R) = [f (n-3)]R (62)

Theorem 1 and 2 would be useful in determining the combinatorial 
generating function for n ranks taken two or three at a time. However 
we also need a morc general theorem for obtaining the combinatorial 
generating function for any given situation.

Theorem 3. The combinatorial generating function of n ranks 
taken k at a time is given by the following recurrence relation

f(n-k) =
n-1 
S

1 = k-1
(63)

We will prove Theorem 3 also by induction.

1) Assuming (63) to be true for n we will show that it is also true 
for (n !)• f [(n 4* l)-k] is the sum of f (n-k) and the new additional
combinations caused by increasing n to (n 4“ !)• But the new com-
binations wiU be formed by the combinations of ranks 1, 2,3, .. ., n,
taken (k-1) at a time and the rank (n 4- !)• That is

n-1
f [(n + l)-k] = S 

i=k-l
ai+ı f [İ-(k-l) ] + ı”+l f [n-(k-l)] (64)

ai+1 f [i-(k-l)]

a

The first term ıvith the summation sign on the right side of (64) is
assumed valid by assumption and is given by (63). The second term
shows the additional combinations caused by increasing n to (n 4- 1).
But the second term can also be taken under the summation sign by 
increasing the upper limit of summation from (n-1) to n. Hence,

f[(n+ l)-k] =
n
s

l=k-l
ai+1 f [i-(k-l)] (65)

But (65) is precisely the sanıe expression that would result if (n 4- 1) 
were used in (63).

2) Next we have to prove that (63) is true for the smallest mean- 
ingful value of n = k.

From (63),

k-1 
f(k-k) = S 

l=k-l
ai+ı f [i-(k-l)] f[(k-l) - (k-1)] (66)= a

But if tve take (k-1) of the 1, 2, . .(k-1) ranks, the rank sum will be.
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f [(k-1) - (k-1)] = a'^(’^-n/2 

and from (66)

a^^

(67)

f(k-k) . a’^ (’^~’)/2 = ai^ (k+l)/2 (68)

But the sum of k ranks 1, 2, . . k is k (k -j- 1) / 2 and its Symbol in
our notation is, 

ak (k+l)/2 (69)

(68) and (69) are identical. The proof of Theorem 3 is completed.

CONCLUSIONS

Note that by the use of Theorems 1, 2 and 3 the combinatorial 
generating functions for any two way layout problem might be obtained.
In this process, Theorems 1 or 2 might be useful in preparing the start- 
ing combinatorial generating functions for the application of the re- 
currence relation given in Theorem 3.

In any significance testing, the interest is usually in the taü areas 
of the distribution of rank sums. Thus, instead of studying ali the terms 
of the generating function for a large problem, it would be sufficient 
just to look at the tail probabilities. For this reason it would be better 
to put the combinatorial generating functions in a special form. However, 
due to shortage of space, this topic will be discussed by the author in 
a different paper in the future.

It should also be noted here that the application of Theorems 1, 2, 
and 3 are by no means limited to the rank sum problems in a two way 
layout. In fact, they might be useful in any area tvhere combinatorial 
problems of similar nature might arise.
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