CURVATURE OF SPHERES IN MINKOWSKI ($n+1$)-SPACE

E.M. ELKHOLY

Mathematics Department, Tanta University - Egypt.
(Heceived: 4 Februaruy 1987. Accepted: 20 May 1987)

ABSTRACT

In this paper we show that tbe hypersurfaces $S(x)$ in Minkowski $(\mathbf{n}+1)$ - space $M^{n_{+1}}$ given by:

$$
\mathrm{x}_{1}^{2}+\cdots+\mathrm{x}_{\mathrm{n}}^{2}+\alpha=\mathrm{x}_{\mathrm{n}-1}^{2}, \quad \alpha \neq 0,
$$

carry induced Riemannian metrics which is positive nefinite in case $\alpha>0$ and negative definite in case $\alpha<0$. Also the curvature of $S(\alpha)$ is constant and equal to $-n(n-1) / \alpha$ for $\alpha>0$ and n ($\mathrm{n}-1$) $/ \alpha$ for $\alpha<0$.

THE MAIN RESULT

The "positive spheres" $S(\alpha)$ in Minkowski $(n+1)-$ space M^{n+1} is given by:

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbf{R}^{n+1}: x_{1}^{2}+\ldots+x^{2} n+\alpha=x^{2}{ }_{n+1}, \alpha \neq 0\right\}
$$

This is a hyperbolid of revolution of two sheets diffeomorphic to $R^{n} \times S^{0}$. Thus $S(\alpha)$ is a smooth hypersurface in R^{n+1}. The Lorentz structure on $\mathrm{R}^{\mathrm{n}+1}$ induces a symmetric bilinear form on the tangent space $T_{x} S$ to S at each $x \in S$. This form h can be calculated as follows:

Without loss of generality we can restrict attention to the positive spheres S_{+}where $x_{n_{+1}}>o$. and $\alpha>o$. There is a coordinate system on S_{+}given by projection to the first n coordinates in R^{n+1}, and

$$
\begin{aligned}
& d s^{2}=d x_{1}{ }^{2}+d x^{2}{ }_{2}+\ldots+\mathbf{d} \mathbf{x}_{\mathrm{n}}{ }^{2}-\mathrm{d} \mathrm{x}^{2} \mathrm{n}_{+1} \text {, but } \\
& \mathbf{x}^{2} \mathrm{n}_{+1}=\mathrm{x}^{2}{ }_{1}+\mathrm{x}^{2}{ }_{2}+\ldots+\mathrm{x}^{2}{ }_{\mathrm{n}}+\alpha, \text { and hence }
\end{aligned}
$$

$$
d x^{2} n_{+1}=\left(x_{1} d x_{1}+\ldots+x_{n} d x_{n}\right)^{2} / \Delta
$$

where

$$
\Delta=x^{2}{ }_{1}+\ldots+x^{2} n+\alpha
$$

Now ds ${ }^{2}$ takes the form

$$
\begin{aligned}
d s^{2} & =\sum_{k=1}^{n} d x^{2}{ }_{k j}-\frac{1}{\triangle} \sum_{i, j=1}^{n} x_{i} x_{j} d x_{i} d x_{i} \\
& =\sum_{i, j=1}^{n} h_{i j} d x_{i}
\end{aligned}
$$

thus the matrix H_{X} representing the form h_{x} for any $x \in S$ is given by

It is not difficult to show that $\left|\mathrm{H}_{\mathrm{X}}-\lambda I\right|=0$ has n positive eigen values, i.e., the metric h_{x} has signature n and hence is a positive definite.

Similary in the case $\alpha<0$, the induced Riemannian metric will be negative definite.

To calculate the curvature we consider first the case $n=2$. In this case the covariant and contravariant components of the form h are:

$$
\begin{aligned}
& h_{11}=1-\frac{\mathrm{x}^{2} 1}{\Delta}, h_{12}=h_{21}=-\frac{\mathrm{x}_{1} \mathrm{x}_{2}}{\Delta}, \mathrm{~h}_{22}=1-\frac{\mathrm{x}^{2}{ }_{2}}{\Delta}, \\
& h^{11}=\frac{\alpha+\mathrm{x}^{2}{ }_{1}}{\alpha}, h^{12}=\mathrm{h}^{21}=\frac{\mathrm{x}_{1} \mathrm{x}_{2}}{\alpha}, \mathrm{~h}^{22}=\frac{\alpha+\mathrm{x}^{2}}{\alpha}
\end{aligned}
$$

Also the affine connections $\Gamma^{c}{ }_{a b}$ have the components:

$$
\begin{aligned}
& \Gamma_{11}^{1}=-\frac{x_{1}\left(\alpha+x_{2}^{2}\right)}{\alpha \Delta}, \quad \Gamma^{2}{ }_{11}=-\frac{x_{2}\left(\alpha+x_{2}\right)}{\alpha \Delta} \\
& \Gamma^{1}{ }_{12}=\Gamma^{1}{ }_{21}=\frac{x^{2}{ }_{1} x_{2}}{\alpha \triangle}, \quad \Gamma^{2}{ }_{12}=\Gamma^{2}{ }_{21}=\frac{x_{1} x^{2}{ }_{2}}{\alpha \Delta}
\end{aligned}
$$

$$
\Gamma_{22}^{1}=-\frac{\mathbf{x}_{1}\left(\alpha+\mathbf{x}^{2}\right)}{\alpha \triangle}, \quad \Gamma_{22}^{2}=-\frac{x_{2}\left(\alpha+\mathrm{x}^{2}{ }_{1}\right)}{\alpha \triangle} .
$$

By using the formula,

$$
\mathbf{R}_{\mathrm{ab}}=\frac{\partial \Gamma_{\mathrm{ab}}^{\mathrm{c}}}{\partial \mathbf{x}^{\mathrm{c}}}-\frac{\partial \Gamma_{\mathrm{ac}}^{\mathrm{c}}}{\partial \mathbf{x}^{\mathrm{b}}}+\Gamma_{\mathrm{ab}}^{\mathrm{d}_{\mathrm{b}}} \Gamma_{\mathrm{dc}}^{\mathrm{c}}-\Gamma_{\mathrm{ac}}^{\mathrm{d}} \Gamma_{\mathrm{db}}^{\mathrm{c}}
$$

for the Ricci tensors, it is easy to check that:

$$
\mathbf{R}_{11}=-\frac{\left(\alpha+x^{2}\right)}{\alpha \triangle}, R_{12}=\frac{x_{1} x}{\alpha \triangle}=R_{21}, \mathbf{R}_{22}=-\frac{\left(\alpha+x^{2}\right)}{\alpha \Delta},
$$

and hence the curvature of S , will be

$$
\mathrm{R}=-2 / \alpha
$$

Now, for $n=3$, the Ricci tensors are given by:
$\mathbf{R}_{11}=-\frac{2}{\alpha \Delta}\left(\alpha+x^{2}+x^{2} 3_{3}\right), \mathbf{R}_{12}=\mathbf{R}_{21}=\frac{2 \mathbf{x}_{1} \mathbf{x}_{2}}{\alpha \triangle}$
$\left.R_{22}=-\frac{2}{\alpha \triangle}\left(\alpha+x^{2}+x^{2}\right)^{2}\right), \quad R_{23}=R_{32}=\frac{2 x_{2} x_{3}}{\alpha \triangle}$,
$R_{33}=-\frac{2}{\alpha \triangle}\left(\alpha+x^{2}+x_{2}^{2}\right), \quad R_{13}=R_{31}=\frac{2 x_{1} x_{3}}{\alpha \triangle}$,
and hence $R=-\frac{(3)(2)}{\alpha}$. This can be generalized for the n case for the hypersurfaces $S(\alpha)$ where $\alpha>0$ and once again for $\alpha<0$ to have

$$
\mathbf{R}=\left\{\begin{array}{cc}
n(n-1) / x, & n \geqq 2 \\
1 / 0, & n=1
\end{array}\right.
$$

where the curvature R is negative for $\alpha>0$ and positive for $\alpha<0$.

REFERENCES

HAWKINS, S.W. (1973). The Large Scale Structure of Space - Tine, Cambridge University Press.

WOLF, J.A. (1967). Spaces of Constant Curvature. McGraw - Hill, New York,

