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ABSTRACT

In this paper -we provide a study of d-dimensional Einstein manifolds, in particular we
classify all 4-dimensional Einstein manifolds (up to local isometry) which have the property that

the metric depends on only one coordinate.

Kasner (1923) considered the sclutions of the Einstein- equations
involving functions ¢f enly one variable. His calculations are rather
long and purely algebraic ir nature. In this paper, by using a theorem of
Singer and Therpe (1969), we provije zn alternative approach to find
all 4-dimensional Einstein manitolds (up to local isometry) which have
the property that the metric depends on only one coordinate. To do
this we consider the metric

3
ds? = dt* + X I[3t) dxi?
i=1
where t is the arc-length and the following orthogonal vecter fields:
0 .
T = e X, X, and X3 such that | T| = 1, | X;| = L(t), i=1,2,3.
Then, for the covariant differentiation v, we ha e
in X Xg. = 0, in X;. T =0, Vp X;i. Xj; =0 (1#])
Vx, X;. T = —ULl';, Vy; T.X; = Ul'y,

U
I

so that in Xi = - LI'iT, in T = Vp X = X, in X =0 (i+#j))

and these determine the curvature as follows:
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R

x%; Xg = 0 (1, j, k are distinct),
Ryix; X L) = A = Ll
XiXj oy = — ij (- WiT) = I; i, inxjxixj B L L L D

"5 e Uy o
RXin T = in (7:‘ k]) - ij ('l—ll— Xl) = OJ

Ry Xi = Vi (ll_] Xi) + Valil'y T (= U212+ LE7) T=L'T,

Rxrx1 = L, Bx;r Xj = in (—ZTJ—- X,) =0 (1 # j).

Thus the sectional curvatures are

B x Y LN - . 1
6ij = — B XXX; Uil' Rx,Tx,T I
i

o i
]XIAX} |2 - lilj » 01T = ]XlATEZ - L 3(1)

Now by the Theorem 1.4 of Singer and Thorpe (1969), the manifold M

with the above metric is Einstein if and only if

l/' /. l//
_ll_J- — K (i, j, k are distinct). (2)
Lil; Iy

Note that

2

. l/k ) B l//klk _ lklz B l//k o ( l!k )
Ix - l]2( o Iy Iy

This and (2) show that if

r r r
(u, v, w) = ("Tll’"“ s 'lzi s ‘TE‘)
then
(u, v, w)) = (vw —u2, uw - v2, uv — w2}, (3)

The system of non-lincar differential equations in (3), namely, the
system

Vo= oaw — w2 4)
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turns out to be much more easily solved than we might expect. This is
because geometry tells us that each (u, v, w) which satisfies (3) is
tangent to the surface uv--uw4-vw=c (c=constant), one reasen for
this is, since —uv, —uw and —vw denote the sectional curvatures, an
Einstein manifold M must have scalar curvature —(uv +uw--vw) equal
to some constant provided dim M = 3. Therefore the condition uv-|-uw
+vw=c reduces the system (4) from 3 -space to a surface. But further,
since vw=c—uv-uw we can write

vw —u2 = ¢ ~u{u + v -+ w),
similarly aw — V2 = ¢ -+ (u + v 4+ wy,

uy —w2=1¢ - w (u + v + w).
Thus

(1]71‘47\‘7)/ = (C)c}c) - (ll+v-l\—w) (u‘,\',‘vv);

which says that the tangent vector (u,v,w)’ is in the plane through
(0,0,0), (1,1,1) and (u,v,w), and the solution curve is the intersection

of this plane P and the hyperbeloid uv4-uw-+ vw=c.

This argument shows that there is exactly one sclution through
each peint ¢f IR4 and so we can find them. We now state the following

THEOREM: Let M be a 4-dimensional Einstein manifold whose
metric depends on only one coordinate, that is, M has the following
metric

ds2 = dt2 - 121 (t)dle - l22 (t)dX22 -+ l23 (t)dx23.
Then M is one of the following four types:

i) L (t) = e (a, ¢i constants) i=1,2,3 and thus M is of constant
sectional curvature (bence it is lccally symmetric).
.. a;+1/3
ii) li(t) = ei(t+k) it where ¢; > 0, k oare constants and
aj+ar+az=0, a;2-+a2,--a2;=06. The sectional curvatures are

(ai+1) (aj+1)
- 9 (t4k)2

Gij =

1:J: 1:2>3> 1:#.}‘

For (aj,az,a3) = (2,-1,-1) (or its permutations) M is flat.
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. a./3
iii) Li(t) = ¢; (sin 3t)1/3 (csc 3t-cot 3t) i~ where ¢; > 0 constant
and a;’s are as in (ii). The sectional curvatures are

1

oij = — & [L—s 4 (aita) +/1 — 82 + aay]

where s = sin 3t

iv) 4i(t) = ¢y (sinh 3t)1/3 (tanh 3t/2)ai/3 where ¢; > O constant

and ai’s are as in (ii). The sectional curvatures are

1
Gijj =~ — m‘z—)ﬁ (1 "{‘ 282 + aj) (1 ‘{“" 2s2 ‘*‘“ a])

where s=sinh(3t/2). For (aj,asa;) = (2,-1,-1), M is complete and
analytic.

Procf: i) If the solution of (4) is constant, i.e. if the solution is on
the diagonal of the cone (to which the hyperboloids are tangent), then
we bave u'=v'=w’'=0 and from (4) it follows that (u,v,w) = (a,a,a)
(a==constant) is a solution. In this case 1;=—=e*°i (¢c;=constant), and
thus we obtain manifolds with constant sectional curvature —a2. Since
constant sectional curvature implies locally symmetric, these manifolds
are locally symmetric.

ii) Note that by (4) and the fact that uv +uw-vw=c, we have
(0 4+v4w)2 = u2+v24+ w242 (uvFuw-Fvw) = c— (0’ +w') + 2¢
= 3¢ — (W4~ +w).

Now if ¢ = 0, then we obtain u-+v-+w=1/t+k (k=constant) and
from u'=c-u(u-+v+w) we get u=a/t+k where a is constant. To
determine a, we consider a vector V = (ay, ay, a3) such that

a; + ay + a3 = 0
a2y + a2 + a2 = 6. ()
Then
(W) = ( a;+1 a,+1 a3-1 )
s 3k’ 3N 3(4H

is a solution of (4) and it is on the come. In this case [i(t) =
¢ (t+k)@+1)/3 where ¢; > 0 constant, and the sectional curvatures are
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(a+1) (a; 1)
KICE

Gij — —

Lj=1,2,3 and i+~j.

As t approaches -k, the curvatures approach infinity, provided a;7=-1£a;.
We note that the only integer soluticns of (5) are (-2,1,1) (and its per-
mutations) and (2,-1,~1) (and its permutations) in which case s;; become
zero, so we obtain flat manifolds locally isometric to IR4.

iti) If we let V = (aj,az,a3) be as in (5), then (u,v,w) ==
cot 3t (1,1,1)-csc 3t V is a solution curve which is outside the cone. In
this case we have

li = ¢; (sin 3t)"/3 (esc 3t — cot 3t)2i/3 where ¢; > 0 constant.
If we let s = sin 3t, then the sectional curvatures become

1 —— .
oij = — — [1-82 4 (aitay) v/1 -2 4 aiay] (1.6)

and as t tends to infinity, s does not approach a number, so the curvatures
do not approach a specific number.

iv) Let V = (aj,aya;) be as in (5). We note that (u,v,w) =
coth 3t (1,1,1)-esch 3tV is also a solution curve which is inside the cone.
In this case

Li(t) = ¢; (sin 3t)1/3 (tanh 3t/ 2)i/3

and the curvatures are

1
4s2 (14-s2)

G'ij:—

(1 4+ 282 + a;) (1 + 252 + ay)

where s = sinh (3t/2). As t tends to zero, s tends tc zero and the cur-
vatures approach infinity, provided a;7~-174a;. If aj=-1=aj;, that is,
ir. the special case where (aj,a5,a;) = (2,-1,-1), as s tends te zere gy —>
-3 /2, and 6,3+ 0. Moreover as s tends to infinity all curvatures approach
~1. Therefore this is the only case where for all critical values of t
the sectional curvatures are finite numbers. We will now shew that the
manifold M with these sectional curvatures is complete and analytic.

For t > 0 we consider the mapping of M to IR4-{0} given by

t .
(t,x1,X2,%3) > (t cos axy, t sin axy, X,, X3).
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We determine a so that we can extend the mapping to IR4 2nd make it a
local isometry,

Observe that if g is 2 smooth frnction, then

g (YlaYZ,Y3:Y4) = g (t cos axj, t sin axjp, X, X3)
and so
og 0 . ¢
2 = cos ax; ,\g L sin axg
7t 6Y2
g : % %8
= -— at sin ax; —— - at cos ax;
0X1 oy oys
(6)
g 98
oxy  Oys
g g
8X3 o 3Y4
Frem (6) we obtain the following vector fields
sin ax
Y, = cos ax;T - — 1L X4
at
. cos ax
Y, = sin ax,T + — 1 X3
- at
Y3 = Xz, Y4 = X3.
Note that we have
. Ly .
Y;.Y; = cos? ax; + i sin? axq
a
. L .
Y. Y, = sin ax;.cos ax; — —) sin ax; . cos ax;
a
(M

2
. I \°
Y, Y, = sin? ax; (—i) cos? axy
a

YiY; = Yi.Y, = Y,.¥; = Y, Y, = Y;.Y, = 0.
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If we choose a, so that

im AL 1 (8
t>0 2t

we then make Yy, Y, Yy, Y, orthogonal at t = 0. From (8) it follows
that a = 3 x 2-%/%;,.

Since

Y2 Y1
—S————, COS ax; =— —,
Vyi2+y2? SRVACEE P

I, = ¢21/3 (1 -+ s2)1/6

sin axy =

and s = sinh (3 t/2), (7) becomes

2 4 2 . 34/ v +y?

Y, Y, — ¥4 = ¥ 2 Y1 2
o V21+y2 + 9 (yut+yn)? sinh 2

coshl/3 v Y;1+Y22

4 / . 3v y21ty?

Y. Y, - Y2 % yiy2 ginh2 -~V 17r2
e Y21+y% 9 (yhtyh)? 2

2 2

coshl/3 ’________3\/}’21*{‘}’ 2 9)

y22 4 y2 . 3¢ yit+yh

Y. V)= ——= _— he SV T2
= Sy T Y e 2

coshl1/3 _3..\/_— _ .}.._r_221._+ 22

If we consider the power series expansions

3 2 4
sinhu:u—)—%— + ..., coshu = 1—,L111— + —u——+

so that

u2

4
gsinh?2 u = w2 + —%— + ..., coshi3u = 1 + . + ...
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the functions in (9) take the form

Y,.Y, =

YZ-YZ =

y21+v%

hias! L4 M)
Yty 9 (YatyR)?
27
= (Yzl‘f“yzz)2+---] [1 +
yiya 4 YiY2
y21+y22 9 (y2it+yn)?

16 (Y21 +y2)2+.. ] [1 +

¥ TR Y21
9 (yht+y2)?

—%—; (y21+y22)2+---] [1 + =

9
[T (y2i+y%) +

- (y21+y%)+-.. ]

9
[T (y21+vy2) 4+

3
5 (y21+v%) +]

9
['4‘ y3+y2) +

(yh+y2)+.. ] (10)

Note that these functions are defined and real analytic in IR4, there-
fore the manifold M, with the new metric, is real analytic.

We now shcw that M is complete. For this we compare the lengths
of the coordinate vector fields, that is, compare 1, 1, I, lyand 1, at, 1,1
respectively. Under p.,, X; has the length at. This can be seen from the
following 2-dimensional illustration.

td

Y PR Sy

Fig. 1 2 - dimensional illustratin of
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Note that at is approximately (2/3) as=c;21/3s (s=sinh 3t/2,
a=3x272/3¢;) and so lj==¢c21/3s (1+s2)1/6 = ¢’y at, where ¢'1=1 is
some constant. Also ly=I;=¢,21/3 (1482)1/3 = ¢;21/3 provided cp=1.
Now let ¢=min(c,21/3, ¢’';). Then ¢=1 and if V==Xa;X is a vector,

V| = v/Za2? = v/ Za2? = ¢ || V]|

where || .|| is the euclidean norm of IR4 and |. | is the norm on M.
Therefore the distance funsction on M is bigger than or equal to the
euclidean distance in IR4. From this fact it follows that any Cauchy
sequence in M is a Cauchy sequence in IR4. Since IR4 is complete, every
Caunchy sequence converges. Therefore M is complete.
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