Commun. Fac. Sci. Univ. Ank. Series A_{1} V. 36, pp 41-42 (1987)

CORRIGENDUM

HÜSEYIN BOR

Department af Mathematics, Erciyes University, Kayseri, Turkey

In our previous paper [Bor (1984)], the conditions (i) (c) and (i) (d) are redundant, because these conditions can be obtained from the condition (i) (a), Lemma 1 and Lemma 2. In fact, we shall first show that the condition (i) (c) is satisfied. Since

$$
\begin{align*}
& \gamma_{\mathrm{n}}\left|\triangle \lambda_{\mathrm{n}}\right|=\mathrm{O}(1) \text { as } \mathrm{n} \rightarrow \infty, \text { by Lemma 1, we have } \\
& \left|\triangle \lambda_{\mathrm{n}}\right|=\mathrm{O}\left(1 / \gamma_{\mathrm{n}}\right)=\mathbf{O}(1) \text { as } \mathrm{n} \rightarrow \infty . \tag{1}
\end{align*}
$$

On the other hand, since

$$
\begin{align*}
& \left(\frac{\mathbf{P}_{n-1}}{\mathbf{P}_{n}}\right) \gamma_{\mathrm{n}}\left|\Delta \lambda_{\mathrm{n}}\right|=\mathrm{O}(1) \text { as } \mathrm{n} \rightarrow \infty, \text { by Lemma 2, we get } \\
& \frac{\mathbf{P}_{n-1}}{\mathbf{P}_{n}}\left|\Delta \lambda_{\mathrm{n}}\right|=O\left(1 / \gamma_{\mathrm{n}}\right)=O(1) \text { as } \mathrm{n} \rightarrow \infty . \tag{2}
\end{align*}
$$

Hence

$$
\begin{aligned}
& \frac{P_{n}}{p_{n}}\left|\triangle \lambda_{n}\right|=\frac{\left(P_{n_{-1}}+p_{n}\right)}{p_{n}}\left|\triangle \lambda_{n}\right| \\
= & \frac{P_{n_{-1}}}{p_{n}}\left|\triangle \lambda_{n}\right|+\left|\triangle \lambda_{n}\right|=O(1) \text { as } \mathbf{n} \rightarrow \infty, \text { by (1) and (2). }
\end{aligned}
$$

Now, let us show that the condition (i) (d) is also satisfied. Since

$$
\begin{aligned}
& \lambda_{\mathrm{n}} \gamma_{\mathrm{n}}=O(1) \mathrm{n} \rightarrow \infty, \text { by (i) (a), we have that } \\
& \lambda_{\mathrm{n}}=O\left(1 / \gamma_{\mathrm{n}}\right)=O(1) \text { as } \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Since $(n+1) P_{n}=O\left(P_{n}\right)$, by bypothesis of the theorem, we have

$$
\frac{\mathrm{p}_{\mathrm{n}}}{\mathrm{p}_{\mathrm{n}_{-1}}} \rightarrow 0(\mathrm{n} \rightarrow \infty)
$$

Thus,

$$
\begin{aligned}
\frac{\mathbf{P}_{\mathrm{n}}}{\mathbf{P}_{\mathrm{n}-1}}\left|\lambda_{\mathrm{n}}\right| & =O(1) \frac{\mathrm{P}_{\mathrm{n}}}{\mathbf{P}_{\mathrm{n}_{-1}}}=0(1)\left(\frac{\mathbf{P}_{\mathrm{n}_{-1}}+\mathrm{P}_{\mathrm{n}}}{\mathbf{P}_{\mathrm{n}_{-1}}}\right) \\
& =O(1)\left(1+\frac{\mathbf{P}_{\mathrm{n}}}{\mathrm{P}_{\mathrm{n}_{-1}}}\right)=0(1) \text { as } \mathbf{n} \rightarrow \infty
\end{aligned}
$$

REFERENCES

BOR, H. (1984). On the absolute summability factors af infinite series, Comm. Fac. Sci, Univ. Ankara, Ser. $A_{i}, 33,193-197$.

