Commun. Fac. Sci. Univ. Ank. Series A₁ V. 37, pp 23-26 (1988)

THE DEFORMATION RETRACT AND TOPOLOGICAL FOLDING OF A MANIFOLD.

M. EL-GHOUL

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt.

ABSTRACT

In this paper the relation between topological foldings of a manifold M and its deformation retract have been discussed. Also the condition for the two manifolds M, N to have deformation retracts of the same homotopy type has been obtained. And the condition for the converse has been deduced.

INTRODUCTION

A map $F: M \to N$, where M, N are C^{∞} Riemannian manifolds of dimensions m, n respectively, is said to be an isometric folding of M into N, iff for any piecewise geodesic path $\gamma : J \to M$, the induced path Fo γ : $J \to N$ is a piecewise geodesic and of the same length as γ . If F does not preserve length, then F is a topological folding [1], [2].

We discuss the deformation retract of a manifold M, $M = M_1$, $\cup M_2$, $M_1 \cap M_2 \neq \emptyset$, M_1 , M_2 are manifolds, dim $M_1 = \dim M_2$.

DEFINITIONS

1- A subset A of a manifold M is called a deformation retract of M [3] if there exists a retraction $R: M \to A$ and a homotopy f: $M \ge I \to M$ such that

$$\left. \begin{array}{l} \mathbf{f} \left(\mathbf{x}, 0 \right) = \mathbf{x} \\ \mathbf{f} \left(\mathbf{x}, 1 \right) = \mathbf{R} \left(\mathbf{x} \right) \end{array} \right\} \quad \forall \ \mathbf{x} \in \mathbf{M} \\ \mathbf{f} \left(\mathbf{a}, \mathbf{t} \right) = \mathbf{a}, \mathbf{a} \in \mathbf{A} \text{ and } \mathbf{t} \in \mathbf{I} = \left[0, 1 \right] \end{array}$$

2- Two continuous maps Φ_0 , $\Phi_1: M \to N$, M, N are C^{∞} Riemannian manifolds, are homotopic if and only if there exists a continuous map $\Phi: M \ge I \to N$ such that, for

 $\mathbf{x} \in \mathbf{M}$

 $\Phi \ (\mathbf{x}, \ 0) = \ \Phi_0 \ (\mathbf{x}),$ $\Phi \ (\mathbf{x}, \ 1) = \ \Phi_1 \ (\mathbf{x}) \ [3].$

THE MAIN RESULTS

THEOREM 1:

If A is a retraction of an open manifold M, dim $A = \dim M$, $M = A \cup M_1$ and $A \cap M_1 = p \neq \emptyset$ if $f: M \rightarrow M$ is a topological folding s. t. f(p) = p, f(A) = A, then f is a deformation retract, the converse is not true, the deformation retract of an open manifold M is not always a topological folding.

Proof:

Let f: $M_1 \rightarrow A$ be a topological folding of M_1 into A, fig (1) (a), $M_1 = M' - \{b\}$ where $\{b\}$ is a point of the manifold M_1 to make M_1 open, A

is not a deformation retract of $M = M_1 \cup A$, $M_1 \cap A = \emptyset$, i.e. M is not connected, if f: $M \to M$ is a topological folding, $M = M_1 \cup A$, $M_1 \cap A = \{p\}$, f (p) = p, f (A) = A, then f is a deformation retract of M fig (1) (b), to prove the converse of this result is not true,

$$\begin{array}{l} \mbox{take } M = D^n - \{ 0 \} = \; \{ \; x \in R^n : 0 < \; \mid x \; \mid < 1 \; \}, \\ \mbox{A} = S^{n-1} = \; \{ \; x \in R^n : \mid x \; \mid = 1 \; \}, \end{array}$$

take $f : M \ge 1 \rightarrow M$ s. t.

$$\mathbf{f}(\mathbf{x}, \mathbf{t}) = (\mathbf{1} - \mathbf{t}) \mathbf{x} + \mathbf{t} \cdot \mathbf{x} / |\mathbf{x}|,$$

then f is continuous, f(x, 0) = x, $f(x, 1) = x/|x| \in S^{n-1}$, and, if $x \in S^{n-1}$ then $f(x, t) = x \forall t \in I$. This proves that f is a deformation retract, but it is not a topological folding.

THEOREM 2:

If M and N are two manifolds with the same homotopy type; A is a deformation retract of M and B is a deformation retract of N. Then A and B are of the same homotopy type and the converse is true.

Proof:

Since the two manifolds M and N are of the same homotopy type, then there exists continuous maps $f: M \to N$ and $g: N \to M$ such that $g \circ f = i_M$ and $f \circ g = i_N$, where i_M , i_N are identity maps on M and N respectively. Since A is a deformation retract of M, then there exists a retraction

 $\mathbf{r}_1: \mathbf{M} \to \mathbf{A}$ and a homotopy

 \mathbf{f}_1 (a, t) = a, a \in A and t \in I = [0, 1],

and in the same manner B is a deformation retract of N then there exists $r_2 \colon N \to B$

and $f_2 \colon N \ X \ I \to N \ s. \ t.$

$$\left. \begin{array}{l} \mathbf{f}_2 \; (\mathbf{y}, \, 0) = \mathbf{y} \\ \mathbf{f}_2 \; (\mathbf{y}, \, 1) = \mathbf{r}_2 \; (\mathbf{y}) \end{array} \right\} \qquad \forall \; \mathbf{y} \in \mathbf{N} \\ \mathbf{f}_2 \; (\mathbf{b}, \, \mathbf{t}) = \mathbf{b}, \, \mathbf{b} \in \mathbf{B}, \, \mathbf{t} \in \mathbf{I}. \end{array}$$

Since $A \subseteq M$, then there exist a continuous map $f'(r_1(x)): A \to B$ with f' = f/A, $B \subseteq N$, there exist a continuous map $g'(r_2(y): B \to A$ with g' = g/B, then $f' \circ g' = i_B$ and $g' \circ f' = i_A$ then A, B are of the same homotopy type. To prove the converse, since A is a deformation retract of M, then the inclusion map $i_1 : A \to M$ induces an isomorphism of Π (A, a) and Π (M, a) for any $a \in A$, Π (A, a) is the Poincare group of A at the base point a, also

 $i_2: B \rightarrow N$ induces an isomorphism of Π (B, b) and Π (N, b). Since A, B are of the same homotopy type, then there exists continuous maps

M. EL - GHOUL

f', g' s. t. f': A \rightarrow B, g': B \rightarrow A s. t. g' o f' = i'A : A \rightarrow A and f' o g' = i'_B: B \rightarrow B, make an extension for f' to f, g' to g, i'A to i_M, i_B' to i_N, then M, N are of the same homotopy type.

REFERENCES

- E. EL. KHOLY: Isometric and topological folding of Manifolds, Ph. D. Thesis (1981), University of Southampton, U.K.
- [2] S.A. ROBERTSON: Isometric folding of Riemannian manifolds, Proc. Roy. Soc. Edinburgh (77), 1977, 275-284.
- [3] W.S. MASSEY: Algebric Topology: An introduction. Harcourt Brace and Wareld, New York, (1967).