Commun. Fac. Sci. Univ. Ank. Ser. A V. 37, pp. 53-65 (1988)

"ON BV-REVERSIBLE MATRICES"

J.I. OKUTOYI

Kenyatta University, Mathematics Department. NAIROBI.
Received: 19.12.1988

ABSTRACT

In $1932, \mathrm{~S}$. Banach stated that if A is a reversible matrix, then the system of equations

$$
Y_{n}=A_{n}(x)=\sum_{k=0}^{\infty} a_{n k} x_{k}
$$

has a unique solution given by

$$
\mathrm{x}=\mathrm{v} l+B y
$$

where $B=\left(b_{n k}\right)$ is the unique right inverse of A,
$B y=\left(\sum_{k=0}^{\infty} b_{n k} y_{k}\right)_{n=0}^{\infty}, y \in c, x \in c_{A}$ and $v=\left(v_{n}\right)_{o}^{\infty} \in l_{\infty}$. In 1953 MacPhail showed that v need not belong to l_{∞} by giving a simple reversible matrix with v ubounded.

It is the purpose of this paper to extend Banach's work on c-reversible matrices to bv-reversible matrices and construct matrices which are bv-reversible matrices but not c-reversible; the first one with v bounded and the second one with v unbounled.

Notations: s;c;bv; bs; $l_{\infty} ; \mathrm{c}_{\mathrm{A}} ; \theta ; \delta ; \delta^{\mathrm{k}} ; \overline{\mathrm{X}}^{*}$
will denote the set of all sequences; convergent sequences; sequences of bounded variation that is, sequences such that $\sum_{k=0}^{\infty}\left|x_{k+1}-x_{k}\right|<\infty$ and $\lim _{k \rightarrow \infty} x_{k}$ exists; bounded series, that is, sequences x such that
$\sup \left|\sum_{k=0}^{n} \mathbf{x}_{k}\right|<\infty$; bounded sequences; convergence domain, that $n \geq 0 \quad k=0$
is, $\mathbf{c}_{\mathrm{A}}=\{\mathrm{x} \in \mathrm{s}: \mathbf{A x} \in \mathrm{c}\} ; \delta=(\mathbf{1}, \mathbf{1}, \ldots), \delta^{\mathrm{k}}=\left(\delta_{\mathrm{n}}{ }^{\mathrm{k}}\right)^{\infty}{ }_{\mathrm{n}=\mathrm{o}}=(0,0, \ldots, 0,1,0 ; \ldots)$
$\overline{\mathrm{X}}^{*}$ the continuous dual of X respectively.

1. INTRODUCTION

1.1 Definition: (Sequence to sequence)

Let $A=\left(a_{n k}\right), n, k=0,1,2 \ldots$ be an infinite matrix of complex numbers.
Given a sequence $x=\left(x_{k}\right)_{o}^{\infty}$ define

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\infty} \quad \mathrm{a}_{\mathrm{nk}} \mathrm{x}_{\mathrm{k}}, \mathbf{n}=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

If the serics (1.1) converges for all n we call the sequence $\left(y_{n}\right)_{o}^{\infty}$ the A-- transform of the sequence $\left(x_{k}\right)_{o}^{\infty}$. If further $y_{n} \rightarrow a$ as $n \rightarrow \infty$ we say that $\left(\mathrm{x}_{\mathrm{k}}\right)_{\mathrm{o}}^{\infty}$ is summable by A to a.

1.2. Definition (X-reversible)

Let X be an $F K$ - space with a Schauder basis. A matrix $A=\left(a_{n k}\right)$ is said to be X - reversible if the equation

$$
\begin{equation*}
\mathrm{y}=\mathrm{Ax} \tag{1.2}
\end{equation*}
$$

has a unique solution $x, x \in X_{A}$, (where $X_{A}=\{x \in s: A x=y \in X\}$) for each $y \in X$.
1.3. Examples ($\mathrm{X}=\mathrm{c}-$ reversible matrices)
(i) Normal matrix
(ii) Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{nk}}\right)$ be a matrix of the transformation:

$$
\left.\begin{array}{rlrl}
\mathrm{y}_{2 \mathrm{n}}=\sum_{\mathrm{k}=\mathrm{o}}^{\mathrm{n}} \mathbf{x}_{2 \mathrm{k}} & & \tag{1.3}\\
& & \\
\mathbf{y}_{2 \mathrm{n}+1}=\mathrm{x}_{2 \mathrm{n}+1}+2^{\mathrm{n}} \sum_{\mathrm{k}=\mathrm{o}}^{\infty} \mathbf{x}_{2 \mathrm{k}}
\end{array}\right\}
$$

that is,

$$
\left.\mathbf{A}=\left\lvert\, \begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
2 & 0 & 2 & 1 & 2 & 0 & 2 & 0 & \cdots \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & \cdots \\
4 & 0 & 4 & 0 & 4 & 1 & 4 & 0 & \cdots \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
- & \cdots & & \cdots & \cdots & \cdots
\end{array}\right.\right]
$$

If $y \in X=c$ we easily see that x is given by:

$$
\left.\begin{array}{l}
x_{0}=y_{0} \tag{1.4}\\
x_{2 n}=y_{2 n}-y_{2 n-2}, n \geq 1 \\
x_{2 n+1}=-2^{n}{\underset{n i m}{n} y_{n}}^{\lim _{2}} \mathbf{y}_{2 n+1}, \mathbf{n} \geq 0
\end{array}\right\} \quad \cdots
$$

From equations (1.4) we see that the right inverse of A denoted by A^{\prime} $=\mathrm{B}$ is given by

$$
\mathbf{A}^{\prime}=\mathbf{B}=\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & \cdots \\
\cdots & \cdots & & \cdots & & \cdots &
\end{array}\right]
$$

1.4 Theorem (Wilansky)

Let $A=\left(a_{n k}\right)$ be a c-reversible matrix then c_{A} is a Banach space with norm

$$
\|x\|=\sup _{\mathbf{n} \geq 0}\left|y_{n}\right|, y_{n}=A_{n}(x)=\sum_{k=0}^{\infty} a_{n k} x_{k}
$$

The most general continuous linear functional f on c_{A} is given by

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\alpha \lim \mathrm{y}+\sum_{\mathrm{k}=0}^{\infty} \quad \mathrm{y}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}} \tag{1.5}
\end{equation*}
$$

where $\alpha=\mathbf{F}(\delta)-\sum_{\mathbf{k}=0}^{\infty} \mathbf{F}\left(\delta^{\mathrm{k}}\right), \mathbf{t}_{\mathrm{k}}=\mathbf{F}\left(\delta^{\mathrm{k}}\right), \mathbf{t} \in \boldsymbol{l}_{1}, \mathbf{f}=\mathbf{F} \mathbf{o A}, \mathbf{F} \in \mathbf{c}^{*}$. Proof: See [6] page 229,

1.5 Theorem (Wilansky)

Let $\mathbf{A}=\left(\mathrm{a}_{\mathrm{nk}}\right)$ be a e-reversible matrix then there exists a unique $\operatorname{matrix} B=A^{\prime}=\left(b_{n k}\right)$ satisfying $\sum_{k=0}^{\infty}\left|b_{n k}\right|<\infty$ for each n and a sequence $\left(v_{n}\right)_{o}^{\infty}$ such that $y=A x$ has for each $y \in e$ the unique solution x given by

$$
\begin{equation*}
\mathrm{x}=\mathrm{v} l+\mathrm{By} \tag{1.6}
\end{equation*}
$$

where $l=\operatorname{limy}, B y=\left(\sum_{k=0}^{\infty} \quad b_{n k}\right)_{n=0}^{\infty}$
Proof. See [6] page 229.

2. Main Results:

2.1 Theorem: The most general continuous linear functional on bv_{o} is given by:

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} \quad x_{k} \mathbf{t}_{k} \tag{2.1}
\end{equation*}
$$

where $\mathrm{t}_{\mathrm{k}}=\mathbf{f}\left(\delta^{\mathrm{k}}\right), \mathrm{t} \in \mathrm{bs}$
2.2 Theorem: The most general continuous linear functional on bv is given by:

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=l \alpha+\sum_{\mathrm{k}=0}^{\infty}\left(\mathrm{x}_{\mathrm{k}}-l\right) \mathrm{t}_{\mathrm{k}} \tag{2.2}
\end{equation*}
$$

where $\alpha=\mathbf{f}(\delta), \mathrm{t}_{\mathrm{k}}=\mathbf{f}\left(\delta^{\mathrm{k}}\right), \mathbf{t} \in \mathrm{bs}$
The proof of 2.1 and 2.2 are elementary see [3].
2.3. Theorem: If a matrix $A=\left(a_{n k}\right)$ is c-reversible, then it is bv-reversible.

Proof: The proof follows easily since \mathbf{A} is c-reversible, i.e. A is $\mathbf{1}-\mathbf{1}$ and onto c, but $b v \subset c$ and so A is also $1-1$ and onto $b v$ (since bv is a subspace of c) so that for every $y \in b v$ there exists $x \in(b v)_{A}$ such that $y=A x$ and vice versa hence $A:(b v)_{A} \rightarrow b v$ is also $1-1$ and onto.
2.4. Theorem: Let A be a bv-reversible matrix, then there exists a matrix $B=\left(b_{n k}\right)$, the right inverse of A satisfying for each $\mathbf{n} \geq 0$
$\sup _{\mathbf{m} \geq 0}\left|\sum_{\mathrm{k}=\mathrm{o}}^{\mathrm{m}} \mathrm{b}_{\mathrm{nk}}\right|=\mathbf{M}_{\mathrm{n}}<\infty$ and a sequence $\mathrm{v}=\left(\mathbf{v}_{\mathrm{n}}\right)_{\mathrm{o}}^{\infty}$ such that $y=A x$ has for each $y \in b v$ the unique solution x given by:

$$
\begin{equation*}
\mathrm{x}=\mathrm{v} l+\mathrm{B}(\mathrm{y}-l \delta) \tag{2.3}
\end{equation*}
$$

where $l=$ limy.
Proof: Let f be a continuous linear functional on $(b v)_{A}$ and let $A:(b v)_{A} \rightarrow$ bv be a reversible matrix, then $f=$ goA for some $g \in b v^{*}$

$f(x)=g(A x)=g(y)=\alpha \operatorname{limy}+\sum_{n=0}^{\infty}\left(y_{n}-\lim y_{n}\right) t_{n}$
where $t_{n}=g\left(\delta^{n}\right), t \in b s, \alpha=g(\delta)$. In particular $P_{n} \in(b v)^{*}{ }_{A}$ since $b v\left({ }_{A}\right)$ is an FK-space and therefore we have:

$$
\begin{equation*}
\mathbf{P}_{\mathrm{n}}(\mathbf{x})=\mathrm{x}_{\mathrm{n}}=\mathbf{P}_{\mathrm{n}}^{\prime}(\delta) \operatorname{limy}+\sum_{\mathbf{k}=0}^{\infty}\left(\mathrm{y}_{\mathrm{k}}-\lim _{\mathbf{k} \rightarrow \infty}\right) \mathbf{P}_{\mathrm{n}}^{\prime}\left(\delta^{\mathrm{k}}\right) \tag{2.5}
\end{equation*}
$$

where $P_{n}=P_{n}^{\prime}$ oA,$P_{n}^{\prime} \in$ bv* *

$$
\mathbf{x}_{\mathrm{n}}=\mathrm{v}_{\mathrm{n}} \operatorname{limy}+\sum_{\mathrm{k}=0}^{\infty}\left(\mathrm{y}_{\mathrm{k}}-\lim _{\mathbf{k} \rightarrow \infty}\right) \mathrm{t}_{\mathrm{k}}^{\mathrm{n}}
$$

Where $\mathrm{v}_{\mathrm{n}}=\mathbf{P}_{\mathrm{n}}^{\prime}(\delta)$ and $\mathrm{t}_{\mathrm{k}}^{\mathrm{n}}=\mathbf{P}_{\mathrm{n}}^{\prime}\left(\delta^{\mathrm{k}}\right)=\mathrm{b}_{\mathrm{nk}}$, that is,

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=\mathrm{v}_{\mathrm{n}} \lim \mathrm{y}+\sum_{\mathrm{k}=0}^{\infty}\left(\mathrm{y}_{\mathrm{k}}-\lim _{\mathrm{k} \rightarrow \infty}\right) \mathrm{b}_{\mathrm{nk}}, \text { that is, } \\
& \mathrm{x}=\mathrm{v} l+\mathrm{B}(\mathrm{y}-1 \delta) .
\end{aligned}
$$

2.5. Theorem: If A is c-reversible and hence bv-reversible, then the sequence v^{\prime} in $\mathrm{x}=\mathrm{v}^{\prime} l+\mathrm{B}^{\prime}(\mathrm{y}-l \delta)$, where $\mathrm{B}^{\prime}=\mathrm{B}, \mathrm{v}^{\prime}{ }_{\mathrm{n}}=\mathrm{v}_{\mathrm{n}}+\mathrm{B}_{\mathrm{n}}(\delta)$ need not be bounded.

Proof: It is enough to give an example. Consider the transformation

$$
\left.\begin{array}{l}
y_{2 n}=\sum_{k=0}^{n} x_{2 k} \\
y_{2 n+1}=\frac{1}{1+n} x_{2 n+1}-\sum_{k=0}^{\infty} x_{2 k} \tag{2.6}
\end{array}\right\} n=0,1,2, \ldots
$$

i.e.

$$
A=\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & -1 & 0 & -1 & 0 & -1 & 0 & \cdots \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 0 & -1 & \frac{1}{3} & -1 & 0 & -1 & 0 & \cdots \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & \cdots \\
-1 & 0 & -1 & 0 & -1 & \frac{1}{3} & -1 & 0 & \cdots \\
\cdots & \cdots & & \cdots & & & \cdots &
\end{array}\right]
$$

Solving for x we obtain:

$$
\left.\begin{array}{l}
\mathbf{x}_{0}=\mathbf{y}_{0} \\
\mathbf{x}_{1}=\mathbf{y}_{1}+\lim _{\mathbf{n}} \mathbf{y}_{2 \mathrm{n}} \\
\mathbf{x}_{2}=\mathrm{y}_{2}-\mathbf{y}_{0} \\
\mathbf{x}_{2 \mathrm{n}}=\mathbf{y}_{2 \mathrm{n}}-\mathbf{y}_{2 \mathrm{n}-2}, \mathrm{y}_{-2}=0 \\
\mathbf{x}_{2 \mathrm{n}+1}=(\mathbf{n}+\mathbf{1})\left(\mathbf{y}_{2 \mathrm{n}+2}+\lim _{2 \mathrm{n}}\right)
\end{array}\right\}
$$

From this solution for x we see that B is given by:

$$
\mathbf{B}=\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & \cdots \\
\cdots & & & \ldots & & \cdots &
\end{array}\right]
$$

From (2.7) it is clear that $\mathrm{v}_{\mathrm{n}}=\mathbf{n}+1$, which is unbounded as $\mathbf{n} \rightarrow \infty$.

$$
\text { Now } \begin{aligned}
\mathrm{v}_{\mathrm{n}}^{\prime} & =\mathrm{v}_{\mathrm{n}}+\mathbf{B}_{\mathrm{n}}(\mathbf{y}) \\
& =(\mathbf{n}+\mathbf{1})+\mathrm{B}_{\mathrm{n}}(\mathrm{y}) \\
\mathbf{v}^{\prime} & =(\mathbf{n}+1)+(1,1,0,2,0,3,0,4,0, \ldots) \\
& =(2,3,3,6,5,9,7,12,9,11,18, \ldots)
\end{aligned}
$$

i.e.

$$
\left.\begin{array}{c}
\mathbf{v}^{\prime}{ }_{o}=2 \tag{2.8}\\
\mathbf{v}_{2 \mathrm{n}+1}^{\prime}=3(\mathbf{n}+1), \mathbf{n}=0,1,2, . . \\
\mathbf{v}_{2 \mathrm{n}}^{\prime}=2 \mathbf{n}+1, \mathbf{n}=1,2,3, \ldots
\end{array}\right\}
$$

which is unbounded.

We are now in a position to give an example to show that a bv-reversible matrix need not be c-reversible.
2.6. Theorem: There exists a matrix which is bv-reversible but not c-reversible.

Proof: It is enough to give an example. We know that if A is c-reversible, i.e $A: \varepsilon_{A} \rightarrow e$ is $1-1$ and onto e, then the unique solution of the equation $y=A x$ is given by $x=v l+B y$, where $\sum_{k=0}^{\infty}\left|b_{n k}\right|<\infty$ for each $\mathbf{n} \geq 0$ ste theorem 1.5. So let us consider the matrix $A^{\prime}=\mathbf{B}=\left(b_{n k}\right)$ given by:

$$
\left[\begin{array}{rrrrrrrr}
1 & -1 & 1 & -1 & 1 & -1 & 1 & \ldots \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & \cdots \\
- & \ldots & & \cdots & \cdots & &
\end{array}\right]
$$

This matrix is chosen so that $\sum_{k=0}^{\infty}\left|b_{n k}\right|$ will not exist for at least one n. In particular $\sum_{k=0}^{\infty}\left|b_{n k}\right|$ does not exist for $n=0$ and therefore the matrix A if it exists such that $A B=I$ cannot be c-reversible (see theorem 1.5).

To determine the matrix A we row-reduce the matrix below in echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrrrlllllllll}
1 & -1 & 1 & -1 & 1 & -1 & 1 & \ldots & . & 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots & . & 0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & \ldots & . & 0 & 0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \ldots & . & 0 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & \ldots & . & 0 & 0 & 0 & 0 & 1 & 0 & \cdots \\
\ldots & \ldots & \ldots & \ldots & & & & \cdots & & \cdots & \cdots &
\end{array}\right]} \\
& {\left[\begin{array}{ccccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & . & 1 & 1 & -1 & 0 & -1 & 0 & -1 & 0
\end{array} \ldots . .\right.}
\end{aligned}
$$

Therefore we have:

$$
\mathbf{A}=\left|\begin{array}{rrrrrrrrr}
1 & 1 & -1 & 0 & -1 & 0 & -1 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots
\end{array}\right|
$$

By straightforward calculations one quickly checks that $\mathrm{AB}=\mathrm{I}$. We still need to prove that A is $b v$-ieversible i.c. the equation $y=A x$ has a unique solution $\mathrm{x} \in(\mathrm{bv})_{\mathrm{A}}$ for each $\mathrm{y} \in \mathrm{bv}$ given by:

$$
\left.\begin{array}{l}
\mathbf{x}_{0}=\sum_{n=0}^{\infty}\left(\mathbf{y}_{2 n}-\mathbf{y}_{2 n+1}\right) \tag{2.9}\\
\mathbf{x}_{2 \mathrm{n}}=\mathbf{y}_{2 \mathrm{n}+1} \cdot \mathbf{n}=1,2, \ldots \\
\mathbf{x}_{2 \mathrm{n}+1}=\mathbf{y}_{2 \mathrm{n}+1}, \mathbf{n}=\mathbf{0}, \mathbf{1}, 2, \ldots
\end{array}\right\}
$$

where the transformation $y=A x$ is given by:

$$
\left.\begin{array}{l}
\mathbf{y}_{0}=\mathbf{x}_{0}+\mathbf{x}_{1}-\sum_{\mathrm{k}-1}^{\infty} \mathbf{x}_{2 \mathrm{k}} \tag{2.10}\\
\mathbf{y}_{2 \mathrm{n}}=\mathbf{x}_{2 \mathrm{n}}+\mathbf{x}_{2 \mathrm{n}+1}, \mathbf{n}=\mathbf{1}, 2, \ldots \\
\mathbf{y}_{2 \mathrm{n}+1}=\mathbf{x}_{2 \mathrm{n}+1}, \mathbf{n}=0, \mathbf{1}, 2, \ldots
\end{array}\right\}
$$

We need to show that x_{0} exists, but this is obvious since

$$
\sum_{\mathrm{n}=\mathrm{o}}^{\infty} \quad\left(\mathrm{y}_{2 \mathrm{n}}-\mathrm{y}_{2 \mathrm{n}+1}\right)
$$

is absolutely convergent hence convergent

$$
\text { (since } \left.\sum_{n=0}^{\infty}\left|y_{n}-y_{n+1}\right|<\infty \text { for } y \in b v\right)
$$

A is clearly $1-1$ since $\operatorname{Ker}(\mathrm{A})=\{\theta\}$
Now x is uniquely determined for $\mathrm{y} \in b v$ and so A is onto. But A is not onto c since if $y_{n}=\frac{(-1)^{n}}{1+n}$, then there is no $x \in c_{A}$ such that $y=A x$ since $\sum_{n=0}^{\infty}\left(y_{2 n}-y_{2 n+1}\right)$ diverges. Therefore A is bv-reversible but not c-reversible.

We now show that v in $v=v l+B(y-l \delta)$ is bounded for this A.

$$
\begin{aligned}
\mathbf{x}_{0} & =\mathbf{v}_{0} \operatorname{limy}+\sum_{k=0}^{\infty} b_{o k}\left(y_{k}-\operatorname{limy}\right) \equiv \sum_{n=0}^{\infty}\left(y_{2 n}-y_{2 n+1}\right) \\
& =v_{0} \operatorname{limy}+\sum_{k=0}^{\infty}(-1)^{k}\left(y_{k}-\operatorname{limy}\right) \equiv \sum_{n=0}^{\infty}\left(y_{2 n}-y_{2_{n}+1}\right)
\end{aligned}
$$

Let $(-1)^{\mathrm{k}}=\mathrm{s}_{\mathrm{k}}-\mathrm{s}_{\mathrm{k}_{-}}$, then $\sum_{\mathrm{k}=\mathrm{o}}^{\mathrm{n}}(-1)^{\mathrm{k}}=\mathrm{s}_{\mathrm{n}}, \mathrm{s}_{2 \mathrm{n}}=1$,
$S_{2 n+1}=0$. We can now write $\sum_{k=0}^{\infty}(-1)^{k}\left(y_{k}-\operatorname{limy}\right)$ as:
$\lim _{\mathbf{N} \rightarrow \infty} \sum_{k=0}^{N}\left(s_{k}-s_{k-1}\right)\left(y_{k}-\operatorname{limy}\right)$. Summation by parts gives,
$\sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}}\left(\mathrm{y}_{\mathrm{k}}-\operatorname{limy}\right)=\lim _{\mathrm{N} \rightarrow \infty}\left[\sum_{\mathrm{k}=0}^{\mathrm{N}-1} \mathrm{~S}_{\mathrm{k}}\left(\mathrm{y}_{\mathrm{k}}-\mathrm{y}_{\mathrm{k}+1}\right)+\mathrm{S}_{\mathrm{N}}\left(\mathrm{y}_{\mathrm{N}}-\operatorname{limy}\right)\right]$
i.e. $\quad \sum_{k=0}^{\infty}(-1)^{k}\left(y_{k}-\operatorname{limy}\right)=\sum_{k=0}^{\infty} S_{2_{k}}\left(y_{2 k}-y_{2 k+1}\right)$ as $N \rightarrow \infty$
$\therefore \mathrm{x}_{\mathrm{o}}=\mathrm{v}_{\mathrm{o}}$ limy $+\sum_{\mathrm{k}=\mathrm{o}}^{\infty} \mathrm{s}_{2 \mathrm{k}}\left(\mathrm{y}_{2 \mathrm{k}}-\mathrm{y}_{2 \mathrm{k}+1}\right)=\sum_{\mathrm{k}=\mathrm{o}}^{\infty+}\left(\mathrm{y}_{2 \mathrm{k}}-\mathrm{y}_{2 \mathrm{k}+1}\right)$
$\Rightarrow \mathrm{v}_{\mathrm{o}}$ limy $=0 \Rightarrow \mathrm{v}_{\mathrm{o}}=0$

$$
\mathrm{x}_{1}=\mathrm{v}_{1} \lim \mathrm{y}+\sum_{\mathrm{k}=0}^{\infty} \mathrm{b}_{1 \mathrm{k}}\left(\mathrm{y}_{\mathrm{k}}-\lim \mathrm{y}\right) \equiv \mathrm{y}_{1}
$$

i.e. $\mathrm{x}_{1}=\mathrm{v}_{1} \operatorname{limy}+\sum_{\mathrm{k}=0}^{\infty}\left(\mathrm{y}_{\mathrm{k}}-\operatorname{limy}\right) \equiv \mathrm{y}_{1}$ since $\mathrm{b}_{1 \mathrm{k}}=0$
for $k \neq 1, b_{11}=1$ we see that $v_{1}=1$. Similarly $\mathrm{v}_{2}=0, \mathrm{v}_{3}=1, \ldots$ Therefore $\mathrm{v}=\left(\mathrm{v}_{\mathrm{n}}\right)_{o}^{\infty}=(0,1,0,1,0, \ldots)$ which is bounded.
2.7. Theorem: Let A be a bv-reversible matrix which is not c-reversible, then the sequence v in $\mathrm{v}=\mathrm{v} l+\mathrm{B}(\mathrm{y}-l \boldsymbol{l})$ need not be bounded.

Proof: It is enough to give an example. Consider the transformation given by:

$$
\left.\begin{array}{l}
y_{0}=x_{0}+\sum_{k=1}^{\infty} \frac{1}{2 k} x_{2 k-1} \\
y_{2 k}=\sum_{\nu=k}^{\infty}(-1)^{\nu \cdot k} \frac{1}{1+2 v} x_{2 v}, k>0 \tag{2.11}\\
y_{2 k+1}=\frac{1}{2+2 k} x_{2 k+1}+\sum_{\nu=k+1}^{\infty}(-1)^{v-k-1} \frac{1}{1+2 v} x_{2 v}, k \geq 0
\end{array}\right\}
$$

That is,

$$
\mathrm{A}=\left[\begin{array}{cccccccccccc}
1 & \frac{1}{2} & 0 & \frac{1}{4} & 0 & \frac{1}{6} & 0 & \frac{1}{8} & 0 & \frac{1}{10} & 1 & \ldots \\
0 & \frac{1}{2} & \frac{1}{3} & 0 & \frac{-1}{5} & 0 & \frac{1}{7} & 0 & \frac{-1}{9} & 0 & \frac{1}{11} & \ldots \\
0 & 0 & 1 & 0 & \frac{-1}{5} & 0 & \frac{1}{7} & 0 & \frac{-1}{9} & 0 & \frac{1}{11} & \ldots \\
& 3 & & 3 & & & & & & \\
0 & 0 & 0 & \frac{1}{4} & \frac{1}{5} & 0 & \frac{-1}{7} & 0 & \frac{1}{9} & 0 & \frac{-1}{11} & \ldots \\
0 & 0 & 0 & 0 & \frac{1}{5} & 0 & \frac{-1}{7} & 0 & \frac{1}{9} & 0 & \frac{-1}{11} & \ldots \\
0 & 0 & 0 & 0 & 0 & \frac{1}{6} & \frac{1}{7} & 0 & \frac{-1}{9} & 0 & \frac{1}{11} & \ldots \\
& \ldots & \ldots & & & & & \ldots & & &
\end{array}\right]
$$

A is bv-reversible but not c-reversible. To see this, the unique solution of the equation $y=A x$ is given by

$$
\left.\begin{array}{l}
x_{0}=y_{0}-\sum_{k=1}^{\infty}\left(y_{2 k-1}-y_{2 k}\right) \tag{2.12}\\
x_{2 k}=(2 k+1)\left(y_{2 k}+y_{2 k+1}, k \geq 1\right. \\
x_{2 k-1}=2 k\left(y_{2 k-1}-y_{2 k}\right), k \geq 1
\end{array}\right\}
$$

provided x_{0} exists, that is, $\sum_{k=1}^{\infty}\left(y_{2 k-1}-y_{2 k}\right)$ is convergent, but $y \in b v \Rightarrow \sum_{k=0}^{\infty}\left|y_{k+1}-y_{k}\right|=\sum_{k=0}^{\infty}\left|y_{k}-y_{k+1}\right|<\infty$ But also $\sum_{k=0}^{\infty}\left|y_{k}-y_{k+1}\right|=\sum_{k=0}^{\infty}\left|y_{2 k}-y_{2 k+1}\right|+\sum_{k=1}^{\infty}\left|y_{2 k}-y_{2 k-1}\right|<\infty$

$$
\Rightarrow \sum_{k=1}^{\infty}\left|y_{2 k}-y_{2 k-1}\right|<\infty \Rightarrow \sum_{k=1}^{\infty}\left(y_{2 k}-y_{2 k-1}\right) \text { is convergent. }
$$

The right inverse of \mathbf{A} denoted by B or A^{\prime} is given by:

$$
\mathbf{B}=\left[\begin{array}{rrrrrrrrr}
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & \ldots \\
0 & 2 & -2 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 3 & 0 & 3 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 4 & -4 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 5 & 0 & 5 & 0 & \cdots \\
& \cdots & & & \cdots & & \cdots & &
\end{array}\right]
$$

Clearly AB $=$ I. A c-reversible $\Rightarrow \sum_{k=0}^{\infty}\left|b_{n k}\right|<\infty$ for all n, $\left(\mathbf{b}_{\mathrm{nk}}\right)_{\mathbf{k}=\mathbf{0}}^{\infty} \in \mathrm{bs}$, but $\sum_{\mathrm{k}=0}^{\infty}\left|\mathbf{b}_{\mathrm{nk}}\right|=\infty$ for $\mathrm{n}=0$ so A is not c-reversible. Also $y_{n}=(-1)^{n} \frac{1}{1+n}, y \in c$ but $\sum_{n=0}^{\infty}\left(y_{2 n-1}-y_{2 n}\right)$ diverges. Since A is bv-reversible, $\mathrm{x}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n}}^{\prime} l+\mathrm{B}_{\mathrm{n}}(\mathrm{y}-\boldsymbol{l} \delta)$. In particular we have

$$
\begin{gather*}
\mathrm{x}_{0}=\mathrm{V}_{\mathrm{o}} l+\sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}}\left(\mathrm{y}_{\mathrm{k}}-l\right) \\
=\mathrm{V}_{\mathrm{o}} l+\lim _{\mathrm{k} \rightarrow \infty} \sum_{\mathrm{k}=0}^{2 \mathrm{k}}(-1)^{\mathrm{k}}\left(\mathrm{y}_{\mathrm{k}}-l\right), \text { i.e. } \\
\sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}}\left(\mathrm{y}_{\mathrm{k}}-l\right)=\lim _{\mathrm{k} \rightarrow \infty}\left(\mathrm{y}_{\mathrm{o}}-l\right)-\left(\mathrm{y}_{1}-l\right)+\left(\mathrm{y}_{2 \mathrm{k}}-\mathrm{y}_{2 \mathrm{k}-1}\right) \\
=\left(\mathrm{y}_{0}-l\right)+\sum_{\mathrm{k}=1}^{\infty}\left(\mathrm{y}_{2 \mathrm{k}}-\mathrm{y}_{2 \mathrm{k}-1}\right) \\
\mathrm{x}_{0}=\mathrm{v}_{0} l+\left(\mathrm{y}_{\mathrm{o}}-l\right)+\sum_{\mathrm{k}=1}^{\infty}\left(\mathrm{y}_{2 \mathrm{k}}-\mathrm{y}_{2 \mathrm{k}-1}\right) \tag{2.13}
\end{gather*}
$$

Comparing (2.13) with

$$
\begin{aligned}
& \mathbf{x}_{0}=\mathrm{y}_{0}-\sum_{\mathrm{k}=1}^{\infty}\left(\mathrm{y}_{2 \mathrm{k}-1}-\mathrm{y}_{2 \mathrm{k}}\right) \text { we get } \\
& \mathbf{v}_{\mathrm{o}} l=l \Rightarrow \mathrm{v}_{\mathrm{o}}=1 \text { if } l \neq 0 . \text { Next we }
\end{aligned}
$$

have:

$$
\begin{aligned}
\mathbf{x}_{1} & =\mathbf{y}_{1} l+\sum_{\mathrm{k}=0}^{\infty} \mathbf{b}_{1 \mathrm{k}}\left(\mathrm{y}_{\mathrm{k}}-l\right) \\
& =\mathrm{v}_{1} l+2\left(\mathrm{y}_{1}-l\right)-2\left(\mathrm{y}_{2}-l\right) \\
& =2\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \Rightarrow \mathrm{v}_{1}=0
\end{aligned}
$$

$v_{2}, v_{3}, v_{4} \ldots$ are obtained in the same way as v_{1} giving

$$
\mathrm{v}=(1,0,6,0,10,0,14,0,18, \ldots), \text { i.e. }
$$

$$
\begin{align*}
& \mathbf{v}_{\mathbf{o}}=1 \\
& \mathbf{v}_{2 n}=4 \mathbf{n}+2, \mathbf{n} \geq 1 \tag{2.14}\\
& \mathbf{v}_{2} \mathbf{n}+\mathbf{1}=0, \mathbf{n} \geq 0
\end{align*}
$$

wich is unbounded as $n \rightarrow \infty$
2.8. Remarks:
(i) If A is c-reversible then it is bv-reversible (see theorem 2.3); its right inverse need not be its left inverse.

Proof: It is enough to give an example. Let A be the matrix

$$
A=\left|\begin{array}{ccccc}
1 & 1 & 1 & 1 & \ldots \\
1 & 0 & 1 & 1 & \ldots \\
1 & 0 & 0 & 1 & \cdots
\end{array}\right|
$$

then A is o-reversible (See [6])
hence $b v$-reversible. Its right inverse A^{\prime} is given by

$$
A^{\prime}=\left|\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \\
1 & -1 & 0 & 0 & \\
0 & 1 & -1 & 0 & \ldots \\
0 & 0 & 1 & -1 & 0 \\
& \cdots & \cdots & \cdots
\end{array}\right|
$$

See [5], [6]
$A A^{\prime}=I$. 'A the left inverse of A does not exist since if it existed we would have:

$$
\left.\begin{array}{l}
\sum_{\mathbf{k}=0}^{\infty} \mathbf{b}_{\mathrm{nk}}=1 \text { for } \mathbf{n}=0 \\
\mathbf{b}_{\mathrm{no}}=0 \\
\mathbf{b}_{\mathrm{n} 0}+\mathbf{b}_{\mathrm{n} 1}=0 \\
\mathbf{b}_{\mathrm{n} 0}+\mathbf{b}_{\mathrm{n} 1}+\mathbf{b}_{\mathrm{n} 2}=0
\end{array}\right\} \quad \Rightarrow b_{\mathrm{oo}}=b_{01}=\mathbf{b}_{01}=\ldots
$$

contradicting the fact that $\sum^{\infty} \quad b_{n k}=1$ for $n=0$ so that $A A \neq I$ if ' A exists and hence ' $\mathrm{A} \neq \mathrm{A}^{\prime}$
(ii) If a matrix A has a two-sided inverse A^{-1}, then it need not be c-reversible

Proof. It is enough to give an example. Let A be the matrix

$$
\mathbf{A}=\left[\begin{array}{rrrrrr}
-1 & 2 & 0 & 0 & 0 & \ldots \\
0 & -1 & 2 & 0 & 0 & \ldots \\
0 & 0 & -1 & 2 & 0 & \ldots \\
- & \cdots & & \cdots & \cdots
\end{array}\right]
$$

then A^{-1} the inverse of A is given by.

$$
\mathbf{A}^{-1}=\left[\begin{array}{rrrrrl}
-1 & -2 & -4 & -8 & -16 & \ldots \\
0 & 1 & 2 & 4 & 8 & \ldots \\
0 & 0 & -1 & -2 & -4 & \ldots
\end{array}\right]
$$

Now $A ; c_{A} \rightarrow c$ is not $1-1$ since it transforms both v and $\left(\frac{1}{2^{n}}\right)_{0}^{\infty}$ to
θ so it is not $1-1$ and onto bv either. Hence A is not c-reversible, it is not bv-reversible. See also [5].

REFERENCES

[1] BANACH, S. "Theorie des Operations Lineaires" Warsaw (1932)
[2] MACPHAIL, M.S. "A Remark on Reversible Matrices", Proc. Amer. Math. Soc. 5 (1954)
[3] OKUTOYI, J.I. "Thesis on Extensions of Banach's Theorem on Reversible Matrices, M. Sc. Qualifying for Ph. D" University of Birmingham (1984).
[4] WILANSKY, A. "Convergence Fields of Row-Finite and Row-Infinite Reversible Matrices", Proc. Amer. Math. Soc. 3 (1952)
[5] WILANSKY, A.; ZELLER. K. "Inverses of Matrices and Matrix Transformations" Proc. Amer. Math. Soc. 6 (1955)
[6] WILANSKY, A. "Functional Analysis" Blaisdell, New York (1964)
[7] WILANSKY. A. "Modern Methods in Topological Vector Spaces" McGrawhill (1978)
[8] WILANSKY, A. "Summability Through Functional Analysis", North Holland (1984).

