Commun. Fac. Sci. Univ. Ank. Series A₁ V. 37, pp 33-39 (1988)

THE SHEAF OF THE GROUPS FORMED BY H-COGROUPS OVER TOPOLOGICAL SPACES

A.A. ÖÇAL – C. YILDIZ

SUMMARY

In this paper, we consider both homotopy and sheaf theory and construct an algebraic sheaf by means of the H-cogroups. Finally, we give some algebraic topological characterizations.

1. The Sheaf of the Groups formed by H-Cogroups over topological spaces.

Let's recall the following definition.

Definition 1.1. Let X, S be two topological spaces, and $\pi: S \to X$ be a locally topological map. Then the pair (S, π) or shortly S is called a sheaf over X.

Let \mathcal{C} be the category of topological spaces X satisfying the property that all pointed topological spaces (X,x) with $x \in X$ have the same homotopy type. This category includes for example all topological vector spaces. Let us take $x \in \mathcal{C}$ as a base set if Q is any H-cogroup, then the set of homotopy class of homotop maps preserving the base points from (Q,q_0) to (X,x_i) , $i \in I$, $[Q; (X,x_i)]$ obtained for each $x \in X$, (X,x) pointed topological spaces. i.e. $P(X) = \bigvee [Q; (X,x)]$. Thus P(X) is a set over $x \in X$

X. Let us now define a map $\Psi : P(X) \to X$ as follows; Let $\sigma \in P(X)$, then there exists $x \in X$ such that $\sigma \in [Q:(X,x)]$. Define Ψ (σ) = x if $x_0 \in X$ is an arbitrarily fixed point, then let us denote by W = W (x_0) open neighborhood of x_0 in X. Now, we can define a mapping s: W $\to P(X)$ as follows:

If $x_0 \in X$, then there exists a group $[Q: (X, x_0)]$ in P(X). Let $[f]x_0$ be a homotopy class in the group $[Q: (X, x_0)]$. If y is any point in W,

^{*} Department of Mathematics, Faculty of Science and Arts, İnönü University, MALATYA.

then (X,x_0) and (X,y) are haveing the same homotopy type. Therefore, there is a homotopy equivalence map Φ : $(X,x_0) \rightarrow (X,y)$.

Hence

$$\begin{array}{c} \mathbf{f} \\ (\mathbf{Q}, \mathbf{q}_0) \rightarrow (\mathbf{X}, \mathbf{x}_0) \\ \Phi \text{ of } & \downarrow \Phi \\ & (\mathbf{X}, \mathbf{y}) \end{array}$$

from diagram too, the map Φ of: $(Q,q_0) \rightarrow (X,y)$ is continuous and base-point preserving. $[h]_y \in [Q; (X,y)]$ is a homotopy class of map Φ of = h. Therefore, we define $s(y) = [h]_y$. In this way s is welldefined and

1. $(\Psi \text{ os})(y) = \Psi(s(y)) = y$, for each $y \in W$. Therefore $\Psi \text{ os} = I_w$.

2. If, x_0 is an arbitrarily fixed point in W, $s(x_0) = [I_x of]_{x_0} = [f]_{x_0}$ for W = W (x₀). Hence it can be written as $s(w) = \bigcup_{y \in W} [h]_y$.

If we can define s(w) as an open set, then it can be easily shown that the

 $\boldsymbol{z} = \{ \mathbf{s}(\mathbf{W}) \colon \mathbf{W} = \mathbf{W} (\mathbf{x}) \subset \mathbf{X}, \, \mathbf{x} \in \mathbf{X} \}$

family is a topology-base on P(X). Thus P(X) is a topological space.

Now, we can show that map Ψ is local topological. If, $\sigma = [h]_y \in P(X)$ and $y \in x$, then $\Psi(\sigma) = \Psi([h]_y) = y$. Therefore, there is a map s: $W \to P(X)$ such that $s(y) = \sigma$, $y \in W = W(x_0)$. Now, let us assume that $U(\sigma)=s$ (W) and $\Psi[U = \Psi^*$.

1. The map $\Psi^* = \Psi | U: U \to W$ is injective. Because for any σ_1 , $\sigma_2 \in s(W)$ there are the points y_1, y_2 respectively in W such that $\sigma_1 = s(y_1) = [\Phi \text{ of }]_{y_1}, \sigma_2 = s(y_2) = [\Phi' \text{ of }]_{y_2}$. That is, we have the following diagrams:

f	f
$(Q,q_0) \rightarrow (X,x_0)$	$(Q,q_0) \rightarrow (X,x_0)$
Φ of \setminus $ \Phi$	Φ'of \ Φ'
\searrow \downarrow	$\checkmark \downarrow$
(Х,у)	(X,y)

If, $\Psi^*(\sigma_1) = \Psi^*(\sigma_2)$, then $\Psi^*(s(y_1)) = \Psi^*(s(y_2)) \Rightarrow \Psi^*(\llbracket \Phi of \rrbracket_{y_1})$ = $\Psi^*(\llbracket \Phi' of \rrbracket_{y_2}) = y_1 = y_2$. Therefore $\Phi \sim \Phi' \Rightarrow \Phi$ of $\sim \Phi' of \Rightarrow \llbracket \Phi of \rrbracket_{y_1} = \llbracket \Phi' of \rrbracket_{y_2} = \sigma_1 = \sigma_2$. 2. The map $\Psi^* = \Psi | U: U \to W$ is continuous. In fact, if $\sigma \in U = s(W) \Rightarrow \Psi^*(\sigma) = y \in W$ and $V = V(y) \subset W$ is a neighborhood of y, then $s(V) \subset U = s(W)$ is neighborhood of σ and $\Psi^*(s(V)) = V \subset W$. So Ψ^* is continuous.

3. $\Psi^{*-1} = (\Psi \mid U)^{-1} = s$: $W \Rightarrow U = s(W)$ is continuous. In fact, if y is any point in W, $s(y) = \sigma \in U$ and $U' = U'(\sigma) \subset U$ is a neighborhood of σ , then $(\Psi \mid U) (U') \subset W$ is a neighborhood of y in W and $s((\Psi \mid U) (U')) = U' \subset U$. So Ψ^{*-1} is continuous.

Hence, the following theorem can be given:

Theorem 1.1. Let Q be any H-cogroup and $X \in \mathcal{C}$. If $P(X) = V_{x \in X}$ [Q; (X,x)] and $\Psi: P(X) \to X$ such that $\Psi(\sigma) = \Psi([f]_x) = x$ for every $\sigma = [f]_x \in P(X), x \in X$, then there is the natural topology over P(X) such that Ψ is locally topological with respect to this topology. Thus the pair (P(X), Ψ), is a sheaf over X.

Definition 1.2. The sheaf $(P(X), \Psi)$ given by Theorem 1.1 is called the sheaf of the groups formed by Q, H-cogroup over (X,x) pointed topological spaces.

Definition 1.3. The group $[Q; (X,x)] = \Psi^{-1}(x)$ is called the stalk of the sheaf $(P(X), \Psi)$ over X and denoted by $P(X)_x$ for every $x \in X$.

Now, if $x \in X$ is an arbitrarily fixed point, and if W is open neighborhood of x in X, the mapping s: $W \to P(X)$ as defined in the construction of topology of P(X) is called a section of P(X) over W. Let us denote the collection of all sections of P(X) over W, by $\Gamma(W, P(X))$. It is easily shown that $\Gamma(W, P(X))$ is a group with respect to the following pointwise multiplication

$$(s_1.s_2)$$
 $(y) = s_1 (y) s_2(y), s_1, s_2 \in \Gamma(W, P(X))$ and $y \in W$

It follows from this definition that the operation of multiplication is well-defined and closed. Clearly, the operation of multiplication is associative and the mapping I: $W \to P(X)$ is the identity element which is obtained by means of the identity element of [Q; (X,x)]. On the other hand, the any inverse element of $s \in \Gamma(W, P(X))$, namely, $s^{-1} \in \Gamma(W,$ P(X)) which is obtained by means of the homotopy inverse of H-cogroup Q. Hence $\Gamma(W, P(X))$ is a group. Thus the operation (.): P(X) $\oplus P(X) \to P(X)$ (That is, $(\sigma_1, \sigma_2) \to \sigma_1$. σ_2 for every $\sigma_1, \sigma_2 \in P(X)$) is continuous. Hence $(P(X), \Psi)$ is algebraic sheaf. 2. The Characterizations.

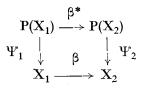
Let Q be any H-cogroup and X_1, X_2 be two topological spaces in the category \mathcal{C} . Let $P(X_1)$, $P(X_2)$ be the corresponding sheaves respectively. Let us denote these as the pairs $(X_1, P(X_1))$ and $(X_2, P(X_2))$.

Definition 2.1. Let the pairs $(X_1, P(X_1))$ and $(X_2, P(X_2))$ be given. We say that there is a homomorphism between these pairs and write $F = (\beta^*, \beta): (X_1, P(X_1)) \rightarrow (X_2, P(X_2))$, if there exists a pair $F = (\beta^*, \beta)$ such that

1. $\beta: X_1 \rightarrow X_2$ is a surjective and continuous mapping,

2. β^* : $P(X_1) \rightarrow P(X_2)$ is a continuous mapping,

3. β^* preserves the stalks with respect to β . That is, the following diagram is commutative.



4. For every $x_1 \in X_1$ the restricted map $\beta^* \mid P(X_1)_{x_1}: P(X_1)_{x_1} \rightarrow P(X_2) \beta_{(x_1)}$ is a homomorphism.

Definition 2.2. Let the pairs $(X_1, P(X_1))$ and $(X_2, P(X_2))$ be given such that the map $F = (\beta^*, \beta): (X_1, P(X_1)) \rightarrow (X_2, P(X_2))$ is a homomorphism. Then the map $F = (\beta^*, \beta)$ is called an isomorphism and can be written $(X_1, P(X_1)) \underset{\sim}{\Sigma} (X_2, P(X_2))$, if the maps β^* and β are topological. Then the pairs $(X_1, P(X_1))$ and $(X_2, P(X_2))$ are called isomorphic.

Theorem 2.1. Let the pairs $(X_1, P(X_1))$ and $(X_2, P(X_2))$ be given. If the map $\beta: X_1 \to X_2$ is given as surjective and continuous map, then there exists a homomorphism between the pairs $(X_1, P(X_1))$ and $(X_2, P(X_2))$.

Proof: Let $x_1 \in X_1$ be can an arbitrarily fixed point. Then $\beta(x_1) \in X_2$ and $[Q; (X_1, x_1)] = P(X_1)_{x_1} \subset P(X_1)$, $[Q; (X_2, \beta(x_1))] = P(X_2)$ $(x_1) \subset P(X_2)$ are the corresponding stalks.

If (X_1, x_1) , $(X_2, \beta (x_1))$ are pointed topological spaces and f_1, g_1 are base-points preserving continuous maps from (Q,q_0) to (X_1, x_1) , then f_2,g_2 base-points preserving continuous maps from (Q,q_0) to $(X_2, \beta(X_1))$ can be defined as $f_2 = \beta \circ f_1, g_2 = \beta \circ g_1$, respectively. Furthermore, if $f_1 \sim g_1$ rel. q_0 , then it can be easily shown that $f_2 \sim g_2$ rel. q_0 . Thus the correspondence $[f]_{x_1} \rightarrow [\beta of] \beta_{(x_1)}$ is well-defined, and it maps homotopy classes of basepoints preserving continuous maps from (Q, q_0) to (X_1, x_1) , to the homotopy classes of base-points preserving continuous maps from (Q, q_0) to $(X_2, \beta(x_1))$. That is, to each element $[f]_{x_1}$ there corresponds a unique element $[\beta of] \beta_{(x_1)}$.

Since the point $x_1 \in X_1$ is arbitrarily fixed, the above correspondence gives us a map $\beta^* \colon P(X_1) \to P(X_2)$ such that β^* ([f]) = [β of] $\in P(X_2)$, for every [f] $\in P(X_1)$.

$$\begin{array}{cccc} P(X_1) & \xrightarrow{\beta^*} & P(X_2) \\ \Psi_1 & \downarrow & \beta & \downarrow & \Psi_2 \\ & X_1 & \xrightarrow{\beta} & X_2 \end{array}$$

1. β^* is a continuous. Because if $U_2 \subset P(X_2)$ is any open set, then it can be shown that $\beta^{*-1}(U_2) = U_1 \subset P(X_1)$ is an open set. In fact, if $U_2 \subset P(X_2)$ is an open set, then $U_2 = \bigcup_{i \in I} s^{2_i}(W_i)$ and $\Psi_2(U_2) = \bigcup_{i \in I} s^{2_i}(W_i)$

 $\begin{array}{ll} W_i, \mbox{ where the } W_i \mbox{'s are open neighborhoods and the } s^2_i \mbox{'s are sections} \\ \mbox{over } W_i. \mbox{ Thus, } \underset{i \in I}{\smile} W_i \subset X_2 \mbox{ is an open set and } \beta^{-1} (\underset{i \in I}{\smile} W_i) = \underset{i \in I}{\smile} \\ \beta^{-1}(W_i) \subset X_1 \mbox{ is an open set since } \beta \mbox{ is a surjective and continuous map.} \\ \mbox{Furthermore, since } \beta^{-1}(W_i), \mbox{ i} \in I \mbox{ are open neighborhoods in } X_1, \mbox{ there exists sections } s^1_i \mbox{ } \beta^{-1}(W_i) \rightarrow P(X_1) \mbox{ such that } \underset{i \in I}{\smile} s^1_i \mbox{ } (\beta^{-1}(W_i)) \subset \\ \end{array}$

 $P(X_1)$ is an open set. Let us now show that $U_1=\underset{i\in I}{\smile}s^{1}{}_{i}\;(\beta^{-1}\;(W_i)).$

If $\sigma_1 = [f]_{x_1} \in U_1$ is any element, then there exists a $\sigma_2 = [\beta of] \beta_{(x_1)} \in U_2$ such that $\beta^*(\sigma_1) = \sigma_2$ and $\Psi_2(\sigma_2) = \Psi_2([\beta of] \beta_{(x_1)}) = \beta(x_1) = x_2$. Hence, if $\beta(x_1) = x_2 \in W_i$ for at least one $i \in I$, then $x_1 \in \beta^{-1}(W_i)$ and $\sigma_1 = [f]_{x_1} \bigcup_{i \in I} s^{i_1} (\beta^{-1}(W_i))$. Hence $U_1 \subset \bigcup_{i \in I} s^{i_1} (\beta^{-1}(W_i))$. On the other hand $\sigma_1 \in \bigcup_{i \in I} s^{i_1} (\beta^{-1}(W_i))$ implies that $\sigma_1 \in s^{i_1} (\beta^{-1}(W_i))$ for at least one

ieI. from here if $\sigma_1 = [f]_{x_1}$, then $\Psi_1(\sigma_1) = x_1$ and β of is a base-point preserving continuous map from (Q,q_0) to (X_2,x_2) , where $\beta(x_1) = x_2 \in W_i$. Thus $[\beta o f]_{x_2} = \sigma_2 \in U_2$. Hence $\sigma_1 \in U_1$ and $\bigcup_{i \in I} s^{i_1} (\beta^{-1} (W_i)) \subset U_1$. Therefore, $U_1 = \bigcup_{i \in I} s^{i_1} \beta^{-1} (W_i)$. Hence β^* is a continuous map.

2. β^* is preserves the stalks with respect to β . In fact, for any $\sigma_1 = [f]_{x_1} \in P(X_1)_{x_1} \subset P(X_1)$

$$\begin{array}{l} (\beta \circ \Psi_1) \ ([f]_{x_1}) \ = \ \beta \ (\Psi_1 \ ([f]_{x_1})) \ = \ \beta(x_1) \ = \ x_2. \\ (\Psi_2 \circ \ \beta^*) \ ([f]_{x_1}) \ = \ \Psi_2 \ (\beta^* \ ([f]_{x_1})) \ = \ \Psi_2 \ ([\beta \ of \]_{x_2}) \ = \ x_2 \end{array}$$

3. For every $x_1 \in X_1$ the map $\beta^* \mid P(X_1)_{x_1} : P(X_1)_{x_1} \rightarrow P(X_2)_{(x_1)}$ is a homomorphism. In fact, if the maps f_1,g_1 are the base-point preserving continuous maps from (Q,q_0) to (X_1,x_1) for $x_1 X_1$ and $f_2 = \beta o f_1$, $g_2 = \beta o g_1 : (Q,q_0) \rightarrow (X_2, \beta(x_1))$ are the corresponding maps, then $[f]_{x_1}, [g]_{x_1} \in P(X_1)_{x_1}$ and $[\beta o f]_{\beta(x_1)}, [\beta o g]_{\beta(x_1)} \in P(X_2)_{\beta(x_1)}$.

Now, if [f]
$$_{x_1}$$
, [g] $_{x_1} \in P(X_1) _{x_1}$, then
 $\beta^* ([f]_{x_1} [g]_{x_1}) = \beta^* ([(f,g)\circ\nu]_{x_1}) = [\beta \circ (f,g)\circ\nu] _{\beta(x_1)}$
 $= [(\beta \circ f, \beta \circ g) \circ \nu] _{\beta(x_1)}$
 $= [\beta \circ f] _{\beta(x_1)} [\beta \circ g] _{\beta(x_1)}$
 $= \beta^* ([f]_{x_1}) \beta^* ([g]_{x_1}),$

where v is the multiplication of H-cogroup Q.

Thus $F = (\beta^*, \beta)$ is a homomorphism.

Theorem 2.2. Let the pairs $(X_1, P(X_1))$, $(X_2, P(X_2))$, $(X_3, P(X_3))$ and surjective and continuous maps $\beta_1: X_1 \to X_2, \beta_2: X_2 \to X_3$ begiven. Then, there exists a homomorphism $F = (\beta^*, \beta): (X_1, P(X_1)) \to (X_3, P(X_3))$ such that $\beta = \beta_2 \circ \beta_1, \beta^* = \beta^*_2 \circ \beta^*_1$.

Proof: Since $\beta_2 \circ \beta_1$: $X_1 \to X_3$ is a surjective and continuous map, there exists a homomorphism $F = (\beta^*, \beta)$: $(X_1, P(X_1)) \to (X_3, P(X_3))$ (Theorem 2.1). To prove this theorem it is sufficient to show that $\beta^* = \beta^*_2 \circ \beta^*_1$. In fact, for any $[f] \in P(X_1)$, we must show that $\beta^* ([f]) = (\beta^*_2 \circ \beta^*_1)$ ([f]). However

$$\beta^* ([f]) = [\beta o f] = [(\beta_2 \circ \beta_1) o f] = [\beta_2 \circ (\beta_1 o f)]$$

= $\beta^*_2 ([\beta_1 o f]) = \beta^*_2 (\beta^*_1 ([f]))$
= $(\beta^*_2 \circ \beta^*_1) ([f]).$

Therefore $\beta^* = \beta^*_2 \circ \beta^*_1$.

Now, we can state the following theorem:

Theorem 2.3. There is a covariant functor from the category Cand surjective continuous maps to the category of sheaves and sheaf homomorphisms. Theorem 2.4. Let the pairs $(X_1, P(X_1))$ and $(X_2, P(X_2))$ be given. If the map $\beta: X_1 \to X_2$ is a topological map, then there exists an isomorphism between the pairs $(X_1, P(x_1))$ and $(X_2, P(X_2))$.

Proof: By Theorem 2.1, there exists a homomorphism $F = (\beta^*, \beta)$ between the pairs $(X_1, P(X_1))$ and $(X_2, P(X_2))$. To prove this theorem it is sufficient to show that β^* is one-to-one and β^{*-1} is continuous.

Since β is a topological map it has a continuous inverse β^{-1} . So, by Theorem 2.1 there exists homomorphism $\mathbf{F} = (\beta^*, \beta)$ and $\mathbf{F} = ((\beta^{-1})^*, \beta^{-1})$. On the other hand, for any two elements $[\mathbf{f}_1], [\mathbf{g}_1] \in \mathbf{P}(\mathbf{X}_1), \beta^*$ $([\mathbf{f}_1]) = \beta^* ([\mathbf{g}_1])$ implies $[\mathbf{f}_2] = [\mathbf{g}_2] \Rightarrow (\beta^{-1})^* ([\mathbf{f}_2]) = (\beta^{-1})^* ([\mathbf{g}_2])$. Thus, $(\beta^{-1})^* (\beta^* ([\mathbf{f}_1])) = (\beta^{-1})^* (\beta^* ([\mathbf{g}_1]))$. Since $(\beta^{-1})^* \circ \beta^* = (\beta^{-1} \circ \beta^*)$ and $\beta^{-1} \circ \beta = \mathbf{I} \mathbf{x}_1, (\beta^{-1} \circ \beta)^* = \mathbf{Ip}(\mathbf{x}_1)$ and $[\mathbf{f}_1] = [\mathbf{g}_1]$. Hence β^* is one-one. Since $\beta^{*-1} = (\beta^{-1})^*, \beta^{*-1}$ is continuous.

Therefore, $F = (\beta^*, \beta)$ is an isomorphism.

ÖZET

Bu makalede, bir Q H-cogrubu vasıtasıyla bir cebirsel yapılı demet oluşturulmuş ve bazı cebirsel topolojik karakterizasyonlar verilmiştir.

REFERENCE

- [1] SPANIER, F.H. Algebraic Topology, Mc Graw-Hill Publishing Company, Lt. (1966)
- [2] GRAY, B. Hometopy Theory, Academic Prees New York Sun Francisco London (1975)
- [3] GRAUERT, H., FRITZSHE, K. Several Complex Variables, Springer Verlag, (1976)
- [4] BAUES, H.J. Comutator Calculus and Groups of Homotopy Classes, Cambridge, (1981)
- [5] SZE-TSEN HU. Structures of the Homotopy Groups of mapping Spaces, American Journal of Mathematics, Vol. LXXI, no: 3, pp. 574-586 (1949).
- [6] ÖÇAL, A.A. H-cogruplar Üzerinde Demetler ve Bazı Karakterizasyonlar, Fac. Sc. Ankara Un. Ph. D. Thesis, (1983)
- [7] YILDIZ, C. H-gruplar Üzerinde Demetler ve Bazı Karakterizasyonlar, Fac. Sc. Ankara Un. Ph. D. Thesis, (1983)