Commun. Fac. Sci. Univ. Ank. Ser. A,
V. 37, pp 67-94 (1988)

SPATIAL PROCESSES: MODELLING, ESTIMATION, AND'
HYPOTHESIS TESTING

OMER L. GEBIZLIOGLU

Department of Statisties, Middle East Technical University, Ankara, Turkey

ABSTRACT

This paper develops purely spatial ARMA models. Suitable models, based on the
correlational structure of observed spatial processes, are fitted. The parameters are esti-
mated by minimum variance prediction error, least squares, or maxanum likelihood esti-

mation methods. The techniques of hypothesis testing are included.

INTRODUCTION

Spatio-temporal analysis are concerned with the analysis of series
of observations of variables measured over a period of time and over
a sample region in space. When the history of spatially located ob-
servations is considered it is not possible to impose strict ordering on
the directions and orders of dependencies in the space domain, alt-
though strict ordering in time is preserved. Bennett (1979) presents
an overview of such approaches including a detailed list of works. An
approach to the analysis of spatio-temporal processes with ARMA
family models which emphasize the autocorrelation structure in time
and space as the only determinant of an appropriate class of models
has been shown by Aroian (1979, 1980, 1981); Oprian, Taneja, Voss,
and Aroian (1980); Taneja and Arcian (1980); and Voss, Oprian, and
and Aroian (1980).

In many cases the time of observations may be redundant, either
because it is not possible to observe the temporal evolution, or because
it is of no substantive significance if the system that generates the
process under consideration has reached a static equilibrium pattern.
These cases constitute purely spatial processes. Geological, agricultural,
environmental observations referenced in a spatial coordinate system
may be cited as examples of realizations of purely spatial processes.
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Wheat yield data of Mercer and Hall(1911), and fruit trees yield data
of Batchelor and Reed (1918) are particular examples. An account of
several approaches to the modelling of purely spatial interaction may
be found in the work of Ripley (1981). Analysis of purely spatial pro-
cesses with simple auteregressive models were first suggested by Whittle
(1954, 1963), and Heine (1955). Thereafter, Besag (1972, 1974), Bartlett
(1979), Cliff and Ord (1973, 1975), and Ord (1975) discussed spatial
aatocorrelation function by emphasizing simple autoregressive schemes.
Considering the results of these works and taking the theory of M-
dimensional time series analysis developed by Aroian and his co-authors
as a base, Aroian and Gebizlioglu (1980), and Gebizlioglu (1981, 1982)
discussed purely spatial autoregressive, (AR), moving average {(MA).
and autoregressive-moving average, (ARMA), processes and their
properties for the univariate case. Process identification, model esti-
mation, and validation for such processes will be presented in the fol-
lowing sections.

GENERAL MODEL AND PROPERTIES

Let R™ denote an m—dimensional space with a coordinate system
 whose elements are X — (x,, X,5 +.., mpy). Associated with each point
X is a random variable Zy which represents values of a character of
a purely spatial process. If IP = < Q, s, P)> denotes a fixed pro-
bability space on a non—empty set  with sigma algebra { of sets in
Q and probability measure IP on ¢, each family of randem variables Z—=
{Zx |XeR™} on [P designates an m—dimensional random field. Spatial
interection on this random field can be expressed by the general proba-
bilistic model

~ q ~ v .
Zy = 2 ®pZgn— % Opaxn + ax (1)

n=—p n=-u

where ZX = Zy—ZI(Ex), @, = 0, = 0, and a’s are random shock
variables. n = (n, n,, ..., ny) and Oy = (Fn, Py --+» Zam)s
@'y = (Onp> Oy ..., Ony) are parameter vectors of autoregressive
and moving average components, respectively. p, q, u, and v are positive

a v
integers and X > are m—fold sums. Hereafter for convenience
n=—p n=v

uz = E (Zx) = 0, and the curls ~ on Zy are omitted.
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Assumptions and Stationarity

Assumptions are kept at minimum. Random shock variables are
i.i.d. random variables with E (ax) = 0 and finite variance % > 0.
Also ay is independent of Zy unless they have the same location. Let I
= (I, L, ..., Iy) he a vector of spatial lags, so E (axZx) = o’ if
I = 0. Weak stationarity is assumed.

The autocovariance and autocorrelation functions are defined as
i = E(ZxZx )
P = Yi/Y,

where vy, = ¢°,, variance of process.

Weak stationarity assumption allows the descsiption of a random
field by its mean, variance, and autocorrelation functions. y; and p;
are function of [ rather than X, and are symmetric to the origin X =
(0, 0, ..., 0). That is, if m = 1, pj, = p—,, and if m = 2, gy
= Pl RTIpsly = Py Fosl2 = Polpd Plisg = Plived Poro = 1

Of coarse the autocorrelation matrix of a process is positive definite.
This and symmetricity to origin determine the range of values of au-
tocorrelation coefficients.

The general model for ARMA processes which is of order p> a:
u, v) may be expressed in terms of backward of forward shift opera-
tors By; and Fy, such that ByZy, = Zy;, — 3;, where §; = (31,5 81y
-+ Oiy) and §;; = 1 if i = j, zero otherwise. Note that B™' = F.
The model in (1) expressed in terms of F is

a v
(1 — 3 can;> Zy = (1 — 2N G)nF;:) ax 3)
n=—p n=—v

7 (Bx) (Zx) = 0 (By) ax (4)

where @ (Bx) and 0 (By) are characteristic equations for the AR and
MA parts, respectively. The model can be expressed as an infinite AR
process, as

i

0 v 4]
= § (z 6an) (1— = Q;DFI;) Z, (5)

j=0 \n=-v n=—p

or, as an infinite MA process <
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[<6] G i v
7y = % <z gan> (1" S Fg)ax (6)

j=0 n=-p n=-—v

The autocovariance of Zy is

! 0 q i v
Y(By) = o2 [( b ( s @nw)) (1— = ean> ]
=0 n=— =YV

= o2 ¥ (By) 0 (By) ()

Stationarity of the process is ensured if the infinite series ¢ (Bx) 0 (By)
is convergent, since 7 is finite, given the convergence, vy (Bx) < oo.
This condition introduces restrictions on the model parameters. To see
this, consider a one dimensional ARMA model

Zxy — @*DZXI—D - ®~D+1ZX1+LD—' T Q(IZXHQ =

= ax, -0 _yax, w—0_ugax,, u—-- .~ Ovagy
q v

(1 — 3 zanxln‘) Zy, — (1 — 3 ean,qm) ax, (8
nl=—p nl=—u

For stationarity the roots of the associated polynomial to @ (Bx,) must
meet certain requirements. Multiplying 2 (Bx ) in (8) by BP we obtain

B — g ,Br - o 5 BT e, B - Opig
whose associated polynomial is
WK 4 g, wh L b oy 9)

where k = p + q. The same treatment can be applied to the MA part
in (8). Assume, without loss of generality , that the polynomials (9) and

wh @, wh-t ... 40, (10)

have no common factor, h = u - v. If the process is to be weakly
stationary all the roots of (9) must lie inside the unit circle, while none
of the roots of (10) lies outside the unit circle, Rudin (1969) and Marden

k
(1949). The roots of the polynomial X gjwhkd = 0, g,=1

j=o0
are obtained by reducing it to real and complex linear factors, such that
(w—w,) (w—w,) ... (w—wyg) = 0, so the condition set for (9) requires
the satisfaction of |w;| <1, j=1,2, ..., k. Define y = (w 4 1)/
(w-1) where w = a 4 bi, a and b are real and i = /-l

It is found that y = ((a—-1)2+ b7 (a2 + b2 —1—2ib), or y
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= R(y) —C-(y) with R(y) = (a® + b%1) ((a—1)> + b?)7! and C
(v) = (2ib) ( (a = 1)> + b?) )%, where | w | = (a® 4+ b?) Y/? and
(a = 1)> 4+ b*> > 0. It is necessary and sufficient for | w | < 1
that R(y) < 0 since w=(y+1) / (y—1), and |w;| < 1 is satisfied
only if R (y;) < 0,j = 1,2, ... k. Substituting w = (y + 1)/

: K :
(y—1) into I g ;wki = 0 we obtain
j=o

G+ 4 o, g+ (y-D) +...+ ok (y-1) =0 (11)

the roots of (11) are yj. Expressing (11) in.ascending powers of y it is
obtained that

So + 85,y Fs, ¥y + ... s yk =0 (12)

where s, = 1 and s; = 1‘{2. @ Crj. Cpj is the coefficient of y' in
=0

(y + )k (y = 1)§ in(11). Forinstance, if p + q=2 so k=2, given

p=q,C00:C02=CZj:1,j:1, 2, 3, Cm:—l’Cm:Cu

= 2, C,, = 0. The stationarity condition in terms of s;’s of (12) can

be set for by the Routh criteria, Routh (1930), Bellman and Cookse

(1963). Set matrix '

o]
(=]
wn
[N}

S= 10 s s .. (13)

the condition |w;| << 1 is satisfied if the principal minors of S, s;' r =
1,2, ..., k - 1, are positive definite. Fork = 2, s, = (2 (1- z )/
l-92,4+ 2,))>0ads, = (1+ 2, + ,)/1-9,+
,)) > 0, it follows that - o, > -1;- (g, + g, > -1 -
(2, + @,) < 1, or satisfaction of all three in one condition |z, | +
| @, | < 1. That is, the power series in (7) converges if the terms
(2, B 4+ @_, F) of the series for the AR part, p = q = 1, satisfy

1
| o, B+ @_, F | < 1; convergenceon X s;wheres_;j = (Bx;:

i=—1

| By, | < 1) and s; = (Fx;: | Fx, | > 1). The MA part of the
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model needs restrictions on 0’s only for the invertibility of the model to
an infinite AR process. A similar argument as above proceeds for the
polynomial in (10). If u == v = 1, then it is found that the restriction is
16, 14+ 16, | <L

The autocovariance generating function of the ARMA process repre-
sented by (1) is given in (7). The autocovariance function can also be
obtained by multiplying equation (1) by Zx_., and taking expectations

qa v
To= Z DaYuyn o or — z OnYz,a- . -(H—n) -+ Yz,a (L) (14‘)
n=—p n=—u
where Yz 4 (1 + 1) = E (Zx,n ax) which exists if 14 n = x since

Zx and ay are not correlated if they do not have the same location;
Yza (1) = 0 whenever ¢ > 0. When = 0, (14) reduces to

h=-p =

q v 2
Yo = X OnYn- Yz,a () + 0y (15)
-u

the variance of the process. From these, o, = Y,/Yo A two dimensi-
onal, m = 2, ARMA process with second order MA and AR parts,
ARMA (2, 2: 0, 2; 0, 2) is represented by the model

ZXI’XZ = 9, (ZXUXZ -+ le’ Xz+1)
-+ ax;, x, —6054 Axs X5 g —60’1 ax;, x; T 1
The autocovariance function of the model is
Tipl, = @, (YL17"2-1 + Yipty) - 60’—1 Yz,a (45 Lz)
— 60,1 Yz (b, + 1) Yz,a(bp t)

Then the variance is

Yoo = (YO,_1 + "{091) - eo.lhl Yza (09 - 1) - 602 Yz,a (0,1) - Ga’e

The autocovariances needed to estimate the model parameters are
Yo,i» Y1,00 and v, , whose functions can be obtained from the function
for v;,.1,. Dividing these by v, and substituting sample estimates
of autocorrelations in the resulting set of equations for o .0, g0 and
p1,p» the Yule-Walker estimates of the parameters are obtained. The
cross covariances are yza (0, 0) = 62, vz, (0, 1) = (o, - 8o.,) G4
Yz,a (0, =1) = (®, — O, ) 6%, others nonexisting because of the
cutoff property of autocovariances for the MA part.

The model expressed as an MA process is
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x J . . \
Zx,,x, = (1 =00, Bx,7' =8, | Bx,). ( z 2 (g{) @1, By,i7%k axl,xz)

j=0 k=0

which has finite variance if | » ] < 1/2, the condition for stati-
onarity. The same model as an AR process is

| . .
axpxy — (1 - Ql (BX2 + BXZ_I)) ( py % (]]{ ) el_koa_l ek091 Zx(9X3—j—ok

j=0 k=0

For the invertibility the condition on the parameters is | 0o, | +
10 | < L.
I V0|

Tdentification and Estimation

The first step in the fit of an ARMA family model to an observed
m—dimensional process is to determine the values of m, p, g, u, and v.
Although the process is seemingly m-dimensional, the dimension of
an appropriate model can be m’ <~ m. Nonzero values of p = (p,, p,»

v Pm)s 9 = (9 G -+ -5 qm)> u = (u, w, ..., um), and v =
(Vi V2, +++5 vm) can be determined by the cut-off properties of auto-
correlation function, a.c.f., and partial autocorrelation function, p.a.c.f.
To express sample autocorrelation let N; denote the number of equidi-

m
stant points on x;, i = 1, 2, ..., m, so there are II N; observat-
i=1

ions. Then the sample autocorrelation is r; = ¢; /¢, where ¢; = (1 /IINj;)

N_1I N
Y (ZxZx,g) and Co = (1/II Ny X Zy” where N = (N,,
X=1 X=1 :

N,, ..., Nm). 13, ¢;, and ¢, are unbiased estimators of p;, v;, and vy,
respectively, Jenkins and Watts (1968).

Bartlett (1946) suggests an approach to the determination of va-
riance and covariance estimates of autocorrelations if it is shown that
the sample observations on a random variable or their sum are from
a normal process. A dependent sequence {Zy} should meet certain
regularity conditions and assumptions to have central limit property,
Serfling (1968, 1980). If {Z,} is considered as ordered like Z;, , ...,,
1, ... Zx,, Ny -+ > Nm and denoted by Zp, n = ((1, 1, ..., 1), (2, 1,
oo 1), oo, (N, N2, ..., Np)), assumptions can be stated as
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Constant Mean : E(Zy) =0

Uniform Convergence of aih

Normed Sum Expectation : E (b71/2 ¥ Zj)2 = A2 > 0 (16)
a+l

Uniform Boundedness : Bl Zy 203 < M
where b € |0,;IIN; |, 3 > 0 and M < .

Under these assumptions the sequence {Z,} has central limit pro-
perty, that is,

b Z
lim (bA)"2 T Zy < 2} = (2%)7 J exp (-t2/2) dt.
1

b -+ o

The first assumption is satisfied. Second assumption is satisfied if

EOO ¢, converges and E|Z,|*§ < M < oo for some 1, ¢, is the
l=0

autocovariance estimator. We can see that

a4b a-tb
E (' ¥ Zy)? = E (Hy) =b' 2 E(Zy?)
a+l a+1
b1 b
+ 2b1 X X E (Zny + Zny)
i=1 =i+l »
b-1 b
=co+ 2b1 ¥ I e
i=1 j=i+1

b1
= ¢ + 2b 1 X ¢

t=1
i1 © b .
where ¢ = X ¢j. {cp} converges to X ¢; so bl I ¢
i=1 j=1 i=1
. o0
converges to X ¢j, therefore the second assumption in (16) holds.
i=1 :

To show that the third assumption in (16) holds is equivalent to saying
that
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EJEM, 12 |{<T (b 17

E |EH? [ —EH2) | < T, (b) (18)

are satisfied, where { is the sigma algebra generated by .Zx.A condition
a-+b

on the moments of sums Z+ Z,is E| Hy| 2*¢ = 0 (b™%), unifor-
a+1

mly, as b—>oo for some ¢ > 0 and « > 0. Under assumption (16) this
condition holds when « = 0 for ¢ = 0, and « = 1 4 (1/2) ¢ for 0 <
¢ < 8,8 > 0. By this, T, (b) and T, (b) equal to 0 (b™%), so mean
deviation expressed by (17) and (18) are bounded uniformly to the ob-
served spatial series. Since Z, is asymptotically normal, AN (u,s3),
a real valued function of Z's, differentiable with g’ (z) 7 0, also has
the property that g (Z,) is AN (g(z = u), [g (Z = p) J<7). Now

suppose that Zy = (Z, » ..., «-.s ZN, N, ---» Nm), if there are
N = II;N; observations Zyn, = (Z,, Z,, ..., Zx). If Z, is AN (p, bi¥)
where y is mean vector and X is covariance matrix, g (Zy,) = (g,(Zn),

.+v» g (Zy)) a real valued function of Z,, which has nonzero differen-
tials atz = y, define D = [0g;/0Z; | ,_, ], an s x N matrix, then

§ (@) i AN (g N X ou (@ | ] 1) (el o | )

These results can be applied to the sample autocorrelation. Let (Zy,
Zy,;) be asymptotically normally distributed pairs. Then r, = §, =
g (V) where V = (Zy, Zy,,, N7' & Z2, N' X Zi,,, N*' X Zy Zy,).
So, we can write g (Y,,¥,»Y»Y,Ys) = (V5= Y, o) [(v; =YDV (yy2) 2]
The V vector is AN (E (V), N7 X) where X is 5 x 5 covariance matrix
of (Zx, Zxy} 2%, Z%,,, Zx Zx,). From asymptotic distribution of g
(Zx), shown above, it follows that r, is AN (p, N™' d Z d’) where
d = (9g/ oy, | y_r(n --+> 98/ Oy;| y_mn). By this finding, sig-
nificance of r, values can be determined for the purpose of determina-
tion of dimensions and orders of dependency at each dimension for the
MA part. For a two dimensional process utilizing asymptotic distri-
bution of r, we can write

< M7

K .
Var (rll’ 12) = (NlNZ)Ml ) ) [e P
1:_K1 V2=_K2 VI,O O’V?

F Puavee Ve Pi v Vs Pu—vis 124v2

Pu—vi> 12—va T 9?1’ 12 (PVU v T (1/2) 9‘271’ o] (19)
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+ (1/2) vavz)_zp ne 12 (PVHO Pvitne v2 42
+ v —v: €00 v +12)]

where K is a large number such that K > Ny, i = 1, 2, ..., m, and
(N, N,) should be replaced by IT; (N; — v;) if Nj's are small, or if u's
are large. For 1; > ¢, q' a sufficiently large number, r, = 0, then
(19) reduces to

1 2

’
q

%
v

q/
Var (r,, ;,) = (N, N7 (1 +2 X
-

2

Pvl, ofo,v, )
v ==/
1 1

2

Cut-off property of a.c.f. can be stated that if a spatial process is purely
MA, then all r; vanishes for those with I << v and v, u = (u, u,, ...,

Up), Vv = (V5 Yy +ves V).

Utilizing the partial autocorrelation function, p.a.c.f., the dimen-
sions and order of dependencies at each dimension for AR part can be
determined. This is by the cut—off property of p.a.c.f. As Cramer (1946),
Lawrence (1976, 1979), and Hanpan (1970) discussed , the partial au-
tocorselation of, say, zx, xpo+ > xm and Zg,, x, ¢ 15 x50 - - +» xm detects
the correlation between the two which is not due to the linear depen-

dence of both on the intervening values Zx,, x,,; x5 +++> xms -+ <>
Zyix, 40— 1> - -+ xm. If dependence of Zx , x, | 1,5 - . ., xm On intervening
values is defined as the best linear estimate in the expected mean square
sense
N2
E(Zx+l -7 X+l) = E (ZX+Z —0(1 Zx+l_1 — ... —O4 Zx+1)
!

ZX+l = o ZX+Z——1 + ... 4 o ZX+1 (20)

where + = (0, 12, 0, ..., 0), m—element lag vector, and «;'s are mean

squares regression coefficients, autocorrelation equations are written
from (20). They are

pi = o1 F e + oo o, prlig (21)

1 < i<l — 1. S0 a;’s are functions of / and i. If p; equations, as
in (21) are expressed in matrix form

~

Pl =— Pl~—1 % (22)

—1

with 07, == (pys Pp +++» 01y)s Hiy = (%5 %y ...p %) and



SPATIAL PROCESSES M

Po €1 R A
£1 Po P2 v Pl=s
P, =
~ Plo Pi—s Pr—, Po =
I —i=(0,1,~1,0, ..., 0), pj = po» juos =++s 0 & = oco,]i.'o,‘,_,,o'

Equation (22) yields solution to o;_,

&l—l = P*Il—l ;l—l ' (23)
It can be verified that the partial variance is Var (Zx,; —Z'x,))
Var (Zy-7Zy') = 1 — op,~ ... —%_, p;_, and partial covariance is
Cov (Zxy1 ~Z'x) (Zx ~L'x) = o1 — o« o1y = ++ — a, p; By defi-

nition, then, the partial autocorrelation function is

w, = (o, e = +oo —o_g0y) (Lo~ v~ o)) ; (24”)
where o, as suggested by (23) ,is

ai == Det (lgk1 with ith column replaced by ;L_l). (Det (ﬁL,1))_1
and w, = Wy,5,. .5, The same procedure should follow for all other
Wigs 122 »+ o5 tme o v '

There is an important matter about the estimation of p.a.c.f. Deter-
mination of intervening variables must be made in sach a way that
the representation of an m-dimensional process should be in linear
equations, as in (20) which reflects the dependency of variables of
concern on the intervening variables, Gebizlioglu (1981). For instance,
if m = 2, drawing a line between two points on the plane, and taking
the variables at those points falling on the line as the only intervening
variables would be erroneous.

If 6, = 0 in (1) the resulting stochastic difference equation is an
AR process model with order p; -+ (; on each x;. The cut—off property
of p.a.c.f. is that the stationary spatial series (Zx) is from an AR process
of order p; + q; in each x; if its p.a.c.f.’s~are zero beyond p; - -qj,
i =1,2,..., m. To see this consider the Hilbert Space of real random
variables Zx with zero mean and finite second order moinents, with
expected product as inner product, Cramer and Leadbetter (1967),
and let Hy.x be the subspace spanned by
(Zacyys oo s Zy_Nfor X >k + i,k = (ki koo oo, k), X = (x, Xa,
...s Xny). Let Z*; and Z*x be the respective projections of Zy and Zy
on Hy, x. Consider the AR model
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a
Zy = X OnZlgn = ax
n=—p
This equation represents a good fit if it denotes the unique decompo-
sition of Zy into the sum of its projection on an orthogonal distance,
ax to Hy (piq)_1,x, By assumption E (ax) = 0 and E (a%) > 0. To
establish that ay L ax for all k % X define H*; as the subspace
spanned by all ay for k < X. Then H*x = UHx x x, ax L Hx_pra)-1,x
by construction. According to Hy_¢44)_, We can write

Zx_piay-1 = L*x_pra-1 + Wx_proy—1

then ax LZy (piq)_; and ax L Wy, q)_,  because p.a.c.f. wy_(piq)_1= 0,
partial autocorrelation coefficients of order higher than the actual
models’ order on eqch d'mension X;. Therefore ay 1 Zy (p,q)_;" imp-
lying that

ax 1 Hx-@ia)-2,x

Utilizing the results of Ouenoille (1947, 1949, 1958), Jenkins (1954, 1956),
and Daniels (1956), and central limit property, it can be shown that
w; are asymptotically normally distributed random variables with

variance Var (w;) = (ﬁ (Nx - 1)), Two different models of AR
i=1
type fit to the same series can be tested for the goodness of fit by

approximate »? distribution. Let a = (s, s,, ...) stand for the dimen-
sions of a model, asymptotically

Ts =

i M=

(N = 8) (wsg) — ws(e)) ~ *’k_ (25)

j=1

where j = p+q, k>N, N is the total number of observations,
k
s = Il si, 81 % 0, and wg.) = 2wy /(N ~ s).
i =1

For low order w;, Var (w;) ~ N-! Assume there are NN, = 100
observations on Zy,, x,, and it is found that w,, = .6638. (N-1)'/2
= 0.1, so w,,, is beyond three standard errors of w;. If other w;'s
are not significant, then the suggested model belongs to a second or-
der bilateral AR model in two dimensions,

ZX15X2 = ¢230ZX1+2’X2 + q)_290 Z_X1¢25X2 + aX19 X2
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given that autocorrelations die out rapidly and are not significant. If
both autocorrelations and partial autocorrelations are significant at
some spatial lags, then an ARMA model is suggested. Orders of AR and
MA parts are found as explained above. Another way of looking at this
problem is by the spectral density of the process prepresented by(1),

£(0) = 27" (h(e™)-1 g () Gg () (b* ()™ (26)

where 1 = \/—-_l-, h* is the conjugate, G is the covariance matrix of ay
found by (5), and

h(e?) =1- 3 ¢ (i) @7

n=-p

g (e =1+ ‘é 0n (el)n,
n=-—u
To make an adequate fit some conditions on ¢y, Oy and G must be im-
posed as Rosanov (1967) and Hannan (1969) suggested. These con-
ditions are (i) that, G is nonsingular, (ii) that, I' (ef?) = (h (ei))~!
g (ei?) is analytic and nonsingular in the unit circle, (iii) that the poly-
nominal matrices g (ei*) and h (el*) are nonzero and have no common
left factor other than matrices with constant determinants.

If an ARMA model is identified by determination of p, q, u, and
v, the next step is the estimation of parameters ¢p and 0,. Assume
that the process under consideration is

ZX:’Xz = q>1 ZXI—I’XZ + ¢2 ZX1+1ax2 + eax]—-lax2+1 + Axyoxa (28)

and there are N = N, N, observations on the plane with layout
RZI,I Zl,2 [ Zl,Nl - *ZI Z2 ZN1 -
Z2,1 Zz,z 2,N1 ZN1+1 ZN1+2 ZzNz
-—ZNzu ZNz,z ZNz,Nl— —Z(NZ—I)NH-I cee ZN1N2 -
Z(N) (29)

Now, let Zn, = (Z,, Z,, ..., Iy
matrix of @ parameters will be

s «evs LyN,), then the N x N

1°
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= ¢ (N) (30)

00 0 ¢ 0 ¢,
0 0 0 0 ¢, O
Similarly, letting a, = (a;, a5, ..., ax,, an; + 1, ... axx,), the

matrix of parameters will he

0 01(N)
8,2 0 0 B
0 62 0 | = — 6 (N) (31)
.. 62(N)
0 0 ... 6%

where 01 (N) is N; x N null matrix, and 02 (N) is (N-N;) x N matrix
j ==

whose submatrices 02; are Ny x N; matrices, 1, ...k, k = N,-1,

of the form
0 0 0 . 0 0
0 0 0. 0 0
0 6 0 . 0 0 (32)

<
o .
<
<>

The process expressed in (28) can be re-expressed as

Zn = ¢ (N) Zn -+ 0 (N)an + an (33)

Let B = (0, ¢) be the vector of parameters and G is unknown.

We will demand that the parameters B lie within a parameter space ()
determined by the conditions that the roots of characteristic equations

¢ (Bx) and 6 (By) should satisfy convergence criteria mentioned in
~section (2.1). This assures that {ay} series can be recovered as shown

in (5). For a true model Zx - 7% = ay, Zx is the predicted value of
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random variable Z'yx and ax will have the ergoedicity conditions shown
by Hannan (1970). Assuming joint normality of a,, the likelihood
of parametes § and G is

N S :
L@ 6) = @)™ 6 ep [~ (3 a6ia)] 69
: r=1
where |G| is the determinant of G, the covariance matrix of an
The logarithm of the likelihood is ' '

LL (8, G) = - (N/2) log (2r) — (1/2) NF (3, G) (35)

where F (8, G) is the objective function to be minimized with respect
to elements of § and G. Although this objective function is motivated
by the normality assumtion, it may be used when this assumption is
not valid. LS estimation is such a case in which expected sum of squares
of residuals are minimized. Another method of estimation, minimum
variance prediction error, MVPE, yields equivalent estimates by mini-
mizing the variance of ex = Zy — ZX, ex = ay if the model is the cor-
rect one.

The derivatives of F with respect to Px, k = 1,2, ..., ¢, eis the
number of parametes, are

N ‘ : '
2N7! ¥ akGla, , (36)

n=1

and the derivatives with respect to G~ are

- Gis |+ N-!

n

a,ag (37)

N

where G,,s = E (a,as).
The zero of (37) for fixed P is obtained as

' N .
Gps = N1 X aag (38)

n=1

This is the conditional estimate of G, and is denoted by G whlch
is the sample variance matrix of ay and

~ N o :
G =0G6@ =N' T anay. (39)
n= ) :
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N
Using this the second term in F (B, G) becomes N-! X

n=1
ap’ G™'a, = trace (G—la), 80

F@®G) =1log | G | + trace (G-'G) (40)
and inf F (8, G) = log |G| + y, then B is obtained by minimizing F
(B, G) with respect to 8 only. That is | G | = | N~! xlil anap’ |

can be used as the objective function. This result depicts the equiva-
lence of MVPE and ML, LS estimations.

The conditional estimates of B are also found by solving
N
N-t 3 afG'ap, =0 - (41)

n=1

Linearizing ap, about some chosen point 3, we can write

e

an (B) = an (B) + I aK 38 + 0 [ 5 | (42)
where 33 = 8 - B,. Ignoring the term ||38 | the linear equation for
3B is A3B = —f, where A is a k x k matrix with elements Ays = N-!

N

X a}iG‘lasn, and f is a half of the first derivative vector of F with
n=1

N
respect to B; fx = N-! X ak’ G'ay. If the ARMA model in (1)

n=1

contains no MA terms, the corrected parameters B, = B, -+ 38 would
give the solution to (41). Otherwise, replace £, by §, and repeat line-
arization until sequence B¢, B, B2 ... converges to conditional estimate

B = B(G)

To estimate  and G simultaneously set Gy = G (8y) and By, ,
= B(G),t = 0,1, ... is the number of steps, then perform conditi-
onal minimization at each step until prameters 81, Gy converge to their
overall minimum values 8, 8,2. Newton—Raphson or Margquardt (1963)
estimation methods should be used in computations. Yule-Walker es-
timates of § can be used as starting values of § in the iteration.
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It can be shown that estimates 3 obtained by ML methods are
consistent and have asympotic joint normal distributions with mean
B and convariance matrix N—1C—! where C is the matrix with elements
Cxs = (1/2) E (6°F [0PkPs) evaluated at B. The estimates B are asy-
mptotically uncorrelated with 8%, which consistently estimate o%,.
Accuracy of the estimates as well as consistency can be shown, for
instance, by setting Cramer-Rao bounds, Wilks (1962); Zacks (1970).
Fisher information matrix, which will be shown in the next section,
provides bounds on the estimates.

AR AND MA MODELS

The general AR model which represents an m-dimensional auto-
regressive process in space is

q
Zy = pX ¢nzx+n + ax (43)

n=—p

q
whose characteristic equation is ¢ (Bx) = 1 - X ¢uFy'so  (43)
n=-p

is re—expressed as
#(Bx) Zy = ax. (44)

Restrictions on the values of ¢ are needed for stationarity, that is,
convergence of power series ¢ (By) in
® q
o= 07 By ax = (2 3 Rl = Bax (49)
j=0  n=-p
requires that | Z Q,F; | < 1, ¢o = 0. Given that ¢ (By) converges,
the variance of the process
I'(Bx) = 6’ ¢ (By) (46)
is finite. E (ZxZx,;) = ¥, = o%p,, where Y, can be obtained from the
autocovariance generating function
I(Bx) = X yeBx (47)
C=—c
where Y. is the coefficient of both By and B_°. Therefore theautoco-
variance al lag « is symmetric to the origin, so is pt = Y1 [y,

Consider a simple bilateral , one dimensional AR process.

Ly, = O Zx,; + §,2x,,, + ax (48)
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Multiply (48) with Zy .;; and take expectations, the first two auto-
correlation functions, as a result, are -

P = &, + ®,0,
e = ¢IPZ + (bz . .
Yule-Walker equations. From these we cbtain that ¢, = (1—93)‘"1

(p—rpapr)> &, = (1=p2) ! (p,=py0_,). Sinee o, = ¢, by weak station-
arity ¢, = ¢, = ¢. Yule-Walker estimates are asymptotically LS
estimates which are ‘

2 Ny N; 2 Ni N,
b= ¥ zaza, 2 Za, _( > zn+lzn_1)( > znznﬂ)].

r N ? N 2 N 271
2 Zn+1 21 Zn—1"< pX Jn—lzn-H)]

- N Ny N -1
X 2o, 3 2o, - 3 2o 2]
n

. n=1 = n=1

Asymptotically (T)l = q§z' Therefore AR model in (48) should actflally
be '

Zx, = & (o1 + Zxyy) + ax. - (49)
This property extends to all AR models. MA representation of (49) is
© S .
Zy, = X 3 () doaxuoks (50)

$=0 k=0

The expected mean square for a finite j is

-1 8 i .
E (ZX1 "ﬂEo kZ:O (ls<) ¢S3X1+2k—s>2 = K (SEO (Js ) ¢JZX1~J'+ZS)2
i

where X (; ) &I = (2¢) and as j7oo convergence requires | ¢ |
§=0 .

< 1/2. Further restrictions on @ are introduced by the condition
that the autocorrelation matrix of the process
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fo P, £1

0 wo P (51)
Po1 21 fo

is- positive definite: po = 1, p_; = ¢ 80 lp2] < 1, (1 - 2p,0%)
> (2¢% -+ p?2). Apply these to Yule—Walker equations and determine
further restrictions on . The autocovariance and autocorrelation
function for (49) are v, = o (Y., + Yi) Yo = c: (1-2 @p,)h
and ¢, = & (p,_; + puy). From the homogenous second order
difference equation p, — @ (pi_, + piy,) = 0 the values of @ can
be determined. The general solution to the difference equation is p,

= ¢, (k,)* + ¢, (k,)! with
k=27 (/o) + ({12 - 47
k, =271 (1 2) — (1] 2% — 4) ')

and ¢, = (k,r)/(k, k), ¢, = (r k) /k,k), with r, = §* From
¢, and ¢,, @ is found. The { weights in (45) can be found. Express
(45) as

oo
ZXl = X %ax “pj aXH—j/ qu =1+ g ("‘:’1 + L;’—1)’ ‘pj =

j=-00

@ (%—1 -+ q"jﬂ)’ ‘«['/_j = o (‘T’"—J'—z + Hb—jﬂ)’ a}zs = {_s then

® . .
bo =3 () o2

=0

—

by =

201 o s .
] (i_t/z ) @¥, iis even integer,

YE

* H . 0 . .
gy = iZ:t (s @ 7171 i ds odd integer.

By the simple spatial AR process in (48) all properties, including
Yule~Walker and LS estimation, are shown for spatial AR models.
This finding extends to all other AR models in all dimensions. To dis-

cuss ML estimation of AR parameters, @, consider a two dimensional
maltilateral process (AR (2, 2: 1, 1;1,1)

ZXx’Xz = Q1(ZX1-19X2~—1 + ZX1+1’X2+1)

+ @2 (ZX1”17X2+1 + ZX2+17X2"1) + Axqoxy (52)
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with variance o — Yo = oo (1—2p1’1¢1—2p_1’1¢’2), and Yule—-Walker
equations

e, = Py (Props 11+ Pryar 1omy)
+ &y (etimp toer + Plysol2r) (53)
t, = t, # 0. Yule-Walker estimates of ¢,, , are
b1 = A ey (o2 1) = 01y (R0, + 21y0))
b, = A7 (pymy (pzp + 1) = (po,, + 02,007 (54)
A= (1 + p) I+ 032 = (Po,, T P05
¢, should be replaced by sample estimates r, = §,.

Assume there are N = N N, observations on the plane, and an
are i.i.d. normal random variables with zero mean, and o variance,
with joint density

N \
f (a) = (2mo%y)N-/? exp (— T a%y /20’3,2) (55)
n=| :

The likelihood function, then, is

L (Z) = (2r6%) N/2 exp (-M/z0,?) (56)
N1 N2 A A~
where M = X Y (Zxp x» “Lxp x5)s Lxys x, s estimated Z
x =l X1
by the model in (52). The log-likelihod
LL = — (N/2) log (276%) — (M/263) (57)

yields score equations

OLL /o = —06,72 Z S (Zx, 1,1+ Zyly, x01) M
x1=1 xlzl
N1 N2

6LL/0G; = ~ou? T . (Zxmp» Xpp1 + Zxpyp X,,) M.
X = X =
1 1

Equalizing these to zero yields
r, = ¢1 (Toso + r.@}) + ¢, (1'0,2 + 1~2,0)
Iy, = @, (Tos, -+ rz,z) + ¢ (r0,2 + I'—z,z)
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which in turn yields estimates 4;1 and (fz. Note that ML estimates
and Yule-Walker estimates are approximately equal, so are LS es-
timates.

The variance and covariance of (ﬁl and a)z are found from the
Fisher information matrix — [E (S (Zx,,x, | Q))] where Sis a2 x 2
matrix with elements S, = 8LL[&*®,, S,, = éLL/3*},, S,, = 5, =
oLL [o},00,.

Let S7' = — [E (S (Zxpx, | Q))]71, then

Sl = Var ((Bl) = o5, (1 + r~2,2) Tt

S+, = Var (432) = o’ (1 + rz,z) T-1

S, = 857y = Cov (@1 &)2) = = c% (o + T2:0) T

T = NNg*; [(1 + rz,z)) (I + 15, - (ro,, + I'2,0)2]'
82, is obtained from the relation o2, /62, = (1-2r,; -2 15Po)7 1
The general MA model for an m-dimensional spatial MA process is

q
Zy = X Opax +n + ax’ 0o = 0. (58)
n=-p

The simplest one dimensional, bilateral MA model is MA (2: 1,1)

with variancey, = ¢%, = o% (1 4 6>, + 62), and autocorrelation
functions to obtain 0

pp=py=—-(0,+0) Q1+ 0, + 62~

2 = oy = — (0.6) (1 + 62, + 6)7,
¢ty = p_ty = 0if | | > 2 by the cut-off property of autocorre-
lation for MA models. Using the autocorrelation function (s) the para-
meter 0 can be estimated by MVPE method, by replacing p, with their
sample estimates, 1.

The characteristic equation of (59) is 6 (Bx) = 1-6_, B-6, B},

so the model can be expressed as an infinite AR process, if the inverti-

bility condition | 6_, | + | 0, | < 1 is satisfied,
ay = 071 (By) = = (Bx) Zx

(e-lel + elFxl) jZX1 (60)

I
i E

J

= woly + 7 Ly | + wly, + ...
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To see the ML estimation method for MA models consider, for simplicity,
0., =0, = 01in (59) so ¢*, = o2 (1 + 20%), p; = -206(1 + 20%)7,
¢, = 02 (1 4 28%), thus 6 = 2p,/¢,, and invertibility condition is
| 6 | << 1/2. Assume there are N observations on the line; then the
model Zy = — 0 (ax,_; + ax,.) + ax, in matrix form is

Zy, = (I - 0Y)ay, = Vay, (61)
where Zx, = (Z,, Z,, ..., Zy), ax, = (a, a, ..., an), I'is Nx N

identitiy matrix and Y is N x N matrix of form

-1 —1 0... 0 0 0~

—1 1 —1 0 0 0
0 —1 1 —1 0 0
0 0 0 ..... -1 1 —

0 0 0 ... 0 —1 1_

If a’s are i.7.d normal random variables with zero mean, and variance

o2, the likelihood of Zy, is

L = (2re?) N exp [(Zx (VV')7'Zx,) (c3)7] |V [T (62)

where | V |~1 is the Jacobian of transformation from ax to Zy' since
ex = ax, = ZIx, —le and Z;l is predicted Zy, by (61). Note that e,
= ay, if the model is the right identified one. To evaluate | V |, and
inverse of the covariance matrix of Zx eigenvalues of Y can be used.
If the model is correct, all eigenvalues are distinct, so all eigenvectors
are unique. Then Y = UKQ, where K is the diagonal matrix of eigen-
values, U is the matrix of eigenvectors and Q is a matrix such that
Q' = U. By Cayley-Hamilton theorem V = U (I-6K) Q = UCQ.
Then the term log | V | in log of the likelihood in (62),
LL = - (N2) (log (2m)--logo?,)-log [V| ~ (Z'x, (VV')'Zx) (63)
is simplified as
N N
log |V |= X (ogn)= X
i=1 ~

fog (1 + 6%)

[
—

where n; is the ith element of C and ) is the i th diagonal element of K.
Then, the simplification of Z'y, (VV')~'Zx, is

L%, (VV) 7Ly, = (QZy)) (I-H) U'U (I-H) (QZx)) (64)

where H = I-C~'is a diagonal matrix with elements h; = 1- (1 + 0)~!
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After these simplifications on (62) the resulting equation can be eva-
luated at those values of § which meet invertibility conditions. It is
A2

found that the maximum likelihood estimator of o2 is 6, = N
Z'y, (VV')"'Zy," and substituting (64) into (63) we obtain

LL = 2 log |V | + Nlog (Zx,/) (VV')'Zy,) - K
where K is the constant of log-likelihood. ML estimator of 0 is that
value of 6 which minimizes

LL = Nlog { |V |’/xZ'x, (VV)'Zy, } + K.

To find that value, Newton-Raphson iterative procedure can be utilized,
Gebizlioglu (1981). Properties and procedures of estimation for higher
order and higher dimensional MA models are similar. Patterns of ma-
trices of spatial observations and matrices like Y in (61), and g (N)
and 0 (N) in (30) and (31) make it harder to do simplification applied
to likelihood and log-likelihood functions for higher order AR, ARMA
models as well as MA models. Power spectrum of AR and MA models
can be used as tools to detect the wavelengths measured with respect
to spatial dimensions, that is, periodicity in several dimensions.

A two dimensional AR process, say AR (1, 1: 0, 1: 0, 1)
ZX19X2 = q)O:OZXla X2 + ¢190ZX1+15X1 _I_ ¢0’1 lea Xo+1 + aXp X2

with 62 = 67 (1-®oso poso—Py» 0p1» 0~ Pos; fos)> has power spectrum
P = 262 | I-hooppoe 2 eI |12 [ £ | < 0.5, where
i= 4/~1, and | 1—4)0’0_(‘)1"06*izﬂf‘¢0’le‘izﬂf\—1/2 is obtained by

substituting By ,x, = e?IIf jn the characteristic equation of the

model, f | < .5. Similarly the power spectrum of an MA model
ZX]9X2 = 60:1 Axoxpt T 61:0 aAx 1 19Xs + axp, x,
is
—211f ~12T1f |2
P =267 | 1-0,,, ¢ 211 -0,,0e i211F )2,
For a process observed in two dimensions, the spectral estimate is

L

1
Ps,y = (4I1)~ X % Cuppy riop cosY(IL/F) (£, + s3,)}

=1, l2=—T,

for grequencies —.5 to .5 cycles for each sampling interval . t, s = -F.
-F+1,...,0,1, ... F. F is the number of frequency estimeates.
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L is the maximum lag in both dimensions, and C,,, is the sample

11712
covariance estimate, g, is a smoothing function. Adapting Bart-
lett’s window, Jenkins and Watt (1968), to two dimensions g1
= 1-h/L if 0 > h > L, zero otherwise, where h = (> 4 )/?
distance between points (x,, x,)and (x,,,, X,;;,). The power spectrum
definitions and spectral estimates given here can easily be extended

to higher dimensions and order.

VALIDATION OF MODELS

Among the several procedures which do not require specification
of an alternative hypothesis, one is the validation tests based on com-
parison of various characteristics of models an data. As discussed above,
spontaneously, comparison of autocovariance and autocorrelations
of data with those of the models derived theoretically indicates if the
fit is reasonable Similarly, theoretical spectra of fitted models which
are compatible with spectral estimates of data reveal if the fit is correct.

A validation test with null and an alternative hypothesis is based
on the residuals. Suppose that Zy is postulated to depend on Zy ;.
The exact form of this dependency is hypothesized to be characterized
by an m-dimensional family of functions, that is, ARMA models of
appropriate class. Let IF denote such a family of functions with M
parametes. The hypothesized class of models are such that E (Zy) =
IF (X EZ) where () is the space of M parametes. To test the hypot-

hesis, a sample is used and estimators of parameters Q = (@, &,, ...,
G, 0., ...

s ... 0y), ¥+ k = M, are obtained. Then IF = IF (Zg,;; Q)
is the estimated Zy function. If E (IF) = IF (Zx ' (NZ) then the
model is adequate, that is, if ex = Zx—E (IF) then the hypothesis,
actually, is E (ex) = 0. Under the stated assumptions and regularity
conditions (see Section 2), and with the assumption that ex ~ AN
(0, 6%), then R? = 1- (6% [Var (Zx)) can be used to test that the

right model is IF¥ (Zx,;, Q), against it is IF (Zx,, Qg). The underlying
theory is asymptotic and rests on the likelihood ratio tests. Let Qs be

a subset of Q. Consider Qy; = 0, or Q; = Qf, a specified set of values
of s number of parameters, s << M. Denote the maximum value of

likelihood function with respect to o} by L((NZ) I( ENZS) is the maximum

value of the likelihood with respect to EZS. The ratio L(ﬁs) /L(ﬁ)
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provides a measure on how well g fits the observations against

another fit with Q. The corresponding F- test is with the statistic
(N-K-1) C-(R>-R}) (1-R!) which is approximately F distributed with
parameters (C, N-K-1), where K is the number of parmeters in a
fitted model, while C=X-s is the difference between the number of
parametres in §~2 and ﬁs.

For a large number of observations, N, the statistic
A = —2log L(Q) [L(Q)

is distributed as y* distribut’on. If X 7s high, then the fit with Q is not
good, so the hypothesis is rejected.

If ex’s are approximately normal then log-likelihoods will be domina-
ted by Ty ex (Q)?, where ey (Q) is the residuals at location x. Then

A= (Tx ex (Q)? — Zx ex (Q)))a2, (65)
which directly leads to
= (RR—RY) [} Ix (Zx—Zx)]™! (66)

where R? = 1— (Zx ex (Q)* Bx (Zx — Zy)) ™2
and R2 = 1 — (3, ex (Q6))(Zx (Zx — Zx)) ™
If the estimated value of 62, which can bhe obtained by ML estimation,
is substituted in (66 ) then
» = N(R* — R}) (1—-Ry)™.

The corresponding F-iest is with the statistic (N-K-1) C71 (R2-R2)
(1-R2) which is approximately F distributed with parameters (C,
N-K-1), where K is the number of parameters in fitted model, while

C= K-s is the difference between the number of parameters in Q
and Qs.

CONCLUSION

Purely spatial ARMA family models are discussed with emphasis
on correlational properties, weak stationarity, and estimation. Central
limit properties for spatial series are established, so that existing esti-
mation and validation techniques are valid. It is shown that, in the
estimation distributional properties are not needed, and ML, LS and
Yule-Walker estimates are approximately convergent.
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In many experimerital situations spatial data may be far from meet-
ing stationarity assumptions. In these cases one can utilize the suggest-
tions, among others, of Patankar (1954), Norcliffe (1977), and Mitchell
(1974) to remove the trend along spatial axes, and to stabilize the vari-
ance. Introduction of differencing filters into the models should neces-
sarily be undertaken to analyze nonstationary spatial data.
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