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ABSTRACT

This paper develops purely spatial ARMA models. Suitable models, based on the 
correlational structure of observed spatial processes, are fitted. The parameters are esti- 
mated by minimum variance prediction error, least sguares, or maxtmum likelihood esti- 
mation methods. The technigues of hypothesis testing are inciuded.

INTRODUCTION

Spatio-temporal analysis are concerned tvith the analysis of series
of observations of variables measured över a period of time and över 
a sample region in space. When the history of spatially loeated ob^ 
servations is considered it is not possible to impose strict ordering on 
the directions and orders of dependencies in the space domain, alt- 
though strict ordering in time is preserved. Bennett (1979) presents 
an overview of such approaches inciuding a detailed list of works. An 
approach to the analysis of spatio-temporal processes with ARMA 
family models which emphasize the autocorrelation structure in time
and space as the only determinant of an appropriate class of models
has been shown by Aroian (1979, 1980, 1981); Oprian, Taneja, Voss, 
and Aroian (1980); Taneja and Aroian (1980); and Voss^ Oprian, and 
and Aroian (1980).

In many cases the time of observations may be redundant, either 
because it is not possible to observe the temporal evolution, or because 
it is of no substantive significance if the system that generates the
process under consideration has reached a static equilibrium pattern.
These cases constitute purely spatial processes. Geological, agricultural, 
environmental observations referenced in a spatial coordinate System.
may be cited as examples of realizations of purely spatial processes.
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Wheat yield data of Mercer and Hall(1911), and fruit trees yield data
of Batchelor and Reed (1918) are particular examples. An account of
several approaches to the modelling of purely spatial interaction may 
be found in the work of Ripley (1981). Analysis of purely spatial pro- 
cesses with simple autoregressive models were first suggested by Whittle 
(1954, 1963), and Heine (1955). Thereafter, Besag (1972, 1974), Bartlett 
(1979), Cliff and Ord (1973, 1975), and Ord (1975) discussed spatial 
autocorrelation function by emphasizing simple autoregressive schemes. 
Considering the results of these works and taking the theory of M- 
dimensional time series analysis developed by Aroian and his co-authors 
as a base, Aroian and Gebizlioğlu (1980), and Gebizlioğlu (1981, 1982) 
discussed purely spatial autoregressive, (AR), moving average (MA) 
and autoregressive-moving average, (ARMA), processes and their 
properties for the univariate case. Process Identification, model esti- 
mation, and validation for such processes will be presented in the fol- 
lowing sections.

GENERAL MODEL AND PROPERTIES

Let R™ denote an m-dimensional space with a coordinate System
whose elements are X = (xp X2, . . mm). Associated witlı each point
X is a random variable which represents values of a character of
a purely spatial process. If İP = £1, s, P)> denotes a fixed pro-
bability space on a non-empty set £î with sigma algebra of sets in 
Q and probability measure IP on each family of random variables Z=
{Zx lXeR««} on |P designates an m-dimensional random field. Spatial
interection on this random field can be expressed by the general proba- 
bilistic model

Zx L 
n=—p

9?nZx+n — S
n=-u

0nax.-i-n “b ax (1)

where Zx = Zx—Z(Ex), 0g = = o, and a’s are random shock
variables. n (np “2’ .. ., nm) and O’n (0

n — (önp 6112! •••! 6njj|) are
np 0 n2’ • •

parameter vectors of autoregressive
and moving average components, respectively. p, q, u, and v are positive

n
s S are m-fold sums.integers and

n=-p n=-v

Pz = E (Zx) = 0, and the curis

Hereafter foı convenience 

on Zx are omitted.
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Assumptions and Stationar’ty

Assumptions are kept at minimum. Random shock variables are
i.i.d. random variahles "vvith E (ax) = 0 and finite variance > 0- 
Also ax is independent of Zx unless they have the same location. Let 1'

(/p , /m) be a vector of spat’al lags. so E (axZx) — if
/ = 0. Weak stationarity is assnmed.

The antocovariance and autocorrelation functions are defined as 

yz = E(ZxZx+z) 

pz = yılyo

where variance of process.

Weak stationarity assumption allows the desct’ption of a random 
field hy its mean, variance, and autocorrelation functions. and pz 
are function of l rather than X, and are symmetric to the origin X =
(0, 0, . . 0). That is, if m = 1, p/j = p-/p and if m = 2

P h’ P ZpZı ?li’ lı'ı po02 Po’ Z2’ Pzpo P—Zpo’ Po’o

Of course the autocorrelation matrix of a process is positive definite. 
This and symmetricity to origin determine the range of values of au­
tocorrelation coefficients.

The general model for ARMA processes which is of order (p, q; 
u, v) may be expressed in terms of backward of forward shift opera-
tors Bx; and Fx,
• • ■ j 8im) and Sj’lj

such that BxZxi = T‘Xi — Si, where Sı = (Sip Si2'I?

The model in (1) expressed in terms of F is
1 if i = j, zero otherwise. Note that B = F,

or

1 —
n=-p

<l>nF$ Zx 1 — 2 N 
n=-v

0nF; ax (3)

0 (Bx) (Z,) 0 (Bx) ax (4)

where 0 (Bx) and e (Bx)
MA parts, respectively. The model 
process, as

are characteristic equations for the AR and
can be expressed as an infinite AR

ax = 2
j=0

S
n=-v

6nF;
]

1 —
a

2
n=-p

0nF5) Zx (5)

5or, as an infinite MA process
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Zx — S
İ=o

1)
2
n=-p

0nF",
J

I 2
n=_v

Ön F“ ax (6)

The autocovariance of Zx ?s
j

T(Bx) .2 
a

q
2 

n=-p
0nF? 2

n=-v
0nF",g: [( " (

j
1 —

<7^, 'I (Bx) e (Bx)

Stationarity of the process is ensured if the infinite series tp (Bx) 6 (Bx)
is convergent, since CTg is finite, given the convergence, v (Bx) C3O.

This condition introduces rcstr'ctions on the model parameters. To see
this, consider a one dimens’onal ARMA model

z'X1 0-pZxı_p J + I^Xı + ı_p--

3x1 Lu®Xı_U Lu+ıaxı+,_u-' ■

. .-0qZxi4q ~ 

. .- Oya^ı+v

q
2 
ni=-p

0 nıFxı“' 'Xı — 1 — 2
ni=-u

0n,Fx,"*'nı-rxı axı (8)

- e

1

0 Z

- 0

z

For stationarity the roots of the associated polynomial to 0 (Bx,) must 
meet certain requirements. Multiplying 0 (Bx|) in (8) by Bp we obtain

Bp - 0^pBP“i ^P+ıBP- 0+pq_ı B - 0p^q

whose associated polynomial is

+ -h 0k (9)

where k = p + q. The same treatment can be applied to the MA part 
in (8). Assume, v ithont loss of generality , that the polynomials (9) and

+ .. • + -^h-iw>ı + ©1 (10)

have no common factor, h = u + v, If the process is to be weakly 
stationary ali the roots of (9) must lie inside the unit circle, while none 
of the roots of (10) lies outside the unit circle, Rudin (1969) and Marden

(1949). The roots of the polynomial
k 
2 
3=0

= 0, 00=1

are obtained by reducing it to real and complex linear factors, such that 
(w—Wj) (w—-vv^) . . . (w—W];) = o, so the condition set for (9) requires
the satisfaction of [ Wj | 1, j = 1, 2, . . k. Define y = (w 1)/
(w - 1) where w = a bi. and b are real and i = v'“l-a
It is found that y = ( (a - 1)^ h^) * (a^ + b^ — 1 — 2ib), or y
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= R (y) —C (y) with R (y) — (a^ + b^-1) ( (a - 1)^ + b4 and C 
(y) ~ (2il>) ( (a - 1)^ + b^) )~S where j w ( = (a^ -|- b^ and
(a - 1)^ + b^ > 0. It is necessary and sufficient for | w 1
that R(y)
only if R (yj)

0 since w = (y + 1) / (y- 1), and |.wj 1
o, j = 1, 2, ... k. Substituting w

1 is satisfied 
= (y + 1)/

(y — 1) into
k
S 0jwk-j = o we obtain 

j=o

(y+i)''+ 0jy+i)k-i(y-i) + ...+ (y-1) = o (11)

the roots of (11) 
obtained that

are yj. Expressing (11) in ascending powers of y it is

So + Sı y + y^ + ... + Sk yk= 0 (12)

where Sf, = 1 and Sy =
k
S

j=o
0j Cyj. Crj is the coefficient of y^ in

{y 4" 1)^ i (y ~ 1)^ in (11). Forinstance, if p + q = 2 so k = 2,given
P 4I’ Fjo Gd2 = Crf = 1, j = 1, 2, 3, C„ = - R c,o = C„
= 2, Cjj = 0. The stationarity condition in terms of sfs of (12) can 
be set for by the Routh criteria, Routh (1930), Bellman and Cookse 
(1963). Set matrix

S =

Sı 
So 
o

S3 
«2 
Sı

S5
S4
S3 (13)

the condition jwj [ 1 is satisfied if the principal minors of S, Sy' r
1, 2, . . ., k - 1, are pos’tive definite. For k = 2, s•1 = (2 (1- 0,}l
(1 - 0 i + 02) )
02))
( 01 + 01) 

1 02 i <

o, it follows that - 0
0 and Sj = ( (1 + 0ı + 02) I (1 “ ^^^ı +

-1; - (01 + 02) - 1;
< 1, or satisfaction of ali three in one condition |0ı I + 

1. That is, the power series in (7) converges if the terms
(01 B + 0_j F) of the series for the AR part, p = q = 1, satisfy

I 01 B + 0-1 F 1
1

1; convergence on X Sı where s_ı = (Bx0

1 Bxı 1) and Si = (Fxı: 1 Fxı 1
ı=-ı
1). The MA part of the
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model needs restrictions on 0’s only for the invertibility of the model to
an infinite AR process. A similar argument as above proceeds for the 
polynomial in (10). If u = v = 1, then it is found that the restriction is

1 6: 1+ 1 e. 1 1.

The antocovariance generating function of the ARMA process repre­
sented by (1) is given in (7). The antocovariance function can also he 
obtained by mrdtiplying equation (1) by Zx_ı, and taking expectations

yi =
q 
S 

n=-p
0nTı+n ■ • S 0nTz,a- • • + Yz,a (0 (14)

wbere Yz,a (t + n)
Zx and ax

n=-u

E (Zxa-n ax) which exists if ı-f-n = 'x since
are not correlated if they do not have the same location;

Yz a (0 = 0 whenever t 0. Wlıen ı = 0, (14) rednces to

yo
q
S 

n=-p
0nYn-S Yz,a(n) + 

n=~u
2 (15)

the variance of the process. From these, pı y^lyo two dimensi-
onal, m = 2, ARMA process ■with second order MA and AR parts, 
ARMA (2, 2: 0, 2; 0, 2) is represented by the model

Z Z'xı’ ^2 — 01 (Zxı?X2 P ‘Xp X2+l)

“h 3X1? X2 ~0O?_1 axp X2-l ~6o?ı 3xp X2 + 1

The antocovariance function of the model is
Yiptj = 01 (Yi ı^z-ı Yz,a (ip 0)

— 0,'0,1 Yz,a (ip + 1) + Yzja(lı? >•2)

"fljslz+l) 00?—1

Then the variance is

YojO — 0 1 (Yo,_i r Yo?ı) - 60,-1 Yza (0, - 1) - 00 2 Yz.a (0>l) + cia^'

The antocovariances needed to estimate the model parameters are 
Yo,p Yı-o’ 3nd whose functions can be obtained from the function
lor Y 71,72- Dividing these by 70,0 and substituting sample estimates
of autocorrelations in the resulting set of equations for p po, po, p and
p , the Yule-Walker estimates of the parameters 
cross covariances are Yz,a (0, 0) = ct2, (0, 1)

are obtained. The
(01 - 60,1) O'.2 a’

Yz,a (0, -1) = (O, - 00,^J others nonexisting because of the
cntoff property of antocovariances for the MA part.

The model expressed as an MA process is
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Zxı,X2 — (1-00,-1 Bx2 ' '0,1 Bx2). ( s s (i) 0\ 0X2^ axı,X2) 
\j=o k=o t

which has finite variance if ] 0 , ) 1 /2, the condition for stati-
onarity. The same model as an AR process is

3
®Xı, X2 — (1-0JBX2+Bx2-’)) S (i) eı-k. 

j=o k=-o
0,-1

6^0,1 Zxj,X2-j-2k

For the invertibility the condition on the parameters is ] 6o, ı
! 6o,-1 1.

Identification and Estimation

The first step in the fit of an ARMA family model to an observed 
m-dimensional process is to determine the values of m, p, q, u, and v. 
Although the process is seemingiy m-dimensional, the dimension of
an appropriate model can he m' m. Nonzero values of p (Pı, Pî,

(v 1’

(q,, q2, . . ., qm), u = (Up
\t., . . Vm) can be determined by the cut-off properties of auto-

correlation function, a.c.f., and partial autocorrelation function, p.a.c.f. 
To express sample autocorrelation let Nj denote the number of equidi-

m
stant points on xı, i = 1, 2, . . ., m, so there are 11 Nj observat-

1=1

ions. Then the sample autocorrelation is r^ ~ cı /co where cı = (1 /IlNı)

N-; N-2
S (Zx.Zx+z) and Co = (1 /II Nı) S T
x=ı x=ı

’ 2' 
'X where N = (N.

N,2’ . . Nm). r^, Cı, and Co
respectively, Jenkins and Watts (1968).

are unbiased estimators of pı, yi, and yo

Bartlett (1946) suggests an approach to the determination of va-
riance and covariance estimates of autocorrelations if it is shown that 
the sample observations on a random variable or their sum are from 
a normal process. A dependent seguence {Zx} should meet certain 
regularity conditions and assumptions to have Central limit property,
Serfling (1968, 1980). If {Zx} is considered as ordered like Zj

•, Nm and denoted by Zn, = ((1, !,...,!), (2, 1,
..., 1), . .., (N1, N 2, .. ., Nm)), assumptions can be stated as

• • •, pm), q

1, • Zıjj, Nj, ..

^2’

n

i +

. . ., Um), and V

, 1, • • •„
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Constant Mean : E (Z„) EE 0

Unifoım Convergence of
Normed Sum Expectation : E (b"V^

a+b
S Zjj)2 = A_2 
a+l

(16)

Uniform Boundedness : E ( Z„ 1 2+8.

where b e jO,iIINi |, S 0 and M < 00.

M

0

Under these assumptions the sequence {Z^} has Central limit pro- 
perty, that is, 

lim {bA)-V2 S Z„
1

z
exp (-1^12) dt.} = (2:^)-'/ 2Z

b 00

The first assvmption is satisfied. Second assumption is satisfied if

00

2
1=0

converges and E | Z„ J ^+8 00 for some l, is thec7 M

autocovariance estimator. We can see that

E (b-’/2
a+b
2
a+l

Z„)2 = E (Ha) = b-1
a+b

2 E (Z„2) 
a+l

+ 2b-ı
b-1 
2 
1=1

b
2 
j=i+l

E (Zn+i + Zn+j)

— Co + 2b 1

where Ci

converges to

b-1

2
1=1

b-1
2
1=1

b

S 
j=i+i

Cj

Ci•j-i

^“1
2 cj. {Cb} converges to 
j=ı

00

2 
j=ı

CiJ’ so b~l
b 
S 
i=l

Ci

00

2 
j=ı

Cj, therefore the second assumption in (16) holds.

— Co “F 2b 1

To show that the third assumption in (16) holds is etjuivalent to saying 
that
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E i E (Ha I z î Tl (b)

E I E (Ha2 1 Q - E (Ha2,) ! T2 (b)

(17)

(18)

are satisfied, where Ç is the sigma algebra generated by Zx.A condition
a+b

on the moments of sums 2 Zn is E | Ha 1 = 0 (b““), unifor-

miy, as b->oo for some s

a+1

0 and a 0. Under assumption (16) this
condition holds when a = 0 for s = 0, and a = 1 + (1 /2) £ for 0
£ S, 8 0. By this, Tj (b) and T^ (b) equal to 0 (b “), so mean
deviation expressed by (17) and (18) are bounded uniformly to the ob- 
served spatial series. Since Zn is asymptotically normal, AN ([J.,Cn); 
a real valued function of Z's, differentiable with g' (z) 7i 0, also has
the property that g (Zn) is AN (g(z (a), [g' (Z !^) Now
suppose that Zn (Zx’
N = HıNı ohservations Ty

p
'n

• • 1 • • •; N2 •••> Nm); İf there are
= (Zp Zn). If Zn is AN ([i, h^S)

where [i is mean vector and 2 is covariance matrix, g (Zn) (g/Zn),
. .., gs (Zn)) a real valued function of Zn which has nonzero differen-
tials at z = jx, define D = [Sgj/SZj ] Z = |X ], an s X N matrix, then

g (Zn) is AN (g([r), N--1 2 Oii (ag I 8Zi I 
i=>

z=p)- (Sg/ 1 z=n))-

Th.ese results can be applıed to the sample autocorrelation. Let (Zx,
Zx+;) be asymptotically normally distributed pairs. Then
g (V) where V (Zx, Zx_|_j, N-’ 2 Z^, N-’ S z^+j.

^z Pi =
N ' 2 Zx Zx_|_;).

So, we can write g (ypy2,y3,y4,y5) = (y5-y, 22). (y4-yD'^^]“b
The V vector is AN (E (V), N“’ 2) where 2 is 5x5 covariance matrix 
of (Zx, Zx4.;, Z^+p Z-^ Zx+;). From asymptotic distribution of g
(Zn), shown above, it follows that rz is AN (pp N'-1 d 2 d') where
d = (^g/ i y=E(V), ■■■, Sgl By this finding, sig-
nificance of r; values can be determined for the purpose of determina- 
tion of dimensions and orders of dependency at each dimension for the
MA part. For a two dimensional process utilizing asymptotic distri-
bution of il we can write

Var (rp, ,2'
Ki 

(NıN,)- 2
V =-K

1 1

K
2 ■
V =“K2

[p
'1

V ’O
1

P
O’V

+ P(ı+Vp Z2+V2 Pzı+Vp 

Pzi-Vp Z2-V2 + PL’ 12 '

Z2-V2 Pil-vp 12+'V2

(Pvp V2 + I2) Pvı’ O (19)



76 Ö.L. GEBtZLÎOĞLU

+- (1/2) pâ»V2'J-2p ZP Z2 (PvpO Pvı+(p V2+Z2

+ P-Vp V2 ?O- V2 +(2)]

where K is a large number such that K 
(Nj Nj) should be replaced by flj (Nj -

> Nk, i = 1, 2, . . ., m, and 
1,1) if Nj's are small, or if ı/s

are large. For iı 
(19) reduces to

q', q' a sufficiently îarge number. = 0, then

Var (r,p (N, NJ-
q 1
s

1 1

q 2
S
y =-5' 2 2

PVj, OPO,V2

Cut-off property of a.c.f. can be stated that if a spatial process is purely
MA, then ali ij vanishes for those with l u and V, u = (u■p Up

Um)» V p V,2’ • • •» Vm).

Utilizing the partial autocorrelation function, p.a.c.f., the dimen- 
sions and order of dependencies at each dimension for AR part can be 
determined. This is by the cut-off property of p.a.c.f. As Gramer (1946), 
Lawrence (1976, 1979), and Hannan (1970) discussed , the partial au-
tocorrelation of, say, Zxp X2» • • . j xm and Zxj, X2 + I2’ X3» ...» xm detects
the correlation between the two which is not due to the linear depen­
dence of both on the intervening values Zxp kj+p x3» - ..»Km»
Z'Xp X2+ Z2-- 1’ • • xm. If dependence of Zxp X2+ Z2’ • • •» xm on intervening
values is defined as the best linear estimate in the expected mean square 
sense

E(Zx.f./ — Tj E (Zx+z —Zx4.z_j ... «Z 2x+ı)

a 1 Z'X+/-l + ... + «Z Zx+ı (20)

where t = (0, I2, 0, . . ., 0), m-element lag vector, and oc/s are mean 
squares regression coefficients, autocorrelation equations are vvritten 
from (20). They are

Pi — ı^ıPi + °'2pi-l + • • • + Pl-i-1 (21)

1 1

in (21)
< Z — 1. So Kj 's are functions of l and i. If pı equations, as 
are expressed in matrix form

pz_ı = Pz_ı 5.z_ı (22)

with p;_j = (pp p^, ..., pı^^), = (a-•p . . ., and
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Pz-ı

Po
Pı

Pı 
po

P2 • • • PZ-l

P2 ■ • P/-3

Pl—2 pl-i 9i~4 Po
i — (0; ^2 k O5 • • - s 0), pı — po, j-,Q, . .., o 

Equation (22) yields solution to
■ •» ö

= P-’I-ı P?-ı (23)

It can be verified that the partial variance is Var (Zx^/ -Z'x+j)
Var (Zx-Zx') == 1 - a^pj- .
Cov (Zx^z -Z'x^.^) ((Zx

• -a/-ı
= pz - «1 PUl

ç>ı_^ and partial covariance is

nition, then, the partial autocorrelation function is
• - aı_ı Pı By defi-

= (Pı -«ıFı-ı- • • -a. -«I

where aı, as suggested by (23) ,is
t-ıPı-ı) (24)

^l-ı

X-1P1) (1-«1P1- • •

aı Det (Pt-ı with ith column replaced by pt-j). (Det (Plj))~’^

andwt = ,u The same procedure should follow for ali other
tp 12’ * ‘ ’ İm*

There is an important matter about the estimation of p.a.c.f. Deter­
mination of intervening variables must be made in such a way that 
the representation of an m-dimensional process should be in linear 
equations, as in (20) which reflects the dependency of variables of 
concern on the intervening variables, Gebizlioğlu (1981). Ror instance.
if m = 2, dra'wing a line between two points on the plane, and taking
the variables at those points falling on the line as the only intervening 
variables would be erroneous.

If 0n = 0 in (1) the resulting stochastic difference equation is an 
AR process model with order pı A cji on each kj. The cut-off property 
of p.a.c.f. is that the stationary spatial series (Zx) is from an AR process 
of order pı fp in each Xi if its p.a.c.f.’s are zero beyond pı + qi, 
i = 1, 2,.. ., m. To see this consider the Hilbert Space of real random 
variables Zx tvith zero mean and finite second order momcnts, with 
expected product as inner produci. Gramer and Leadbetter (1967), 
and let Hj5.x be the subspace spanned by

(Zk+p , Zx_ 1) for X
. .., Xm). Let Z*ij and Z*x

k i, k — (k j, k 2. ..., km), X — (x j, x2;

on Hk, X . Consider the AR model
be the respective projections of Zj^ and Zx



78 Ö.L. GEBÎZLİOĞLU

Zx
a
s 

n=-p
ax

This equation represents a good fit if it denotes the unique decompo-
sition of Zx into the sum of its projection on an orthogonal distance.
ax to Hx_(p+q)_ı,x. By assumption E (ax) = 0 and E (a2x) 0. To
establish that ax -L ak for ali k / X define H as the subspace

0 n Zx i n

spanned by ali a^ for k < X. Then H*x = UHx-k,x. ax J- Hx_(p+q)_ı,x 
by construction. According to Hx .(p| q) ı we can write

Zx_(p+q)--l — Z*x_(p+q)_ı + Wx_(p+q)_ı

then ax -1-Zx_(pı.q)_ı and ax -L V' x—(p+q)—ı because p.a.c.f. ^x—(p+q)—1— 
partial autocorrelation coefficients of order higher than the actual

(P+q)-i' ’mp-models’ order on each d’mension Xı. Therefore ax -L Zx_ 
lying that

ax J. H■x-(p+q)-2,x

Utilizing the results of Ouenoille (1947,1949,1958), Jenkins (1954,1956), 
and Daniels (1956), and Central limit property, it can be shown that 
W; are asymptotically noımally distributed random variables with 

m
variance Var (yfı) = (İl (Nj£ - h Two different models of AR

1=1

type fit to the same series can be tested for the goodness of fit by
approximate distribution. Let a = (Sp s 
sions of a model, asymptotically

. ..) stand for the dimen-'2’

Ts =
k
S (N - s) (wg(j) - WS(.)) 
j=ı

I X^k_ı (25)

where j = p+q, k>N, N is the total number of ohservations.

s = n Sı, Sı 0, and Wg(.) =
k
S Wg(j)/(N - s).

J=ı1

For low order W;, Var (wı) N“’. Assume there are NjN^ = 100
ohservations on Zx,, x2j and it is found that = .6638. (N-’)V2
= 0.1, so is beyond three Standard errors of w;. If other Wıs
are not significant, then the suggested model belongs to a second or­
der bilateral AR model in two dimensions.

^XpX2 4^2’0^Xi+2>X2 "H 4’-2’O Z_xı_2JX2 + axj, X2 9
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not significant. If 
are significant at

given that autocorrelations die out rapidly and are 
both autocorrelations and partial autocorrelations 
some spatial lags, then an ARMA model is suggested. Orders of AR and 
MA parts are found as explained above. Another w ay of looking at this 
problem is by the spectral density of the proeess prepresented by(l).

f (X) = 2-’ (h (ei^))-i g (ei^) Gg (eiX) (h* (ei^))"’ (26)

yvhere i = yZ-l, h* is the conjugate, G is the covariance matrix of ax 
found by (5), and

q 
h (ei^) = I - s 

n=-p
(J)n (e»X)n (27)

g (elX) = I + S 0„ (ei^)". 
n=-u

To make an adequate fit some conditions on <f>n, 0n and G must be im-
posed as Rosanov (1967) and Hannan (1969) suggested. These con­
ditions are (i) that, G is nonsingular, (ii) that, T (e*^) = (h (e’^-))^' 
g (e^^) is analytic and nonsingular in the unit circle, (iii) that the poly- 
nominal matrices g (ei^) and h (e*^) are nonzero and have no common 
left factor other than matrices with constant determinants.

If an ARMA model is identified by determination of p, q, u, and 
N, the next step is the estimation of parameters (J)n and On. Assume 
that the process under consideration is

Z'XpX2 — Zxı_l,x2 + <|>2 Zxi+1,x2 + 8®X1_1,X?+1 ®X15X2 (28)

and there are N = Nj observ^ations on the plane with layout

z 
z

Z 
z:‘2,1

T,2 
'2,2

• • • Z,,Nı 
Z2,Ni Zni+i

Z2
Zni+2 •

• • • Z^ı
Z2N2

-Zn2,1 Zn2,2 Zn2,Ni. .Z(n2-1)Nj+i • • • ZnjNj _

Z(N)

Now, let Zn = (Zp Z„
matrix of 0 parameters will be

.Znj.., ZnjN2)» then the N x N
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-0
4-2

= 4 (N) (30)

o 
_0

4>ı 
o

Similarly, letting an = (aj, a2, . . ., a^j, 
matrix of parameters will be

^Nı + İ5 • • • »NiN?)’ 4"^®

ei(N)

0j2 0

e?-(N)
= e (N) (31)

41 o
0 o

. o
o 
o

o 
o

0

o 
o

o 
o

0 4*2

4)1 o

o

02^
o 
o

oo ... e2k

where 01’ (N) is Nj x N null matrix, and 02 (N) is (N-Nj) x N nıatrix 
whose submatrices O-j are Nj x 
of the form

Nj matrices, j = 1, . . ., k, k = N2-I,

o 
o
0

o 
0 
o

0 ... 0 o 
o 
o

o 
o

o 
o (32)

oo 0 ... e o

The process expressed in (28) can be re-expressed as

Zn — (|) (N) Zn "L 6 (N)an “k an (33)

Let Ş = (0, (j)) be the vector of parameters and G is unknown.

We will demand that the parameters Ş lie within a parameter space Q 
determined by the conditions that the roots of characteristic equations 
(j) (Bx) and 0 (B^) should satisfy convergence criteria mentioned in 
section (2.1). This assures that {ax} series can be recovered as shown 

in (5). For a true model Zx - Zx = ax, Zx is the predicted value of
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random variable Z'x and ax will have the ergodicity conditions shown 
by Hannan (1970). Assuming joint normality öf a^, the likelihood 
of parametes Ş and G is

NL (Ş, G) = (2k)-n/2 i G |N/2 exp [ 1 ! N \-ı(n?ı ®“
E=1

(34)

where | G | is the determinant of G, the covariance matrix of an. 
The logarithm of the likelihood is

LL (p, G) = - (N/2) log (2k) - {112) NF (Ş, G) (35)

where F (3, G) is the objective function to be minimized with respect 
to elements of 3 and G. Although this objective function is motivated 
by the normality assumtion, it may be used when this assumption is 
not valid. LS estimation is such a case in which expected sum of sguares 
of residuals are minimized. Another method of estimation, minimum 
variance prediction error, MVPE, yields equivalent estimates by mini- 

mizing the variance of Sx = Zx — Zx, Sx == ax if the model is the cor- 
rect one.

The derivatives of F with respect to 3k5 k = 1,2, 
number of parametes, are

?

2N-\ S a^G-*a„
n=ı

e, e is the

(36)

and the derivatives with respect to G ' are

- Gı,s + N-‘ S
n=ı

a^ag (37)

where G;,g — E (ajag).
The zero of (37) for fixed 3 is obtained as

G-Z’S N-ı
N
S 
n=ı

(38)a^ag

This is the conditional estimate of G, and is denoted by G which 
is the sample variance matrix of ax and

G = G (3) = N-‘
N 
S 
n=ı

(39)
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Using this the second term in F (Ş, G) hecomes N•-1
N
2 
n=ı

an' G~*an = trace (G“'G), so

F (Ş G) = log I G I -|- trace (G“‘G) (40)
and inf F (Ş, G) = log |G | y, then Ş is obtained by minimizing F 

(3, G) with respect to Ş only. That is i G | = | 
N N 

n=ı
1

can be used as the objective function. This result depicts the equiva- 
lence of MVPE and ML, LS estimations.

The conditional estimates of Ş are also found by solving

N-ı
N
S a^G-’an = 0 

n=ı
(41)

Linearizing an about some chosen point 3o we can write

an (3) — an (3o) +
e
2 aS SP + 0 II 83 II 

k=ı
(42)

where §3 = 3“ 3o- Ignoring the term ||S3ll the linear eguation for 
53 is AS3 = -fj where A is a k x k matrix with elements A^g =

N 
S a^G-’a®nsn=ı

and f is a half of the first derivative vector of F with

respect to 3; fk =
N
S 

n=ı
ajj' G“’an. If the ARMA model in (1)

contains no MA terms, the corrected parameters 31 = Po + ^3 would 
give the solution to (41). Otherwise, replace 3o by Pı and repeat line- 
arization until sequence 3oj Pp P2 ••• converges to conditional estimate 
3 = 3 (G).

To estimate 3 and G simultaneously set Gt = G (3t) and 3t+ı 
= 3 (G), t = 0, 1, . . . is the number of steps, then perform conditi­
onal minimization at each step until prameters 3tj Gt converge to their 
overall minimum values 3» Newton-Raphson or Margquardt (1963)
estimation methods should be used in computations. Yule-Walker 
timates of 3 can be used as starting values of 3 in the iteration.

es-
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It can be shown that estimates obtained by ML methods are 
consistent and have asympotic joint normal distributions with mean 
P and convariance matrix N“iC“i where C is the matrix with elements
Cks = (1 /2) E (Ö^F/SPt^s) evaluated at Ş. The estimates Ş are asy-
mptotically uneoırelated ■with whjch consistently eslimate (7'.2a-
Accuracy of the estimates as well as consistency can be shown, for 
instance, by setting Cramer-Rao bounds, Wilks (1962); Zacks (1970). 
Fisher Information matrix, which will be shown in the ncxt section, 
provides bounds on the estimates.

® a

AR AND MA MODELS

The general AR model -vvhich represents an m-dimensional auto­
regressive process in space is

Zx
q
S 

n=-p
(43)

whose characteristic equation is (j) (Bx) = 1 - S (pnFrso (43) 
n=-p

is re-expressed as

0(Bx) Zx ax-

Restrictions on the values of (p

(44) 

are needed for stationarity, that is.
convergence of power series (p (Bx) in

Zx = 0 * (Bx) ax = s 
j=0

q
s

n=-p
(pnF: iax — (p (®x) ax (45)

$nZx+n 4“ ax

«nrequires that j S <pnFx I
the variance of the process 

r(Bx) = (P (Bx)

1, (po = 0. Given that û (Bx) converges.

(46)

is finite. E (ZxZx+z) = Yi = where Yi can be obtained from the 
autocovariance generating function

r(Bx) = S ycB;
C=—00

,c (47)

where Yo is the coefficient of both Bx and B^“. Therefore theautoco- 
variance al lag ı is symmetric to the origin, so is pı = y'' i‘{o

Consider a simple bilateral , one dimensional AR process.

z + 4)2Zxi+i + ax— '^'12x1-1'X1 (48)
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Multiply (48) with Zxj+îj and take expectations, the first two 
correlation functions, as a result, are

auto-

P~ı 41 42P2

Pı 41P2 Y 41

Yulc-Walkcr equations. From these we obtain tiıat (J), (1-P2)-1

(P-1-P2P1)’ 42 = (I-P2) (Pı-p2P-ı)- Since p_( = pj by ■weak station-
arity (f)j = 02 = 4’- Yule-Walker estimates are asymptotically LS 
estimates which are

11 = [

[
11 = [

Nı 
2 

n=ı

Nı
S Zn+1 -

Nı
S

n=ı
'n+ıZn-ı

■ Nı
E ZnZn+j

n=ı )]■
N
2 

n=ı

2

Zn+ı
N
S 

n=ı

2
Zn-ı

N 
2 
n=ı

'n-ıZnq_j
-1

2 ZnZn+j
n=ı

Nı ;
2 Z, 

n=ı

2
'n-ı -

Nı
2 ’L- 
n=ı

'n+ıZıi—ı
Nı 

S 
n=ı

Nı 
S 
n=ı

n+ı
Nı
2 Z2„^^ 

n=ı

Nı
2 T

n=ı
'n-ıZn+ı )]■

^n^n-ı
5İ-1

2
z

Nı

z

“01

Asymptotically Therefore AR model in (48) should actually
be

T‘xı 4^ (ki-I + Zxi+i) + ax . (49)

This property extends to ali AR models. MA representation of (49) is
00
2

S=o
(k ) 4^axı+2k-s 

k=o
(50)

The expected mean squarc for a finite j is

E Z
s

'X1

3~1
~ (k ) 4’^axı+2k_s

s=o k=o s=o
2 = E

J
(i ) 45^Zxj„İ+2S 2

J

where S (g ) (|)^ = (24>)^ and as j
s=o

co convergence requires | (j) |

< 11^. Further restrictions on 0 are introduced by the condition 
that the autocorrelation matrix of the process
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po 
p2 
P-1

P2 
eo 
Pı

Pı 
Pı 
po

(51)

is positive defin ile: po = 1, p_, = p j, so !p2 î Ij (1 +,
(2p^j - p2 2). Appîy these to Yule-Waîker equations and determine

further restrictions on 0. The autocovariance and autocorrelation
function for (49) are T,
and pı. = 0 (p

t-1 + fı+ı) Yo —
2

<îa (1-2 0P,)-S

difference equation p
Y Pı+1)' Fi’om the homogenous second order

0 (P 1-1 + Pı+ı) = 1* values of 0 can
be determined. The general solution to the difference equation is pj, 
= c JkJı + c^ (kjı with

k, = 2-^ ((1/0) + {{110^)-

k, = 2~^(yıİ0y-^(yıİ0-)-^0^)

and = (k,-r,)/(k,-kı). (rj-kj) /k^-kj), with From
Cj and c, 
(45) as

0 İs found. The ıp weights in (45) can be found. Expres8

t

l

«2 r 1 P •

T s ıpjaK ıpj Hki+'İ' İpo — 1 + 0 ('-Pı + 'f'-ı); İpi — 
j = -00

0 (3pi-l + ^’J+l)» 'P-j = 0 (^-j-2 + tp-J+ı), tps = then
co

ıPo = s (2j) 0 23 
j=0 J

2, (fi^2= ) 0 ^3^ i İS even integer.

c»
İJ = 2 ('■ 

l=t
'2İ-1
'İ-(t/2+-5) ) 0 23-1, j jg İnteger.

By the simple spatial AR process in (48) ali properties, inciuding
Yule-Walker and LS estimation. are shown for spatial AR models.
This finding extends to ali other AR models in ali dimensions. To dis- 
cuss ML estimation of AR parameters, 0, consider a two dimensional 
multilateral process (AR (2, 2: 1, 1;1,1)

Z.'X1>X2 — 0 l(Zxı-İJX2~l + 2xı+pX2+l)

+ 2 (Zxı-VX2+l + Zx2+l,X2-l) + axpX2 (52)
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with variance 
equations

Pö’b = 4^1 (pr

2 
CJz = Yo = ö-a (1—2pı,ı<I>ı—and Yule-Walker

1- l’

+ 4^2 (PÖ-P

’ İ2 1 1~ ?!1+1’ ^2+1)

Ö+l “H PZh I’b-~1) (53)

12 / 0. Yule-Walker estimates of 4)2» 4^2 are

4^1 A (pı,ı (p2,2 + 4) Pı,—1 (po,2

4)2 = A- (p b-1 (P-2,2 + 1) ~ (Po,2 + P2,o)^) (54)

=

+ ?l,c))

A — (1 + ?2,2İ (1 + P-2,2) " (Po,2 + P2,o )’

Pı should be replaced by sample estimates r.E. Pı-

Assume there are N = NjN2 observations on the plane, and an 
are i.i.d. normal random variables with zero mean, and er" variance, 
with joint density

f (a) = {2Tza\)^-î^ exp
N
2

n=l
aSı 120^"^

The likelihood function, then, is

L (Z) = exp (-M/z(7a^) (56)

where M =
N1
2
Xı=l

N2
2 (Zxp X2 -Z'xı> X2)’ Zxı İS estimated TL
2

’ X2

by the model in (52). The log-likelihod

LL = — (N/2) log (2K(Ta) - 

yields score equations

(57)

8LL/a(f)ı = -CTa
Nı 

2
N2

2 (^Xl ^^i-l) M

8LL/8(j)2 =
Nı
2

N2
s (Zx,_,,

X =1 ^2+1 + 2x141, ,) M.

1

’^2-l.
1

Equalizing these to zero yields

r01 — 4>1 (^0,0 + T;,3) + 4>2 (’’o,2 + ’'2,o)

; = (P, (1'052 + ^2,2) + 4) (l'Oja + ^-2,2)’'-l,2
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which in turn yields estimates (j), and Note that ML estimates 
and Yule-Wa]ker estimates are approximately equal, so aıe LS es­
timates.

The variance and covariance of and are found from the
Fisher information matrix - [E (S (ZxpX2 l ^))] where S is a 2 x 2
matrix ■with elements S^ 
aLL/a(})ıS4)2.

= 0LL/a^(pp 8^2 = aLL/S"(l)p Sp = Sj,

j Q))]~b thenLet S-' = - [E (S (Zx, 
= Var ((fı) =

’X2

= G'

8^22

S-’

T
12

= Var ((^2)

= s-*« =

a'

.2
’ a
.2a

(1 +

(1 +
-2,2.

r.2,2.
Cov ($1 $2) = - (ro,2 + ’’2’o)

= [(1 + r2,2. r.-2,2. 0,2 + r2,o)2].

r ,) T-ı

) T-1

}) (1 + .) - (rı

İS obtained from the relation — (l“2rpj h
The general MA model for an m-dimensional spatial MA process is

q
Zx 0nax +n

n=-p

The simplest one

“1“ ax 00 — O- (58)

dimensional, bilateral MA model is MA (2; 1,1)

with varianceyo = o:' 
functions to obt.ain 0

.2 z (1 + ev, 6\), and autocorrelation

p, = p-, = - (0-, + 0,) (1 + 0'-x + 0\)-‘

P2 r-2 = - (0_,ej (1 + '^-1 + e\)-^

p_ij = O if I 4 1ptı 2 by the cut-off property of autocorre- 
lation for MA models, Using the autocorrelation function (s) the para- 
meter 0 can be estimated by MVPE method, by replacing p, with their 
sample estimates, r^

The characteristic equation of (59) is 6 (Bx) = 1—6_j B-O^ B S 
an infinite AR process, if the inverti- 

[ < 1 is satisfied.
so the model can be expressed as i 
bility condition 1 0-1 I + I 01 1

ax = e-’ (Bx) = (Ilx) ZxTZ

S (0_,Bx, + 0ıFxı) ^Zxı
J=O

7ZoZx + “ ,Zx ] + 7^ıZxı + ■ • •

(60)
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To see the ML estimation method for MA models consider, for simplicity,
6 in (59) so c'.2 z .2 

a (1 + 26’), Pı == -26(1 + 20’)-',
(.2 = 0’ (1 + 20’), thus 0 =

1 e l < 
model "L

2p2/pj, and invertibility condition is
112. Assume there are N observations on the line; then the
'X1

z

0 (axı-1 + axı+ı) + axı in matrix form is

where Z'X1

= (I - 0Y)axj = Vaxj

= (Z^, -L^}, axı (ap

(61)

.. ., au), I is N X N
identitiy matrix and Y is N x N matrix of form

0-1 = 91 <y

®2’

- 1
—1

o

—1
1

—1

o ...
—1

1

o - 
o 
o

o 
o

—1

o 
o 
o

0 
o

—1
1 _

0
0

o 
o

—1 
0

1
—1

If a’s are i.;'.d normal random variables with zero mean, and variance 
u’, the likelihood of Zxj is

L = (2ıro’)-M/^ exp [(-Zx (VV')-'Zx,) «)-'] | V l~ı (62)

where | V [-ı is the Jacobian of transformation from ax to Zx' since
Sx — 3X1 'X1 -Z-'xı and Zxj is predicted Zxı by (61). Note that exı

3x1 İf the model is the right identified one. To evaluaîe j V ], and
inverse of the covariance matrix of Zx eigenvalues of Y can be used.
If the model is correct, ali eigenvalues are distinct, so ali eigenvectors 
are unique. Then Y = UKQ, wherc K is the diagonal matrix of eigen­
values, U is the matrix of eigenvectors and Q is a matrix such that
Q-‘ U. By Cayley-Hamilton theorem V = U (I-0K) Q = UCQ.
Then the term log | V | in log of the likelihood in (62),

LL = - (N /2) (log (2K)-l-loga’J-log JV ) - '(L
is simplified

X1 (VV')-'ZxJ (63)
as

= T

N N
log 1 Y j = 2 (lognj = S log (1 + 0Xi)

i = l i-1

where nı is the ith element of C and Xı is the i th diagonal element of K. 
Then, the simplification of Z'xj (VV')-'Zx, is

Z'xı (VV')-'Zx, = (QZxJ' (1-H) U'U (1-H) (QZxJ (64)
,-ıwhereH = I-C ' is a diagonal matrix-vvith elements hı = 1- (1 + 6X1)
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After these simplifications on (62) the resulting equation can be eva- 
luated at those values of 0 wbich meet invertibility conditions. It is 
found that the maıimum likelihood estimator of 
Z'xj (VV')-‘Zx/ and substituting (64) into (63) we obtain

is = N-ı

LL = 2 log I V î + N log (Zx/ (VV')-*ZxJ + K

■where K is the constant of log-likelihood. ML estimator of 0 is that 
value of 0 which minimizes

LL = Nlog { 1 V I^/nZ':Xı (VV')-ıZxı } + K.

To find that value, Newton-Raphson iterative procedure can be utilized, 
Gebizlioğlu (1981). Properties and procedures of estimation for higher 
order and higher dimensional MA models are similar. Patterns of ma-
trices of spatial observations and matrices like Y in (61), and 0 (N) 
and 6 (N) in (30) and (31) make it harder to do simplification applied 
to likelihood and log-likelihood functions for higher order AR, ARMA 
models as well as MA models. Power spectrum of AR and MA models 
can be used as tools to detect the wavelengths measured with respect 
to spatial dimensions, that is, periodicity in several dimensions.

A two dimensional AR process, say AR (1, 1: 0, 1; 0, 1)

Z'XpX2 — 4)o5oZxp X2 + 4)poZxı+pxı + (j)05ı Zkjj X2+i + axp X2

with (l-(J)o,o po^o-(|)p opp o-cj)o,ı Po»ı)j has power spectrum

P = 2oi ! l-(|)o,o-(l)poe-*2nf 0.5, where

i = V-l’ and 1 l-(|)o,o-<t>poe

substituting BxpX2 in

02111 |-1/2 is obtained by

the characteristic equation of the
model, . 5. Similarly the power spectrum of an MA model

is

Zxi’X2 = e,’O’I axpX2+ı 1’0 axı+pX2 + axp X2

P = i 1-6,'0’1

4 051® -İ2nf |-l/2, ] f j

e
I

+ 0

»-i2nf_o „02nf 12.V./ VjjQC ie

For a process observed in two dimensions, the spectral estimate is

L
S 

n=-ı.
Ps,t = (4n)-‘

L
s

İ2=-L
^11’12 Sli’n COs{(n/F) (tjj 4" ®İ2)}

for grequencies -.5 to .5 cycles for each sampling interval . t, s = -F. 
- F + 1, . .., 0, 1, ... F. F is the number of freguency estimeates.
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L is the maximum lag in both dimensions, and Cjpjj İS the sample
covariance estimate, g^pjj is a smoothing function. Adapting Bart- 
lett’s window, Jenkins and Watt (1968), to two dimensions gjpjj
= 1-h /L if 0
distance between points (x

L, zero otherwise, where h = -p
1’ and (x l+ZP

definitions and spectral estimates given here can 
to higher dimensions and order.

^2+(2)- power spectrum
easily be extendecl

h

VALIDATION OF MODELS

Among the several procedures which do not require specification 
of an alternative hypothesis, one is the validation tests based on com- 
parison of various characteıistics of models an data. As discussed above, 
spontaneously, comparison of autocovariance and autocorrelations 
of data with those of the models derived theoretically indicates if the 
fit is reasonable Similarly, theoretical spectra of fitted models which 
are compatible with spectral estimates of data reveal if the fit is correct.

A validation test with null and an alternative hypothesis is based
on the residuals. Suppose that Zx is postulated to depend on Zx^z. 
The exact form of this dependency is hypothesized to be characterized 
by an m-dimensional family of functions, that is, ARMA models of 
appropriate class. Let IF denote such a family of functions with M 
parametes. The hypothesized class of models are such that E (Zx) = 
IF (XxZ4_, where £2 is the space of M parametes. To test the hypot-
hesis, a sample is used and estimators of parameters Q = ( 0 0 2J • ■

0k, 0j, ... 0y), y + k = M, are obtained. Then IF = IF (Zxjz; fl)
is the estimated Zx function. If E (IF) = IF (Zx+z' O) then the
model is adequate, that is, if ex = Zx-E (IF) then the hypothesis, 
actually, is E (ex) = 0. Under the stated assumptions and regularity
conditions (see Section 2), and with the assumption that ex AN
(0, J, then = 1- {a\iy^r can be used to test that the
right model is IF (Z^^ı, £1), against it is IF (Zx4_, £Is)- The underiying

theory is asymptotic and rests on the likelihood ratio tests. Let £lg be

a subset of £2. Consider £2g = 0, or £2^ = £2*, a specified set of values
of s number of parameters, s < M. Denote the maximum value of 

likelihood function with respect to £î by L(Q). L(Qs) is the maximum 

value of the likelihood with respect to Qg. The ratio L(£2s) 
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provides a measure on how well flg fits the observations against 

another fit with £2. The corresponding F- test is with the statistic 
(N-K-1) C^’(R2-Rg) (1-R') which is approximately F distributed with 
parameters (C, N-K-1), where K is the number of parmeters in a 
fitted model, while C=K-s is the difference between the number of 

parametres in £2 and £2s.

For a large number of observations, N, the statistic

X = —21og L(Qs)/L(Q) 

is distributed as distribut'on. If X ’s high, then the fit with £2 is not 
good, so the hypothesis is rejected.
If ex’s are approximately normal then log-likelihoods will be domina- 
ted by Sx ex (£2)^, where ex (£2) is the residuals at location x. Then

X = (Sx ex (£2s)^ — Sx ex (65)
which directly leads to

X = (R^-Rl) [(7*.2 a Sx (Zx--- Zx)] (66)

where R^ = 1— (Sx ex (1^)^ (2x (Zx — Zx))

and R^s = 1 — (Sx ex (Qs)")(Sx {7.^ — Zx))-^.

If the estimated value of o^, which can be obtained by ML estimation, 
is substituted in (66 ) then

X = N(R2 — Rg) (1— R2)-ı.

The corresponding F-îest is with the statistic (N-K-1) (R2-R2)
(1-R2) which is approximately F distributed with parameters (C, 
N-K-1), where K is the number of parameters in fitted model, while 

C= K-s is the difference between the number of parameters in £2 

and £2s.

CONCLUSION

on
Purely spatial ARMA family models are discussed with emphasis 

correlational properties, ■weak stationarity, and estimation. Central 
limit properties for spatial series are established, so that existing esti­
mation and validation techniques are valid. It is shown that, in the
estimation distributional properties are not needed, and ML, LS and
Yule-Walker estimates are approximately convergent.
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İn many experinıental situations spatial data may be far from meet- 
ing stationarity assumptions. In these cases one can utUize the suggest- 
tions, among others, of Patankar (1954), Norcliffe (1977)» and Mitcbell 
(1974) to remove the trend along spatial axes, and to stabilize the vari­
ance. Introduction of differencing filters into the models should neces- 
sarily be undertaken to analyze nonstationary spatial data.
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