Commun. Fac. Sci. Univ. Ank. Series A,
V. 37, pp. 95-107 (1988)

ABSOLUTE PRODUCT SUMMABILITY OF THE FOURIER
SERIES AND ITS ALLIED SERIES BY

Prem Chandra and H.C. Jain

ABSTRACT

In this paper, the authors have proved four theorems concerning | (R, exp {log WA L, o)
(C, HY{A> 0, x> 0) summability of the Fourier series, its factored conjugate series and their
derived series. Earlier, these results were obtained by Chandra [1] for |R, exp{logw loglagw,
140 (> 0) summability. Also it has been shown that the sequence of factors {1 /log(n+1)}

used for the conjugate series and its derived series can not he dropped.
DEFINITIONS AND NOTATIONS

Let, throughout the paper, ¥ stand for % or % in case the first
0 1

term is either zero or not defined and let Sa, he an infinite series with
the partial sum s, = ag-+-a,+-a,+...--ay. Then t,, the (C,1)-mean of
(sn), is given by : )

ty = (n--1)~* % Sm = % (n+1-m)ay, [(n+1).

m=o0 m=0

Hence
it = ¥ map/@+@t1) (0> 1).

Let )

th—ty; (n > 1),
to (n=0),

dy =

and let A(w) be a differentiable, monotonic increasing, function of w
tending to infinity with w. Then (R, A\(w), ) mean of ¥ dp, which is the
same thing as (R, A(w), «) (C, 1) mean of Xay, where « > 0, is given by
(see[5] and[6]) o

Ag(w) = ((w)) ™ Z  {Nw) — Nn)}* dy

DSW
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= (W)= T fi(w) k) n(nl+1) n%‘-_l o am

The series X ap is said to be summable | (R,AMw),a) (C,1) |where
o > 0, if

=]

AD(w) A(n) <

_ Y OIMwl-an)¥et ——Z2 ¥ m a dw < o0,
J e 1,5 by i e

where h is a positive number (see[7] and [8]) and A)(w) stands for

d

oy Mw) . For >0, we further define that
w

T en(t) = O(1) |(R,A(w),x) (C,1) ], uniformly in 0 <t <, if

OOM w)—A(n) }e—1 _—X(n) 3 me w=
kJ Ta(w) Jo7 |ns5-3W {A(w)—A(n)} 2t §=1 m (1) | dw=0 (1),

uniformly in 0 < t < 7. Silmilarly
T ep(t) = O0(1) | C, 2] (x> 0), uniformly in 0 < t < w, if

[+4 n o1
T @A) X AT moew(®) | = 0 (D),
m=1 n=m

uniformly in 0 < t < w.

Let f be 2n-periodic function and L-integrable over (-, ). Then
we may suppose, without loss of generality, the Fourier series of f, at
a point x, is given by

(1.1) X (ap cos nx + by sin nx) = X Ay(x).

Then the series conjugate to (1.1) is given by

(1.2) £ (by cos nx — ay sin nx) = X By (x).
The differentiated series of the Fourier series at a point x will be
Y n(by cos nx-ajp sin nx) = X nBj, (x)

and
Y -n(ap cos nx -+ by sin nx) = — X n Ap(x),

respectively.
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We use the following notations throughout this paper:

(1.3) 2@ =

(ST

{f(x+t)+f(x—t)—2s} (s is suitable constant)

(1.4) Y(t) 3 {f(xt1)—f(x—t)}

(1.5) B(w) = exp {(log WA} (A > 0)

(1.6) BO(w) = —— B (w)

(1.7) F(w) = méw {B(w)—B(m)}*™* B(n)/{n(n+nl)} (Oﬂ > 0)

(1.8) E(w,t) = X {B(w)—B(n)}*' n~' f(n) exp(int) (« > 0)

(1.9) K(wt) = = {8(w-8@)}*" fnlog (a+1)}™ B (n) exp (int)
n<w (OC > 0)

(1.10) Agy = gn— gny, (m > 0).

Throughout the paper, we take K > = e° for the convenience in
the analysis.

INTRODUCTION

In this paper, we prove the following theorems concerning the ab-
solute summability of the Fourier series and allied series at a point x:

t
THEOREM 1. Lett o, (1) — j & (u) du. Then
2

2.1 7 (t)loglog(k /t) € BV(0,x)
implies that
(2.2) T An(x) € (R, B(w), «) (C1)] (x> 0).

t
THEOREM 2. Let t {§,(t) = j (u) du. Then
[¢]

(2.3) (i) §,(t)loglog(k jt) € BV(0,x); (ii) ﬁgt) e L (0,m)

imply that
(2.4) % By (x)/log(n+1) e (RB(w)x) (C1)[ (x> 0).
The factor (log(n+1))™" in (2.4) cannot be dropt.
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THEOREM 3. Let U(t) = {(t) /t. Then-

(2.5) . U (v)loglog(k /t) € BV (0, =)

implies that

(2.6 T nBu(x) e (R B(wW), ) (C1)] (x> 0)
THEOREM 4. Let V(t) = =(t)/t . Then

2.7) (i) V(t)loglog i} e BV(0,m) ; (1)) —Y ¢ 1(0,7)

tlog e
imply that
(2.8) Z —nAy(x) /log(n+1) € (R, B(w), «) (C1)] (« > 0).
The factor {log(n-+1)}"in (2.8) can not be dropt. k

Earlier, Chandra [1] established these results for |R, exp {log w
loglog w}, 1+ |(x>0) summability. Since there has not been any known
relation between the summability methods [R, exp {log w loglog w},
14-o [(x>>0) and |(R, B(w), o) (C, 1)| (x>>0) therefore it remains open
to settle the problem about the relationship of these two methods.

It may be observed (see Chandra[l]; Lemma 7) that the COIldlthIlS
(2.3) and (2.7) are equivalent to

(2.9) () $(0+) = 0; (i) Orloglog(k ) lud, (1) < oo
and

(2.10) (i) V(0+) = 0; (i) Orloglog(k ) 1d V(t) | < oo,
respectively.

INEQUALITIES

For the proof of the theorems, we shall require the following order-
estimates, uniformly in 0<<t<{w, whenever A > l and 0 < « < 1:

3.1 " 0 (tog Wy} dy = 0 {p(w) W (log w)*"2}
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(3.2) Fw) = 0{8%(w) (log w)"d w'}

(3.3) E(w,t) = O{t9gx(w) w* (log w) O™ @D} (w> 1)

(3.4) K(w,t) = O{t—ofx(w) w* (log w) A7) @ D71} (w > t7})
Inequality (3.3) is contained in Chandra [3]: (3.2) and inequality

(3.4) may be obtained similarly. Thus, we furnish the proofs of (3.1)
and (3.2) only.

Proof of (3.1). It is easlily verified that

d
dw

BOMw)
W

as w -> 00, Hence if ¢ is a constant with 0 << ¢ << 1, we have

d 3 B(w)

B0 (w)
W

— -A
dw W (log w)

(log w) - % > ¢

for sufficiently large w. On integrating this inequality, we obtain (3.1).

Proof of (3.2). We heave

P = o + [ on-sene 0 ay

= 01 + ( JWI —+ WIJW) ({B(V")‘B(Y)}“_’1 ;(%(_yf)l)‘ dy)

= 0O(1) + J, + J,, say,
where w, is determined by the equation
(log w)A — (log w)d = 1

Now

1 (w B B((y)
Jl = —— W )—| Aa 1 —
)7 e

< 5 {B-eone [ p0) Gog »4 (1) dy

= O {px(w) w™' (log w)' A},
by (3.1). And
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" o B
an = JT N

= O{(w)™ Gogwyd 7 fo(w)-8(}<* BOy) dy )

= Ofpx(w) W' (log w)'"8}.
Combining J, and J,, we obtain the required resalt.
LEMMAS

We shall use the following lemmas in the proof of the theorems:
LEMMA 1. For p=1,2 and q=2,3

J‘ t sin nu
o) u(log(k fu)r(loglog(k fu))a

uniformly in 0 < t < 7.
This may be deduced from (3.2) of Chandra[2].

LEMMA 2. Uniformly in 0 < t < 7,

du =0 {(log n) P(loglog n)-4},

n

T = 3 (nA? )| HEO Ai:in sin mt| = O(1),
a« n+a n«

where A = ( - ) ~ Tt 1)

Proof. Writing T for the integral part of k /t, we obtain by Lemma
5.1 of McFadden [6]

T n 0 n
T<t X @AY) S mAY 4 ¥ (@A) = AR
n=1 n=T m=0

et n—m

sin mt| = O(1) + O (1@ Y nia
n=T

= O(1), uniformly in 0 < t < 7.
This completes the proof of the lemma.
LEMMA 3. Uniformly in 0 < t < =,

n
[ AN, 01 cos mt - \
Z (nA, )| mzil Ah Tog (mt1) | = O {loglog(k /t}.
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This may be proved on proceeding as in Lemma 2.

LLEMMA 4 ([10]). Let F be measurable over (0, o) x (0, o).
Then in order that for every h €L’(0, c0), the function

HEy) = | “Fly.oh(y) de

should be defined almost everywhere and

J“’!G(y)f dy < o,

it is necessary and sufficient that

ess sup o
e |7 Fe | ay < .

LEMMAS5. Foralltin0 <t < m,

4.1) 3 n7 cosnt = — log {2 sin}t}.
n=1
Proof. We know that
S n' sin nt = 1 (m—t)

n=1

for all t in 0 << t << = and hence

¥ nlcesnt = X n exp(int) — i T n' sin nt
n=1 n=1 n=1
4.2) = 3 o exp(int) — % i (m—t).
n=1

Also

O T 0

X i j exp(int) dt = — log 2 — X n™' exp(int),
n=1 ¢ n=1
so that

b n 'exp(int) = — log 2-i 3 exp(inu) du

n=1 =
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— — log 2 r fexp(in) /(1-exp(iu))} du
= — log2 -+ ltog (I—exp (in)) — log (I—exp (it)
= — log(l—exp(it))
— — log(2sindt) -+ i(n—t).
Using this in (4.2), we get (4.1).
PROOF OF THE THEOREMS

In view of the first theorem of consistency (see[7] and [8]) and the
second theorem of consistency (see[5]) for the absolute Riesz summa-
bility, we can assume, respectively, 0 <2 o << 1 and A > 1, for the proof
of all the theorems.

5.1. Proof of Theorem 1. We have

Ap(x) =

e

kg
j @ (t) cos ntdt
0

2 T
= — J &, (1) nt sin nt dt,
™ o .

integrating by parts and using & (7)=0. Once again integrating by
parts and using & ,(n) = 0, we obtain that :

) = — = |7 b0 d {5, () loglog (k/9)},

where

t .
nu sin nu

mo = [ e

Now, to prove that X Ap(x) € |(R, B (w), «) (C, 1} |, it is sufficient to
show that

(5.1.1) Z hy (t) = O0(1) (R, B(w), &) (C. 1) |, uniformly in 0 <t < m,
whenever (2.1) holds. However, integration by parts yields that

t cos nt sin nt d

_|_

(M) = — Tgogti ) n At

T |
loglog(k /t)
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t o, ‘ |
B j sin nt (_d_>2 (t /loglog(k /t)) dt
. dt

n

= hy, (1) + hn.)(t) + hn,(t), say.
By Lemma 1, it follows that -

2 hy,(t) € [C0] .
and hence by the absolute regularity of the method
T hn,y(t) € [(RB(w)o) (C.1) 1.

Also, by Lemma 2,

3 by, (t) = O(1) | R, B(w), @) (C, 1)], uniformly in 0 <t < 7.
Thus, to complete the proof of (5.1.1), we only require to prove that

j‘” B0 (w)
o) BTHW)

= O {t7!loglog (k/t)}, uniformly in 0 < t < m.

o1 B (n) > m cos m
s {B(w)—B(n)} 1) mzzl c t | dw

Now, for T=(k/t) (log(k/t))2, we split up the integral o, [* into
sub—integrals o, [k/t, 14T and 1[®. Let these sub-integrals be denoted
by I, I, and I, respectively. Then, by using cos nt 1 and (3.2), we ob-
tain that

L = 0 fe kit {£O(w) 87 (w)} w? F(w) dw} = O (t7),
uniformly in 0 < t < 7. And using the inequality
n

2" m cosmt = O (n/t), uniformly in 0 < t < 7, and (3.2)

m=1

once again, we obtain that
L =0 {t7" w7 B(O(w) BH%(w)} w F(w) dw}
= 0 {t7! 1T wdw} '
= O {t~! loglog(k /t)}, uniformly in 0 < t < 7.

Finally, we observe that

n __cos(n+1)t-1 sin(n-+ i)t
Zomeosmt = —oo o Tt =

by Abel’s transformation, and hence
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Iy = O (@) o7 {BO (w)/p* (w)} F(w) dw
+ O (t7) o7 BO (W) /B (W)} | E(w,t) | dw
= O (t7"), uniformly in 0 < t < =,
by (3.2) and (3.3). Thus, collecting the results, we obtain the required
result.
This completes the proof of the theorem.

5.2. Proof of Theorem 2. We prove the theorem under (2.9). We
have
ko
Bu(x) = “f? j o (1) sin nt dt
9 T
= — j ¢, (t) nt cos nt dt,
o
integrating by parts. Once again integrating by parts and using (2.9)
(i), we obtain that

T

cos nw 2 cos nt .

By(x) = —2 {, () - -+ — j. 3 ~ + tsinnt ) d ¢, (t)
[+]

= (2/r) oJ™ {n~! (cos nt—cos nw) - t sinnt} d ¢, (t).
Now, X By (x)/log (n+1) € |(R, B(w), &) (C, 1) | if

(5.2.1) X Ry(t) = O (1) (R, B(w), &) (C, 1) |, uniformly in 0 < t < m,
whenever (2.9) (ii) holds, where

cos nt sin nt

nlog(n+1) + loglog (I /1))~ log(n-+1)

= Ry, (t) + Ry, (t), say.
However, it follows from Lemma 3 that

2 Ry, (t) = 0(1) |C,1], uniformly in 0 < t < =,

Ru(t) = (loglog (k /1))~

and hence it is necessarily summable |(R,B(w), «) (C, 1) |. Thus, to comp-
lete the proof of (5.2.1), it remains to show that

2 Rp,, (t) = O(1) [R,B(w), «) (C, 1)|, uniformly in 0 <t <,
that is

B(n) D m sin mt

_ BO(w) W)B(m) v w
J = ez‘[ Blé-oc (W) nSZw {B( ) B( )} n(n+1) ot log(m—{—l) d
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= O ft7! loglog(k /t)}, uniformly in 0 < t < .

Now, for T = (k/t) (log (k/t))2, we split up the integral e2f°5 into
sub-integrals o, [X/t, ;¢ [T and r[®, and denote them, respectively, by
J,» J, and J,. Proceeding as in I, and I, of Theorem 1, we may obtain
that

Ji = 0 {t7'loglog(k /t)} (i=1, 2),

uniformly in 0 < t << w. Also, by Abel’s transformation,

% m sin mt 0 (t) n+1 cos(n- )t
met  log(m+1) " Tog(nd-2) T 2 sint

and hence
J, = O@t?)pf=BM(w) | BU(w)} {F(w) + t|K(w,t) [} dt
= 0 (t™"), uniformly in 0 < t << =,

by (3.2) and (3.4).

Collecting the results obtained for J; (i=1,2,3,), the proof of (2.4)
may be completed.

Now we show that the factor 1 /log(n-}-1) in (2.4) can not be dropped.
We have

C0S N7

Bu(x) = —2 ¢, (%)

+ % o™ log(n4-1) (Rp,, (1) Rn,,(t)) X

nw -
loglog - d 4,(1)

= P,(n) + P,(n) 4+ P (n), say.

However, T P (n) €|C, 1|. Also, proceeding as above in J, J,, J,,
it may be proved that

Z Py(n) € [(R, B(w), «) (C, 1) &

Thus in order that X Bp(x) € |(R, B(w), «) (C,1) |, it is necessary and suf-
ficient that

Z Pyn) € (R, B(w), o) (G1)]

for which, by Lemma 4, it is necessary that



106 PREM CHANDRA - H.C. JAIN

ess igp 7 a(w) : wy B
(5.2.2) 0<t<n j sy |3, B e

n
% mRy,,(t) log (m+1) | dw

m=1

However, by Lemma 5,
$ Ru(Wlognt1) — (loglog — )11 ( ! )
I Ruy(t)log = (1oglog <) 1og (e

which tends to infinity as t — 0--. Therefore (5.2.2) does not hold since
(R, B (w), o) (C, 1) | is absolutely regular method.

5.3. Proof of Theorem 3. We have
2 "

n Ba(x) — — j 4(t) 1 sin nt dt
T o

- —:— J U(t)loglog(k /1)

nt sin nt

loglog(k [t) dt.

Tntegrating by parts and using the fact that J(x) = 0, we obtain
that

2 T ™ nu sin nu
n B (X) = - _Tt“ '[ d{V (t)loglog(k/t)} 05 loglogw du.
0]
Now, whenever (2.5) holds, the preof of the theorem may be comp-

leted by using (5.1.1).

5.4. Proof of Theorem 4 .We shall prove the theorem under the
equivalent condition (2.10). We have

TC
~n Ay (x) = - —i— OJ V(t) nt cos nt dt
2 n
= — J {n~1{cos nt—cos n) - t sin nt} dV (1),
iv o

integrating by parts and using (V(04) = 0.
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Now, the proof of (2.8) may be completed by using (5.2.1), when-
ever (2.10) (ii) holds.

The proof that the factor (1 /log(n-1) in (2.8) cannot be dropped
may be followed from Theorem 2.

This completes the proof of the theorem.
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