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ABSOLUTE PRODUCT SUMMABİLİTY OF THE FOURİER
series and its allied series by

Prem Chandra and H.C. Jain

ABSTRACT

In tlıis paper, the authors havc proved four tlıeorems concerning I (R, exp |log w)A f, a)(C, 1)İ(A 0, a 0) summability of the Fourier series, its factored conjugate scries and their 
derived series. Earlier, these results were obtained by Chandra [I ] for |R, exp{logw loglogwj, 
I + a ] (a > 0) summability. Also it has been shown that the sequence of factors j 1 /log(n-)-l)]- 
used for the conjugate series and its derived series can not be dropped.

DEFINITIONS AND NOTATIONS
00Let, throughout the paper, 2 stand for 2 ör 2 in case the first

o 1term is either zero or not defined and let 2an be an infinite series withthe partial sum Sn = ao+aj + a2“)“ ■ • ■ Then tn, the (C,l)-nıean of(sn), İS given by
n2 

m=o
2 (n+l-m)am/(n-l-l).

m=o
tn = (11+1)-’ S m

Hence
tn t]•n--ı

n2 
nı=ı

mam/(n + (n+l)) (n > 1).
Let

dn tn t]•n-ı (n 1).to (n=0) ,and let X(w) be a differentiable, monotonic increasing, function of w tending to infinity with w. Then (R, >.(w), a) mean of 2 dn, which is thesame thing as (R, X(w), oC) (C, 1) mean of 2an, where a(see[5] and [6])Aa(w) = (X(w))
0, is given by

ra 2 {X(w) — X(n)}a dn n< w
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a
= (X(w))-« S n< w {X(w)—X(n)}“ 1 n(n+l) n2 nı=ı m am

The series S an is said to be summable ] (R,X(w),a) (C,l) |where 0, if
k

00 X(b(w) I 2 (X(w)-X(n)}«-’ n< w ><(n) n(n+l) n2 m a- m=ı •lU I dw 00,

where h is a positive number (see[7] and [8]) and X(')(w) stands ford dw X(w) . For a>0, we further define that 
y Cn(t) = 0(1) j(R,X(w),a) (C,l) {, uniformly in 0 K, İft

00

k

Xd)(w) {X(w)}«+' I S {X(w)-Z(n)}“ * n< w n(n+l) n2 m Cm (t) i dw=0 (1), m=ıuniformly in 0Cn(t) = t 7t. Silmilarly0(1) I C, a i (a 0), uniformly in 0 t if
s (nAn)-M

n2
nı=ı

a“"'n=nı m Cm(t) ! 0 (1),
uniformly in 0 t Tt .Let f be 2--periodic function and Ij-integrable över {-Tz, k). Thenwe may suppose, without loss of generality, the Fourier series of f, ata point X, is given by(1.1) S (an cos nx + bn sin nx) An(x).Then the series conjugate to (1.1) is given by(1.2) S (bn cos nx - an sin nx) — S Bn (x).The differentiated series of the Fourier series at a point x will beS n(bn cos nx-an sin nx) = S nBn (x)and S -n(an cos nx respectively. + bn sin nx) = — Sn
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We use the following notations throughout this paper:(1.3)(1.4)(1,5)

0(t) 'p(t) P(w)
1 
2 {f(x-}- t)+f(x-—t)—2s} (s is suitable constant)

= i {f(x+t)-f(x-t)} = exp {(log w)^} (A 0)
(1.6) p(ı)(w) d= -j— P (w)dw(1-7) r(w) S (p(w)-p(n)}«-‘ m< W 3(n)/{ıı(n+“l)} (« 0)
(1.8) E(w,t) s {Ş(w)-Ş(n)}a-' n< w 11“' p(n) exp(int) {at. 0)
(1.9) K(w,t) s {P(w)-P(n)}a-- n< w (n log (11+1)} * P (n) exp (int)(a 0)(1.10) Agn = gn —gn+ı (n 0).Throughout the paper, we take K k e^ for the convenience in the analysis.INTRODÜCTİONIn this paper we prove the following theorems eoncerning the ab-solute summability of the Fourier series and aUied series at a point x:

THEOREM 1. Let t 0^ (t) = o. t
0 (u) du. Then

(2.1) 0j(t)loglog(k/t) e BV(0,Tr)injplies that(2.2) S A„(x) e |(R, p(w), a) (C,l) ) (a 0).
THEOREM 2. Let t 4-,(t) = o. ■t ıp(u) du. Tlıen

(2.3) (i) (pı(t)loglog(k/t) e BV(0,7t); (ii) ’J>ı(t) tlog(k/t) e L (O,Tc)
imply that(2.4) s Bn (x)/log(n+l) 6 j(R,p(w),a) (C,l) I (oc 0).The factor (log(n+l)) ' in (2.4) cannot be dropt.
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THEOREM 3. Let U(t) = tjj(t) /t. Then(2.5) U (t)loglog(k İt) E BV (0, 7t)implies that(2.6) 2 n Bn(x) 6 ](R, Ş(w), a) (C, 1) I (a 0).THEOREM 4. Let V(t) = 0(t)lt . Then
{2.1) (i) V(t)loglog 1 6 BV(0,k) ; (ii) V(t)_____, k tlog — E L (0, k)
imply that(2.8) 2-nAn(x)/log(n+l) e 1(R, p(w), a) (C,l) [ (a 0).The factor {log(n-)“l)} Hn (2.8) can not be dropt.Earlier, Chandra [1] established these resıdts for R, exp ^log w loglog w}, l-(-a i(a>0) summability. Since there has not been any knownrelation hetween the summahility methods j R, exp {log w loglog ■w},1 + a j(a>0) and |(R, P(w), a) (C, 1) [ (a>0) therefore it remains öpen to settie the problem about the relationsbip of these two methods.It may be observed (see Chandra[l]; Lernma 7) that the conditions(2.3) and (2.7) are equivalent to
(2.9) (i) s^(0+) o. loglog(k/t) |u (t) I0 ; (ii) co

and
(2.10) (i) V(0+) = 0; (ii) f loglog(k/t) {d V(t) I oJ ;■ <X:,respectively.
INEQUALITIESFor the proof of the theorems, we shall reguire the following order-aestimates, uniformly in 0<t<Ti:, whenever A 1 and 0 1:
(3.1) J (P^Hy) (log ly} dy O {P(w) w ‘ (log w)’
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(3.2) F(w) 0 (Ş“(w) (log w)‘-^ w-i}(3.3) E(Av,t) = O (t “P“(w) w-a (log w) } (w(3.4) K(w,t) O (t “P“(w) w “ (log w) *) ’} (w t-')> t~‘)Ineguality (3.3) is conlaincd in Chandra [3]; (3.2) and incouality (3.4) may be obtained similarly. Thus, we furnish the proofs of (3.1) and (3.2) onIy.Proof of (3.1). It is easlily verified thatd dw P(w) w İ3(')(w)
■w

(log w)i △(log Av)*'"'^
as w -> 00. Hence if c is a constant witlı 0 1, we havecd dw P(w) w (log ı-A 3(b(w) w (log w)‘c
for sufficiently large w. On integrating this inequality, we obtain (3.1).Proof of (3.2). We have

F(w) = 0(1) + 'Wı l3(w)-Ş(y)}“ ‘ P(y) y(y+i) dy
= 0(1) + 'wi

.a“i

W1

P(y) y(y+i) dy
0(1) + Jı + I2’ say,

2

+ f'''\ !j y (^(P(w)-P(y)}'
where av, is determined by the equation (log w)^ — (log w,)^ 1.No w 1 Aj. f W1J (3(w)-Ş(y)}“

2,

P<»(y) (y+i) (log y)'^”^-
.a-1 J p<*)(y) (log y)'“^ (y+tl) 1 dy

= 0 {Ş“(w) by (3.1). And .-1 (log w)* △}
-4" {p('^)'“P(^ı)}‘

w

7 dy
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AJ,
WJ

{P(w)-P(y)}““' p(‘)(w)(y+1) (log y),A-ı dy
= o {(w,) ‘ (log Wı)’ △

Wl.
dy }

= 0(P“(w) w'

w

j {P('^H(y)}“ '
* (log w)^ △}.Combining and J^, we ohtain the required result.LEMMASWe sball use the following lemmas in the proof of the theorems:LEMMA 1. For p=l,2 and q=2,3■t sin nuo. u(log(k /u)P(loglog(k /u))<ı du =0 ((log n) P(loglog n)-0},uniformly in 0 7T.This may be deduced from (3.2) of Chandra[2],LEMMA 2. Uniformly in 0

S = S (nA“ )- ) nS m=o ’ sin mt i = 0(1), n-m ' '■ '
where A“ n-|-aa na r(a+i)Proof. Writing T for the integral part of k /t, we ohtain by Lemma 5.1 of McFadden [6]

S<t 2 (nA“)n=ı n
2m=ı mA'^”'n—m 00+ S (nA“ )-' j Sn=T ın=o A“”' n-m

sin mt I = 0(1) 0 (t““ 00n=T n-’-a
= 0(1), uniformly in 0 TC.

T

t
t ■^3

n

tThis completes the proof of the lemma.LEMMA 3. Uniformly in 0
2 « )~* I n

2m=ı A“-’ n=nı cos mtlog (m-bl) 1 = o {loglog(k/t}.



ABSOLUTE PRODUCT SUMMABİLİTY 101
This may be proved on proceeding as in Lemma 2.LEMMA 4 ([10]). Let F be measurable över (0, co) X (0, oo).Then in order that for every h eL'(0, oo), the functionH(y) = f“F(y,t)h(t) oJ dt

should be defined almost everywhere and
o 00rooJ !G(y) I dy 00,

it is necessary and sufficient thatess sup0<t< TC ’oo

00.o, |F(y.t) I dy
LEMMA 5. For ali t in O t K,

(4.1) S n ’ cos nt = — log {2 sinjt}.n=ıProof. We know that
S n=ı n ' sin nt = J (tz—t)

for ali t in O TC and hencet
2 n=ı n"‘ cos nt 00Sn=ı n-' exp(int) - i 002 n=ı n sin nt

(4.2) 002 n=ı n~' exp(int) — i (tc—t).1
2

Also
TCS n=ı exp(int) dt = — log 2 — 002

n=ı
n-' exp(int).i fso that

00sn=ı n ’exp(int) = - log 2-i 2 n=ı exp(inu) du
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— log 2 -j j {exp(iu) /(l-exp(iu)) } du
t'= — log2 + log (1—exp(İ7z)) = — log(l—exp(it))= — log(2sin|t) + Ji(7T:-t).Using this in (4.2), we get (4.1).PROOF OF THE THEOREMS

log (1—exp (ıt)

In view of the first theorem of consistency (see [7 ] and [8 ]) and the second theorem of consistency (see [5 )) for the absolute Riesz summa-bility, we can assume, respectively, 0 of ali the theorems. 1 and A > 1, for the proof
5.1. Proof of Theorem 1. We have
An(x) = ----

O.
0 (t) cos nt dt

O.

Tî 0j (t) nt sin nt dt.

C V.

2
2
7Zintegrating by parts and using 0j(k) = O. Önce again integrating by parts and using 0j(7t) = 0, we obtain that2An(x)

o.
hn(t) d {01 (t) loglog (k/t)}.

where
thn(t) =

O,

nu sin nu loglog(k /u)
du .

Now, to prove that 2 A„(x) e show that |(R, 3 (w), a) (C, 1) |, it is sufficient to
(5.1.1) S hn (t) = 0(1) [(R, 3(w), a) (C. 1) j, uniformly in 0 <■whenever (2.1) holds. However, integration by parts yields that t 7t,

lin(t) = — t cos nt loglog(k/t) sin ntn d dt t loglog(k jt}+
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t

o.

sin ntn / d \ 2 ('dt') dt
hn,ı(t) + hn,2(t) + hn,3(t), say.By Lemma 1, it follow8 thatS hn,3(t) e [ C,0 Iand hence by the absolute regularity of the methodS hn,3(t) 6 ) (R,Ş(w),a) (C,l) |.Also, by Lemma 2,S hn,2(t) = 0(1) j R, (B(w), a) (C, 1) |, uniformly in 0 t 7T.Tlıus, to complete the proof of (5.1.1), we only reguire to prove that

e^' Ş<’)(w)P‘+a(w) 2 (Ş(w)—Ş(n)}'.a~ı P (n) n(n+l) n
2 

m=ı
m cos mt dw

O {t * loglog (k/t)}, uniformly in 0 tNow, for T=(k/t) (log(k/t))^, we split up the integral 02/°° sub-integrals k/t}^ and t/“- Let these sub-integrals be denotedby Ip I2 and I^, respectively. Then, by using cos tain that nt 1 and (3.2), we ob-
11 = O {e2P/'^'{P<'’H/Ş’-“(w)} ■) F(w) dw} o (t-'),uniformly in 0 TT. And using the ineaualityt

nS-
m=ı

m cos mt = 0 (n/t), uniformly in 0 and (3.2)t 1^5

önce again, we ohtain thatI2 O {t-‘ t/tJT {Ş((')(w)7p'+a(w)} w F(w) dw}- 0 {t-‘ k/t,F w-ı dw}= O {t loglog(k/t)}, uniformly in 0 Finally, we observe that K.t
nS

m= 1
m cos mt cos(n-(-l)t-l (2sin|t)2 + (n+1) sin(n+|)t 2 sin|tby Abel’s transformation, and hence
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I3 = O (t-2) tJ" (w)} F(w) dw+ O (t-i) tP p(') (w)/p’+“(w)} [ E (w,t) 1 dw= O (t '), uniformly in 0 t TC,hy (3.2) and (3.3). Thus, collecting the results, we obtain the required result.This completes the proof of the theorem.5.2. Proof of Theorem 2. We prove the theorem under (2.9). We have
B„(x) = 2

TZ

TC tp (t) sin nt dt
O2

TC

.TC (pı (t) nt cos nt dt.
Ointegrating by parts. Önce again integrating by parts and using (2.9) (i), we obtain that

2 ,7^B„(x) -2 (^) COS DTC

nTC TC

COS nt 

n
d (t)

O= (2 İTz) (n"’ (cos nt—cos mr) t sin nt} d p (t). Now, S Bn (x) I log (n+1) e j(R, 3(w), a) (C, 1) | if(5.2.1) s R„(t)wlıenever (2.9) (ii) holds, whcreO (1) |(R, Ş(w), a) (C, 1) j, uniformly in 0 t < TC,

R„(t) = (loglog (k/t))-^ cos nt nlog(n+l) + t(loglog (k/t)) ' sin nt log(n+l)

+ -- - -|- t sin nt

= Rn,ı (t) + Rn,2 (t)> say.However, it follows from Lemma 3 thatS Rn,ı (t) = 0(1) jC,l [, uniformly in 0 and hence it is necessarily summable ](R,p(w), a) (C, 1) . Thus, to comp- lete the proof of (5.2.1), it remains to show thatS Rn,2 (t) = 0(1) ÎR53(w), a) (C, 1) , uniformly in 0 that is t

J -
e^'

P<9(w) 3’(w) Z {p(w)-p(n)}«-> 
n<w

P(p) n(n+l) n
S 

m=ı

m sin mt log(m+l) d w
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= O {t“‘ loglog(k/t)}, uniformly in 0 t TC.Now, for T = (k/t) (log (k/t))^, we split up the integral e2/“ “to sub-integrals k/t/^ and and denote them, respectively, byJp Jj and Jj. Proceeding as in Ij and of Theorem 1, we may obtain that Ji = O ^t-* loglog(k/t)} (i=l, 2),uniformly in 0 t TC. Also, by Abel’s transformation,n S nı-=ı m sin mt log(m+l) O (t-^) - n+1 log(n+2) cos(n4-J)t2 sin|t

and hence= 0(1 jŞ(‘)(w) I 3'+“(w)} {F(w) + tiK(w,t)|} dt= O (1“ '), uniformly in 0 t ît.by (3.2) and (3.4).Collecting the results obtained for Jj (i —1,2,3,), the proof of (2.4) may be completed.Now we show that the factor 1 /log(n-( 1) in (2.4) can not be dropped. We have
- 2 tP, {n)Bn(x) 2. + ----- o/^dog(n-]-l) (Rn5i(t) + Rn,2W) X

TZ

COS nKn7z
loglog d (Pj(t)

= Pj(n) + P^(n) + P3(n), say.However, 2 Pı(ıı) e jC, 1 |. Also, proceeding as above in Jp J^, Jj, it may be proved that2 P3(n) e 1(R, Ş(w), a) (C, 1)Thus in order that 2 Bn(x) e |(R, P(w), tx.) (C,l) j, it is necessary and sufficient thatS P2(n) e |(R, 3(w), a) (C,l) [ for which, by Lemma 4, it is necessary that
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ess(5.2.2) 0 sup t < TC Ş0)(w) P !+’'-( w) T, n< w {PH-P(n)}“^ı P(P) n(n4-l)
S mRın,ı(t) log (m+1) [ dw m=ı

e^' 1

However, by Lemma 5,
s Rn,ı(t)log(n+1) n-1 loglog — -1 log 12sin|tk

which tends to infinity as t 0™(-. Therefore (5.2.2) does not hold since [(R, (3 (w), a) (C, 1) is absolutely regular metbod.5.3. Proof of Theorem 3. We have
•TCn Bn(x) o. f ^(t) ıj n sin nt dt

o. U(t)loglog(k/t) nt sin ntIoglog(k /t}
dt.

2
2
n

integrating by parts and using the fact that (|)(7t) = 0, Ave obtain that
.7T

n B (x) = - 2
t:

f d{v(t)Ioglog(k/t)} fJ oj

nu sin nu loglog(k İn)
du.o]Now, ■whenever (2.5) holds, the proof of the theorem may be comp- leted by using (5.1.1).5.4. Proof of Theorem 4 .We shall prove the theorem under the equivalent condition (2.10). We have

- n An (x) o. ^7ZV(t) nt cos nt dt2
K

■TT (cos nt-cos n) t sin nt} dV (t).
integrating by parts and using (V(0.+) = 0.
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ever Now, the proof of (2.8) may be completed by using (5.2.1), when- (2.10) (ii) holds.The proof that the factor (1 /log(nd-l) in (2.8) cannot be dropped may be followed from Theorem 2.This completes the proof of the theorem.
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