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ABSTRACT

In this paper we have found the minimal index of the generalized minimal ruled surfaces
defined in the Euclidean n-space E" and new resalts were obtained for both developable and
nondevelopable ruled surfaces. In addition a theorem given for the Riemann submanifold in
[3] was defined for the generalized ruled surfaces in the Euclidean n-space Ef

L INTRODUCTION

We shall assume throughout this paper that all manifolds, maps,
vector fields, ete. ... are differentiable of class €.

First of all, we give some properties of a general submanifold N
of the Kuclidean n-space E», Suppose that D is the Riemann connec-
tion of K", while D is the Riemann connection of N.

Then, if X,Y are the vector fields of N and if V is the second fun-
damental form of N, we have by decomposing DxY in a tangential
and normal component.

.1 DY = DxY V(X,Y).
The equation (I.1) is called Gauss equation. f1].
If £ is any normal vector field on N, we find the Weingarten equ-

ation by decomposing Dx% in a tangential component and a normal .
component as

(L.2) Dx% = - (AEX) ) + D*x%
AL determines at each point a self-adjoint linear map and Dt

is a metric connection in the normal bundle y=(M). We use the same
notation AZ for the Linear map and the matrix of the linear map.
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Suppose that X,Y are vector fields on N, while £ is a normal vector
field, then if the standard metric tensor of K" is denoted by <, >
(I.3) X<Y,i> = <DxY,i> + <Y, Dxf> =0
or

<V(XY)E> = <Y, A{X)>.

If £y, 5, ... , E" y 1 constitute an orthonormal base field of the
normal bundle y+(N), then the mean curvature vector H of N at the
the point p is given by
§ n-k—f
(1.4) H = XY wAf/ k410 &
i=1

| H | is the mean curvature. If H = 0 at each point p of N, then

N is said to be minimal, [4].

IL (k--1) - DIMENSIONAL RULED SURFACES IN THE EUCLIDEAN
n-SPACE E".

Suppose that the base curve r(s) of the (k--1)-dimensional ruled
surface N in E" is an orthogonal trajectory of the k—dimensional gene-
rating space Fi(s), (k>>1), which is spanned by the orthonormal base
vectors e(s), es(s),. . ., ex(s), then N can locally represented by

k
G(s,up,ug,. .., ug) =1(s) - 2 ujeis), u; €lR,
i=1

1 <i <k, [4].

In this paper, we will say the generalized ruled surface instead of
the (k -~ 1) — dimensional ruled surface in the Euclidean n-space En,

DEFINITION 1I1.1: Suppese that {eg,ey,....ex} is an orthonormal
base field of a generalized ruled surface N, where €, is the unit tangent
vector of the orthogonal trajectories of the generating space Eg(s). If

rank [eq,e),. .., ek Degep,..., Degey] = 2k-m

at each point p of N, then N will be called as m-developable. Iftm =
— 1, then the generalized ruled surface N is called as non-developable;
If m = k-1, then N is called as total developable, [4].
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Suppose that {es.e,....ex) is an orthonormal base field of the
tangential bundle y(N) and {%, &,..., En_x_;} is an orthonormal base

field of the normal bundle y1(N). Then we have the following Weingar-

ten equations:

_ k . . n-k-f . .
Deoly = algic; 4 algpeo - 2 blom Zn
i=1 m=]
— k . . n--K-1 .
De%y = 2 aljje; + aljoeo + & bimim
i-1 m=1
AL.) ..
- k . . ]]fk._l . .
Dexfj = 2 alge; + algeeo 4+ 2 by &m
i=1 m=1
1 < j < n-k-1. Moreover, because of (I.3) and since V (eje,) = 0,
1 < i, m < k, we observe that
(11'2) <V(eivem)e E,j> - <A£i(01)eem> - - ajinl - 03 [4']

Therefore we can obtain the matrix A% as follows:

a;!o() a']OI e a']ok -
aly 0...0

(I1.3)  AZ — -

Moreover, the Riemannian curvature K(ejeo) of N at a point p

of N is given by

K(ej,eo) = — < Deje,, Dejeo> |y
n-k-1
(11.4) = "E (@) 1 < i = K, [4].

i1

The mean curvature vector H of the (k 4 1)- dimensional ruled

surface N is given by
H = V(egeo) |k -+ 1, [4].
III. ON THE MINIMAL INDEX OF THE MINIMAL GENERALIZED
RULED SURFACES IN THE EUCLIDEAN n-SPACE E®

Lot Siy; be the set of all real symmetric matrices of order k1.
In this paper we consider it as a vector space over the real field IR.
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Now we define an inner product of any two elements A,B in Sk by

(1I1.1) <A.B> = tr(AB)/k+1.
then we have
(111.2) A H =/ <AA> = ir(A2)/k + 1 and | I, | =1.

where Iy, denotes the unit matrix in Sg,q. [3].
Let m be a linear map from Sy.; to IR defined as
(I11.4) m(A) = trA/k + 1.
Then the kernel of m can be represented by
(I11.5) kerm = {A| trA = 0, vAe S {}.
In addition, since
<A, Iy > = m(A), vA € Sy
we can write
Sk = kerm @ IRI,,.
Let {£1,%,5,....E, x4} be an orthonormal base field of yL(N).
Then we can write
k-1
£ = 2 ai
J=1
for all £ eyL(N).

Let the linear map m: Ty(p) ——

— IR be defined by

n—K—1
(J11.6) m) = X amAz  yie Ty(p)
=1 10
and ¥p: Ty(p) ———— > Sk, is defined by
n—-K—1
(ITL.7) Wp(s) = X ajAr vE eTx(p).
i=1 I

DEFINITION III.1 (M-index, N):

The dimension of ¥'p (kerm) is called the minimal index of the
generalized ruled surface N at point p of N and denoted by

dim Wp (kerm) = M-index, N, [3].



ON THE MINIMAL INDEX... 99

LEMMA TII.1:

dim (kerm) = k(k + 3)/2.
Proof: Since dim8; | = k2 + 3k + 2/2, we have

dim (kerm) = dimSy., 1

=k (k 4+ 3)/2.
LEMMA TII.2: Let N be a Riemannian submanifold in the Eucli-
den n-space E". Then
M-indexp,N < min {dim (kerm), dim (kerm)}, [3].

THEOREM 111.1: Let N be a (k-+1) — dimensional (generalized)

ruled surface in E" and {eg,e),..., ex} be an orthonormal base field of

N. Then N is total developable iff
Dejeo = 0, 1 <i <k, [2].
COROLLARY III.1: If N is total developable, then
K(ej,e0) = 0, I <1 < k.

Proof: From the Theorem III.1 and the equation I1.4, the proof
of corollary is clear.

TEOREM III.2: If the (k-+1)-dimensional m-developable ruled

. . . T . . N ~ k—m
surface N is minimal, then N is necessarily a submanifold of an EF [4].

Now we have the following theorems about the minimal index

of the generalized minimal ruled surface N in E".
THEOREM III.3: Let N be a generalized ruled surface in E»

and {£,,%,,.. <»En_k_1} be an orthonormal base field of y4(N). If N is a
minimal ruled surface, then M-index,N < k, v p eN.
n-k-1

Proof: Since, for all £eyL(N), £ = X  a;%;, aje IR,we have
i=1

. n-k-1
m(f) = X a; trA ¢
=1 i
Since N is minimal, we find m (£) = 0 and kerim = yL1(N).

Moreover, since
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WYp(d) = & a7 & VI e kerm,

we get

Wokerim) = Sp {Az Az Az .

Since trAg_j = 0,1 <j<n-k-1, the dimension of the vector

space spanned by symmetric matrices in the form of Az is equal to
. j
k. So that we can find

dim Wy(kerm) < k
or

M-indexpN < k.
COROLLARY I11.2:
dim (kerm) = n-k-1.
From the Corollary I11.2, Lemma I11.1 and Lemma III.2, we have
the following corollary.
COROLLARY III.3:
M-indexp,N < min {k, k-n-1, k(k 4 3)/2}.

COROLLARY III.4: Let N be a minimal hyperruled surface in
E", Then

M-index,N = 0 or
M-index,N = 1.

Proof: Let N be a hyperruled surface in E* and £ be an unit bor-
mal vector field of N. Then yL(N) = Sp{&} and since N is minimal,
we get

kerm = Sp {&1.
Therefore, because of the definition of ¥, we observe that
Wy(kerm) = Sp {Az}. v peN.
Case 1: If N is total developable,
K(ejeo) = — a2y = 0, 1 <<i<n-2.
Thus we get Az = 0. This implies that
dim ¥, (kerm) = M-~indexpN = 0 vpeN.
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Case 2: Let N be nondevelopable. Then Az # 0. This implies that
dim Yy(kerm) = M-index,N = 1. ypeN.

THEOREM I11.4: Let N be a hyperruled surface in E". Then

N is minimal and M-index,N = 0 iff N is a hyperplane, ypeN.

Proof: Let {egeq,..., €, 5} be an orthonormal base field of
%(N) and £ be an unit normal vector field of 71(N). Since N is minimal,
we have

kerm = Sp {& and Wy(kerm) = Sp {Az}.

Moreover, since M~index,N = 0 by hypothesis, we get AE == 0.

Therefore from the Weingarten equation
I_)ejE':—A,\i(ej)ﬁ—bj?,, 0 < i< n-2

we observe that ;

<Deif, E> = b; = 0.

This means that
De; £ = 0, 0 < i< n-2.

The last equation implies that £ is a parallel vector field with res-
pect to N. Therefore N is a hyperplane in E",

Now, let N be a hyperplane and £ be an unit normal vector field
of N. Then, since {eg.e},..., e, 5} is an orthonormal base field of
%(N), we get.

De; £ = 0, 0 <i < n-2.
Therefore, from the Weingarten equation,
Az = 0.
This means that N is minimal.
Since N is minimal kerm = Sp{%} and Yp(kerm) = Sp {Ag}.
Moreover, since Az = 0 we get
M-index,N = 0.
THEOREM TI1.5: Let N be a (k + 1) —dimensional ruled surface

mm E" If N is minimal and M-index,N = 0, yp € N, then
N is a submanifold of Ek+l
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Proof: Since N is minimal, we get kerm = yL(N) and ¥}, (kerm)

= Sp {Az, ..., Az 4
dim ¥, (kerm) = M-index,N = 0

by hypothesis, we find Az_j = 0, 1 << j < n-k-1. Therefore, from the

corollary ITI.1, N is total developable. In this case we have the Theorem
IH.2. So that N is a submanifold of EK+!

Let F be a normal subbundle of y+{(N) spanned by the normal
vector field V(eg.e;), 1 <<i < k. Then we have the following lemma.

Moreover since

LEMMA TII.3:
N is m~developable iff the normal subbundle F of y1(N)
is (k-m-l)-dimensional, [4].
THEOREM 1I1.6: Let N be a generalized minimal ruled surface
in E™ If N is m—developable, then
M-index,N < k-m-l, v p ¢ N.
Proof: Since N is minimal, we have

Wokerm) = Sp {Az...., Az}

and from Lemma [I1.3
dimF = k-m-I.

Suppose that {Z;, £,,..., £, x ,} is an orthonormal base field
of yL(N) such that }£,, £,,..., % 1, ;) constitute an orthonormal base

field of F. h
If we consider the equation (I1.2) in this case, we get
<v(epeq), &) = — aly; = 0, 1 <i <k k-m <r<nkl
Since H = 0, we have trAgJ_ =0, 1< j<nk-l Therefore
we find

— Ar

4 -
Ckem = « .0 = Cn-k—] = 0.

A

The last equation implies that
Wp(kerm) = Sp {Agb AEQ’_ .. Ag_k"mvl}.

Thus we can find

M-indexp,N < k-m-L
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That completes the proof of theorem.

COROLLARY IIL.5: If N is a (k-l)-dimensional minimal
ruled surface in E™ and N is m-developable, then.

M-indexpN < min {k-m-l, n-k-1, k(k-}3)/2}.

OZET

Bu ¢ahgmada E", n-boyutlu Oklid uzaymda tammh genellestirilmis minimal regle yiizey-
lerinin minimal indeksleri hesapland: ve yiizeyin aclabilir olmasi veya acilabilir olmamas:
halleri i¢in yeni sonuclar elde edildi.

Ayrica, [3] de Riemann altmanifoldlarimin minimal indeksleri ile ilgili olarak verilen bir

teorem E de (k4-1)-boyut-lu (genellestirilmis) regle yiizeyler icin ifade edilir.
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