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Abstract − The concept of fuzzy parameterized fuzzy soft matrices (fpfs-matrices) is a mathematical 

tool coming into prominence with its ability to model decision-making problems. Therefore, in the 

present study, we configure soft decision-making (SDM) methods having been constructed with soft 

sets, soft matrices, and their fuzzy hybrid versions and introduced between 2013 and 2016 to operate 

them in fpfs-matrices space faithfully to the original. We then analyse the decision-making 

performances of the configured methods herein by using five test cases containing totally ordered 

alternatives. Thus, we determine the methods producing a valid ranking order according to all the test 

cases and apply the determined methods to a performance-based value assignment (PVA) problem in 

which the filters are to be ranked in terms of their image denoising performances. Therefore, we 

compare the performance ranking of the filters by using the methods. Finally, we discuss the need for 

further research. 

Keywords – Fuzzy sets, soft sets, soft matrices, fpfs-matrices, soft decision-making, PVA problem 
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1. Introduction 

The soft decision-making (SDM) methods, constructed with the concepts of soft sets [1], fuzzy soft sets [2,3], 

fuzzy parameterized soft sets [4], fuzzy parameterized fuzzy soft sets (fpfs-sets) [5], soft matrices [6], fuzzy 

soft matrices [7], and fuzzy parameterized fuzzy soft matrices (fpfs-matrices) [8], are widely used to model 

uncertainties mathematically. The relationship between these concepts is provided as ordered from the general 

to the specific in Fig. 1. Moreover, many researchers have focused on these concepts in various areas, such as 

algebra [9-12], topology [13-17], analysis and function theory [18,19], decision-making [3,20], and data 

classification [21,22]. In literature, what studies related to SDM primarily lack is usually its application to a 

hypothetical problem instead of a real-life problem. A limited number of studies, including methods applied 

to a real problem, can be summarised as follows: In [23], the authors have used soft sets to attain shoreline 

resources evaluation rules. [24] has attracted attention to this theory using soft set theory in the computerised 

classification of malignant and normal micro-calcifications on mammograms. In [25], the scholars have 

proposed a method via fuzzy soft sets to classify numerical data. [26] has introduced a classification method 

to classify medical data using fuzzy soft sets. In [21], the researchers have applied an SDM method constructed 

by fpfs-matrices to monolithic columns classification. [22] has applied a data classification problem in machine 

learning by using fpfs-matrices. 
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Fig. 1. Relationship between fpfs-sets/matrices and their substructures 

 

 

Recently, the concept of fpfs-matrices [8] has stood out among the others due to its modelling success, 

the uncertainties in the decision-making problems where alternatives or parameters are fuzzy. Thus, the 

configurations of SDM methods constructed with the aforesaid concepts to operate them in fpfs-matrices space 

have become a popular study subject. To this end, over 50 SDM methods constructed with the aforesaid 

concepts have been configured [27-30] in fpfs-matrices space, faithfully to the original. Thereby, the 

configurations of the methods having been constructed with the abovementioned concepts and which were 

proposed between 1999 and 2012 have been completed. Furthermore, in [31-40], the authors have improved 

some of the configured methods to make them run faster and to simplify them mathematically. In [27,29], 

although some of the SDM methods proposed after 2012 have been configured, their configurations have not 

been completed yet. The present study aims to complete the configurations of the SDM methods having been 

constructed with soft sets, soft matrices, and their fuzzy hybrid versions and introduced between 2013 and 

2016. To this end, we consider the SDM methods provided in [41-72]. 

The following tables provide some information about the preconfigured SDM methods. Table 1 explains 

the abbreviations used in Table 2-5. Table 2, 3, 4, and 5 show the unabbreviated forms of the previously 

configured SDM methods employing single, double, triple, and multiple matrices and their spaces in which 

they have been first put forward, respectively. Moreover, Table 6 lists the SDM methods constructed in the 

fpfs-matrices space. Lastly, Table 7 presents the SDM methods with the same configurations. 

 

Table 1. Abbreviations of the considered spaces 

SS Soft Sets 

SM Soft Matrices 

FSS Fuzzy Soft Sets 

FSM Fuzzy Soft Matrices 

FPSS Fuzzy Parameterized Soft Sets 

FPFSS Fuzzy Parameterized Fuzzy Soft Sets 

FPFSM Fuzzy Parameterized Fuzzy Soft Matrices 
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Table 2. SDM methods employing single fpfs-matrix 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

CCE10 [27] ✓      Çağman, Çıtak, Enginoğlu 2010 

CCE11 [27]  ✓     Çağman, Çıtak, Enginoğlu 2011 

CEC11 [29]    ✓   Çağman, Enginoğlu, Çıtak 2011 

F10(z) [28]    ✓   Feng 2010 

FJLL10 [29]    ✓   Feng, Jun, Liu, Li 2010 

FJLL10/2 [29]    ✓   Feng, Jun, Liu, Li 2010 

FJLL10/3 [29]    ✓   Feng, Jun, Liu, Li 2010 

FJLL10/4 [29]    ✓   Feng, Jun, Liu, Li 2010 

KKT13 [27]   ✓    Khan, Khan, Thakur 2013 

KM11 [29]    ✓   Kalaichelvi, Malini 2011 

KS10 [28]    ✓   Kalayathankal, Singh 2010 

KSM10 [28]    ✓   Kuang, Shu, Mou 2010 

KWW11(w, z) [28]    ✓   Kong, Wang, Wu 2011 

M11 [29]    ✓   Mou 2011 

MBR01 [27]    ✓   Maji, Biswas, Roy 2001 

MRB02 [27]      ✓ Maji, Roy, Biswas 2002 

MS10 [29]      ✓ Majumdar, Samantha 2010 

SM11 [28]    ✓   Sun, Ma 2011 

WW11 [29]      ✓ Wu, Wang 2011 

YE12 [37]  ✓     Yılmaz, Eraslan 2012 

Table 3. SDM methods employing double fpfs-matrices 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFS

S 
FPSS FSM FSS SM SS 

BMM12 [30]   ✓    Basu, Mahapatra, Mondal 2012 

BMM12/3 [30]     ✓  Basu, Mahapatra, Mondal 2012 

CD12/3 [30]  ✓     Çağman, Deli 2012 

CD12/4 [30]  ✓     Çağman, Deli 2012 

CE10 [27]      ✓ Çağman, Enginoğlu 2010 

CE10-2 [27]     ✓  Çağman, Enginoğlu 2010 

CE12 [27]   ✓    Çağman, Enginoğlu 2012 

CE10an [39]      ✓ Çağman, Enginoğlu 2010 

CE10on [39]      ✓ Çağman, Enginoğlu 2010 

FLC12 [30]      ✓ Feng, Li, Çağman 2012 

ICJ17 [29]     ✓  Inthumathi, Chitra, Jayasree 

2017 

 
KWW11/2(w, z) [30]      ✓ Kong, Wang, Wu 2011 

NS11 [30]   ✓    Neog, Sut 2011 

VR13 [27]     ✓  Vijayabalaji, Ramesh 2013 

 Z14 [29]     ✓  Zhang 2014 

ZZ16 [27] ✓      Zhu, Zhan 2016 

ZZ16/2 [27] ✓      Zhu, Zhan 2016 

Table 4. SDM methods employing triple fpfs-matrices 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

BMM12/2 [30]     ✓  Basu, Mahapatra, Mondal 2012 

KGW09 [30]    ✓   Kong, Gao, Wang 2009 

QYZ12 [30]    ✓   Qin, Yang, Zhang 2012 

RM07a [30]    ✓   Roy, Maji 2007 

RM07o [30]    ✓   Roy, Maji 2007 

RM11 [27]      ✓ Razak, Mohamad 2011 

RM13 [27]    ✓   Razak, Mohamad 2013 
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Table 5. SDM methods employing multiple fpfs-matrices 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

BNS12 [29]   ✓    Borah, Neog, Sut 2012 

CD12 [27]  ✓     Çağman, Deli 2012 

CD12-2 [27]  ✓     Çağman, Deli 2012 

DB12 [27]    ✓   Das, Borgohain 2012 

E15 [27]      ✓ Eraslan 2015 

EK15 [27]    ✓   Eraslan, Karaaslan 2015 

MR13 [29]   ✓    Mondal, Roy 2013 

MR13/2 [29]   ✓    Mondal, Roy 2013 

MR13/3 [29]   ✓    Mondal, Roy 2013 

NB14 [29]   ✓    Nagarajan, Balamurugan 2014 

NKY17 [29]    ✓   Nagarani, Kalyani, Yookesh 

2017 S12 [29]    ✓   Sut 2012 

YJ11 [29]   ✓    Yang, Ji 2011 

YJ11/2 [29]   ✓    Yang, Ji 2011 

 

It can be seen from Table 2, 3, 4, and 5 that the fuzzy soft sets space, one of the substructures of fpfs-sets, is 

widely used in decision-making problems. 

Table 6. SDM methods constructed in fpfs-matrices space 

Proposed SDM Methods 
Number of Employed Matrices 

Descriptions 
Single Double Triple Multiple 

EM20o [36]   ✓  Enginoğlu, Memiş 2020 

EMA18on [32]  ✓   Enginoğlu, Memiş, Arslan 2018 

EMC19o [34]  ✓   Enginoğlu, Memiş, Çağman 2019 

EMK19 [35]    ✓ Enginoğlu, Memiş, Karaaslan 2019 

EMO18o [40]  ✓   Enginoğlu, Memiş, Öngel 2018 

EC20 (PEM) [8] ✓    Enginoğlu, Çağman 2020 (Prevalence Effect Method) 

Simplified SDM Methods   

EM20a [36]   ✓  Enginoğlu, Memiş 2020 

EMA18an [39]  ✓   Enginoğlu, Memiş, Arslan 2018 

EMC19a [34]  ✓   Enginoğlu, Memiş, Çağman 2019 

EMO18a [33]  ✓   Enginoğlu, Memiş, Öngel 2018 

sDB12 [38]    ✓ Simplified DB12 

sMBR01 [31] ✓    Simplified MBR01 

Table 7. SDM methods with the same configurations 

CE10-2 CE12 

RM11 RM13 

MR13 NB14 

In Section 2 of the present study, we present some of the basic definitions of fpfs-matrices to be needed 

in the following sections of the paper. In Section 3, we configure the SDM methods provided in [41-72]. In 

Section 4, we propound five test cases to examine the consistency of the SDM methods employing fpfs-

matrices. We then determine the considered SDM methods producing a valid ranking order in all the test cases. 

In Section 5, we apply the determined methods to a performance-based value assignment (PVA) problem in 

which the filters are ranked with regard to their salt-and-pepper noise (SPN) removal performances. Therefore, 

we compare the ranking order performances of the methods in the PVA problem. Finally, we discuss the need 

for further research. 
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2. Preliminaries 

In this section, firstly, we present the concept of fpfs-matrices [8]. Throughout this paper, let 𝐸 be a parameter 

set, 𝐹(𝐸) be the set of all the fuzzy sets over 𝐸, and 𝜇 ∈ 𝐹(𝐸). Here, a fuzzy set is denoted by { 𝑥 
𝜇(𝑥)  | 𝑥 ∈ 𝐸}. 

Definition 2.1. [5] Let 𝑈 be a universal set, 𝜇 ∈ 𝐹(𝐸), and 𝛼 be a function from 𝜇 to 𝐹(𝑈). Then, the set 

{( 𝑥 
𝜇(𝑥) , 𝛼( 𝑥 

𝜇(𝑥) )) | 𝑥 ∈ 𝐸}, being the graphic of 𝛼, is called a fuzzy parameterized fuzzy soft set (fpfs-set) 

parameterized via 𝐸 over 𝑈 (or briefly over 𝑈). 

In the present paper, the set of all the fpfs-sets over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸(𝑈). In 𝐹𝑃𝐹𝑆𝐸(𝑈), since the 

graph(𝛼) and 𝛼 generate each other uniquely, the notations are interchangeable. Therefore, as long as it causes 

no confusion, we denote an fpfs-set graph(𝛼) by 𝛼. 

Example 2.2. Let 𝐸 = {𝑥1, 𝑥2, 𝑥3} and 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}. Then, 

𝛼 = {( 𝑥1 
0.4 , { 𝑢2 

0.2 , 𝑢3 
0.4 , 𝑢4 

0.7 }), ( 𝑥2 
0.9 , { 𝑢1 

0.5 , 𝑢2 
0.3 , 𝑢3 

0.6 , 𝑢4 
0.4 }), ( 𝑥3 

0.7 , { 𝑢1 
0.2 , 𝑢3 

0.9 , 𝑢4 
1 })} 

is an fpfs-set over 𝑈. 

Definition 2.3. [8] Let 𝛼 ∈ 𝐹𝑃𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] is called fpfs-matrix of 𝛼 and is defined by 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 
 
 
 

 

such that for 𝑖 ∈ {0,1,2,⋯ } and 𝑗 ∈ {1,2,⋯ }, 

𝑎𝑖𝑗 ≔ {
𝜇(𝑥𝑗), 𝑖 = 0

𝛼 ( 𝑥𝑗 
𝜇(𝑥𝑗) ) (𝑢𝑖), 𝑖 ≠ 0

 

Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚 × 𝑛. 

From now on, the set of all the fpfs-matrices parameterized via 𝐸 over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸[𝑈]. 

Example 2.4. The fpfs-matrix of 𝛼 provided in Example 2.2 is as follows: 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
0.4 0.9 0.7

0 0.5 0.2

0.2 0.3 0

0.4 0.6 0.9

0.7 0.4 0.1]
 
 
 
 
 

 

Definition 2.5. [8] Let [𝑎𝑖𝑗]𝑚×𝑛1
∈ 𝐹𝑃𝐹𝑆𝐸1[𝑈], [𝑏𝑖𝑘]𝑚×𝑛2 ∈ 𝐹𝑃𝐹𝑆𝐸2[𝑈], and [𝑐𝑖𝑝]𝑚×𝑛1𝑛2

∈ 𝐹𝑃𝐹𝑆𝐸1×𝐸2[𝑈] 

such that 𝑝 = 𝑛2(𝑗 − 1) + 𝑘. For all 𝑖 and 𝑝, if 𝑐𝑖𝑝 ≔ min{𝑎𝑖𝑗, 𝑏𝑖𝑘}, then [𝑐𝑖𝑝] is called and-product of [𝑎𝑖𝑗] 

and [𝑏𝑖𝑘] and is denoted by [𝑎𝑖𝑗] ∧ [𝑏𝑖𝑘].  



87 

 

Journal of New Theory 34 (2021) 82-114 / Operability-Oriented Configurations of the Soft Decision-Making Methods ... 

Definition 2.6. Let [𝑎𝑖𝑗]𝑚×𝑛1
∈ 𝐹𝑃𝐹𝑆𝐸1[𝑈], [𝑏𝑖𝑘]𝑚×𝑛2 ∈ 𝐹𝑃𝐹𝑆𝐸2[𝑈], and [𝑐𝑖𝑝]𝑚×𝑛1𝑛2

∈ 𝐹𝑃𝐹𝑆𝐸1×𝐸2[𝑈] 

such that 𝑝 = 𝑛2(𝑗 − 1) + 𝑘. For all 𝑖 and 𝑝, if 𝑐𝑖𝑝 ≔
𝑎𝑖𝑗+𝑏𝑖𝑘

2
, then [𝑐𝑖𝑝] is called mean-product of [𝑎𝑖𝑗] and 

[𝑏𝑖𝑘] and is denoted by [𝑎𝑖𝑗] ×𝑚 [𝑏𝑖𝑘]. 

Definition 2.7. Let [𝑠𝑖1] ∈ 𝑀(𝑚−1)×1(ℝ) such that 𝑚 ≥ 2. Then, normalisation [�̂�𝑖1] of [𝑠𝑖1] is defined by 

�̂�𝑖1 ∶= {

𝑠𝑖1 −min
𝑘
𝑠𝑘1

max
𝑘
𝑠𝑘1 −min

𝑘
𝑠𝑘1

, max
𝑘
𝑠𝑘1 ≠ min

𝑘
𝑠𝑘1

1, max
𝑘
𝑠𝑘1 = min

𝑘
𝑠𝑘1

 

To obtain an increasing sequence consisting of all the elements of an index set, being a subset of ℕ𝑛, we 

present a linear ordering relation over ℕ𝑛 as follows: 

Definition 2.8. [30] Let (𝑗1, 𝑗2, … , 𝑗𝑛), (𝑘1, 𝑘2, … , 𝑘𝑛) ∈ ℕ
𝑛. Then, the relation “≤” is called a linear ordering 

relation and is defined by 

(𝑗1, 𝑗2, … , 𝑗𝑛) ≤ (𝑘1, 𝑘2, … , 𝑘𝑛) ⇔ [𝑗1 < 𝑘1 ∨ (𝑗1 = 𝑘1 ∧ 𝑗2 < 𝑘2) ∨ …∨ (𝑗1 = 𝑘1 ∧ 𝑗2 = 𝑘2 ∧ …∧ 𝑗𝑛−1 = 𝑘𝑛−1 ∧ 𝑗𝑛 ≤ 𝑘𝑛)] 

3. Configurations of Soft Decision-Making Methods 

In this section, we configure the SDM methods constructed by soft sets [41-47], fuzzy soft sets [41,46,48-63], 

fuzzy parameterized soft sets [64,65], fpfs-sets [66,67], soft matrices [47,68], and fuzzy soft matrices [43,69-

72]. From now on, 𝐼𝑛 = {1,2,⋯ , 𝑛} and 𝐼𝑛
∗ = {0,1,2,⋯ , 𝑛}. 

[69] has employed fuzzy soft matrices to determine an eligible candidate in the recruitment process just as [70] 

has utilised them to select an environment with healthy living conditions. We configure the proposed methods 

therein as follows: 

Algorithm 3.1. BSD13 and SR15 

BSD13, SR15, and NS11 [30] are the same. Therefore, we prefer the notation NS11. 

In [41], the authors have suggested a new method based on spatial distance and fuzzy soft sets. Moreover, they 

have presented the method for two soft sets. We configure the proposed methods therein as follows: 

Algorithm 3.2. CXL13(𝝀) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Construct the parameters’ optimum solution matrix 𝜆 ≔ [𝜆1𝑗]1×𝑛
 such that 0 ≤ 𝜆1𝑗 ≤ 1, for all 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖1](𝑚−1)×1 defined by  

𝑏𝑖1 ≔ √∑

𝑛

𝑗=1

(𝜆1𝑗 − 𝑎0𝑗𝑎𝑖𝑗)
2
,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ max
𝑘
𝑏𝑘1 − 𝑏𝑖1 such that 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

Algorithm 3.3. CXL13/2(𝝀) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛
 and [𝑏𝑖𝑗]𝑚×𝑛

 

Step 2. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 𝑐𝑖𝑗 ≔
𝑎𝑖𝑗+𝑏𝑖𝑗

2
 such that 𝑖 ∈ 𝐼𝑚−1

∗  and 𝑗 ∈ 𝐼𝑛 



88 

 

Journal of New Theory 34 (2021) 82-114 / Operability-Oriented Configurations of the Soft Decision-Making Methods ... 

Step 3. Apply CXL13 to [𝑐𝑖𝑗] 

[48] has studied the selection of a suitable house with fuzzy soft sets. We configure the proposed method 

therein as follows: 

Algorithm 3.4. GLF13(𝑹) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

,⋯ , [𝑎𝑖𝑗
𝑡 ]
𝑚×𝑛

  

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛. Moreover, let (𝑟𝑘) denote the increasing sequence of 

the elements of 𝑅. 

Step 3. Obtain 𝐾𝑟 = {𝑣 ∈ 𝐼𝑡: ∃𝑖 ∋ 𝑎0𝑟
𝑣 𝑎𝑖𝑟

𝑣 ≠ 0}, for all 𝑟 ∈ 𝑅. For 𝑟 ∈ 𝑅, if 𝐾𝑟 = ∅, then 𝐾𝑟 is chosen as {0}. 

Furthermore, let (𝑢𝑘
𝑟) stand for the increasing sequence of the elements of 𝐾𝑟, for all 𝑟 ∈ 𝑅. 

Step 4. Obtain [𝑏𝑖𝑘
𝑧 ]𝑚×|𝐾𝑟| defined by 

𝑏𝑖𝑘
𝑧 ≔ {𝑎𝑖𝑟𝑧

𝑢𝑘
𝑟𝑧

, ∀𝑧 ∈ 𝐼|𝑅|, 𝑢𝑘
𝑟𝑧 ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

such that 𝑖 ∈ 𝐼𝑚−1
∗ , 𝑧 ∈ 𝐼|𝑅|, and 𝑘 ∈ 𝐼|𝐾𝑟| 

Here, |𝑅| and |𝐾𝑟| denote the cardinality of 𝑅 and 𝐾𝑟, respectively. 

Step 5. Obtain [𝑐𝑖𝑗]𝑚×|𝑅| defined by 

𝑐𝑖𝑗 ≔ min
𝑘
{𝑏𝑖𝑘
𝑗
} 

such that 𝑖 ∈ 𝐼𝑚−1
∗ and 𝑗 ∈ 𝐼|𝑅| 

Step 6. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ min
𝑗∈𝐼|𝑅|

{𝑐0𝑗𝑐𝑖𝑗} ,    𝑖 ∈ 𝐼𝑚−1 

Step 7. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

In [42], the authors have developed a pruning method using soft sets. We configure it as follows: 

Algorithm 3.5. HG13 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑐𝑖1](𝑚−1)×1, [𝑑𝑖1](𝑚−1)×1, [𝑒𝑖1](𝑚−1)×1, and 𝑉 = {𝑢𝑖 ∶  𝑒𝑖1 = max
𝑘∈𝐼𝑚−1

𝑒𝑘1} such that 

𝑐𝑖1 ≔∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

,    𝑑𝑖1 ≔∑𝑏0𝑗𝑏𝑖𝑗

𝑛

𝑗=1

,    and    𝑒𝑖1 ≔ 𝑐𝑖1 + 𝑑𝑖1,    𝑖 ∈ 𝐼𝑚−1 

Step 3. For all 𝑢𝑖 ∈ 𝑉, obtain �̅�𝑖 ≔ {𝑢𝑗 ∈ 𝑉 ∶  (𝑐𝑖1, 𝑑𝑖1) = (𝑐𝑗1, 𝑑𝑗1) ∨ (𝑐𝑖1, 𝑑𝑖1) = (𝑑𝑗1, 𝑐𝑗1)} 

Step 4. Obtain 𝑊 = { 𝑢𝑖 ∈ 𝑉 ∶  |�̅�𝑖| = min
𝑢𝑘∈𝑉

|�̅�𝑘|} 

Here, |�̅�𝑖| denotes the cardinality of �̅�𝑖. 

Step 5. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ {

1+𝑒𝑘1

1+  ∑ (𝑎0𝑗+𝑏0𝑗)𝑗
, 𝑢𝑘 ∈ 𝑊

𝑒𝑘1

∑ (𝑎0𝑗+𝑏0𝑗)𝑗
, 𝑢𝑘 ∈ 𝑈 −𝑊

,    𝑖 ∈ 𝐼𝑚−1  

Step 6. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 
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[49] has proposed a method based on group decision-making and applied it to a company’s staff selection 

problem. We configure the proposed method therein as follows: 

Algorithm 3.6. SM13(𝒘, 𝜶) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

,⋯ , [𝑎𝑖𝑗
𝑡 ]
𝑚×𝑛

 such that 𝑎0𝑗
1 = 𝑎0𝑗

2 = ⋯ = 𝑎0𝑗
𝑡 = 𝑎0𝑗 

Step 2. Construct 𝑤 ≔ [𝑤1𝑘]1×𝑡 such that 0 ≤ 𝑤1𝑘 ≤ 1 and ∑ 𝑤1𝑘
𝑡
𝑘=1 = 1, for 𝑘 ∈ 𝐼𝑡 

Step 3. Obtain [𝑏1𝑗]1×𝑛
 defined by 

𝑏1𝑗 ≔

{
 
 

 
 𝑎0𝑗
∑ 𝑎0𝑘
𝑛
𝑘=1

, ∑ 𝑎0𝑘

𝑛

𝑘=1

≠ 0

1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑗 ∈ 𝐼𝑛 

Step 4. Obtain [𝑐𝑘𝑟]𝑡×𝑡 defined by 

𝑐𝑘𝑟 ≔∑𝑏1𝑗

𝑛

𝑗=1

𝑧𝑘𝑟
𝑗
,    𝑘, 𝑟 ∈ 𝐼𝑡 

such that  

𝑧𝑘𝑟
𝑗
≔ {

∑ min
 
{𝑎𝑖𝑗
𝑘 , 𝑎𝑖𝑗

𝑟 }𝑚−1
𝑖=1

∑ max
 
{𝑎𝑖𝑗
𝑘 , 𝑎𝑖𝑗

𝑟 }𝑚−1
𝑖=1

, ∑ max
 
{𝑎𝑖𝑗
𝑘 , 𝑎𝑖𝑗

𝑟 }

𝑚−1

𝑖=1

≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
  
 

Step 5. Obtain [𝑑1𝑘]1×𝑡 defined by 

𝑑1𝑘 ≔
1

𝑡 − 1
∑ 𝑐𝑘𝑟

𝑡

𝑟=1,𝑟≠𝑘

,    𝑘 ∈ 𝐼𝑡 

Step 6. Obtain [𝑒1𝑘]1×𝑡 defined by 

𝑒1𝑘 ≔

{
 
 

 
 𝑑1𝑘
∑ 𝑑1𝑙
𝑡
𝑙=1 

, ∑𝑑1𝑙

𝑡

𝑙=1 

≠ 0

1

𝑡
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,   𝑘 ∈ 𝐼𝑡 

Step 7. For 𝛼 ∈ [0,1], obtain [𝜆1𝑘]1×𝑡 defined by 

𝜆1𝑘 ≔  𝛼𝑤1𝑘 + (1 − 𝛼)𝑒1𝑘,    𝑘 ∈ 𝐼𝑡 

Step 8. Obtain [𝑓𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑓𝑖𝑗 ≔∑𝜆1𝑘𝑎𝑖𝑗
𝑘

𝑡

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1, 𝑗 ∈ 𝐼𝑛, and 𝑘 ∈ 𝐼𝑡 

Step 9. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ 1−√∑𝑏1𝑗 (𝑓𝑖𝑗 − max
𝑘∈𝐼𝑚−1

𝑓𝑘𝑗)
2

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 10. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 
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[43] has proposed two SDM methods via soft sets and fuzzy soft matrices. Moreover, [67] has suggested an 

SDM method constructed with fpfs-sets. We configure the proposed methods therein as follows: 

Algorithm 3.7. GDC14 and RH16/2 

GDC14, RH16/2, and MRB02 [27] are the same. Therefore, we prefer the notation MRB02. 

Algorithm 3.8. GDC14/2(𝝀) 

GDC14/2 and NKY17(𝜆) [29] are the same. Therefore, we prefer the notation NKY17(𝜆). 

In [44], the author has utilised soft sets to determine an optimal alternative. We configure the proposed method 

therein as follows: 

Algorithm 3.9. K14 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛
 and [𝑏𝑖𝑗]𝑚×𝑛

 

Step 2. Obtain  [𝑐𝑖𝑗](𝑚−1)×𝑛 defined by 𝑐𝑖𝑗 ≔ min{𝑎0𝑗𝑎𝑖𝑗 , 𝑏0𝑗𝑏𝑖𝑗} such that 𝑖 ∈ 𝐼𝑚 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain 𝑉 = {𝑢𝑖 ∈ 𝑈 ∶  ∑ 𝑐𝑖𝑗
𝑛
𝑗=1 ≠ 0} 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔

{
 

 
(∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

)(∑𝑏0𝑗𝑏𝑖𝑗

𝑛

𝑗=1

) −∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

−∑𝑏0𝑗𝑏𝑖𝑗

𝑛

𝑗=1

, 𝑢𝑖 ∈ 𝑉

0, 𝑢𝑖 ∈ 𝑈 − 𝑉

  

such that 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[64] has studied financial decision-making problems using fuzzy parameterized soft sets, although it is stated 

that fuzzy soft sets are used. We configure the proposed method as follows: 

Algorithm 3.10. MM14 

MM14 and CCE10 [27] are the same. Therefore, we prefer the notation CCE10. 

In [50], the authors have proposed an algorithm using fuzzy soft sets to determine the optimal decision 

program. We configure the proposed method therein as follows: 

Algorithm 3.11. WQ14(𝜿) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑏𝑖𝑘](𝑚−1)×(𝑚−1) defined by  

𝑏𝑖𝑘 ≔
1

𝑛
∑(1 − 𝑎0𝑗|𝑎𝑖𝑗 − 𝑎𝑘𝑗|)

𝑛

𝑗=1

,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

Step 3. Obtain [𝑐𝑖𝑘](𝑚−1)×(𝑚−1) defined by  

𝑐𝑖𝑘 ≔ max
𝑗
{min

 
{𝑏𝑖𝑗, 𝑏𝑗𝑘}} ,    𝑖, 𝑗, 𝑘 ∈ 𝐼𝑚−1 

Step 4. Obtain the set 𝐷 of all the entries of [𝑐𝑖𝑘] 

Step 5. Obtain the descending-sorted matrix [𝑒1𝑗]1×|𝐷| of the 𝐷’s elements such that 𝑗 ∈ 𝐼|𝐷| 
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Step 6. Obtain [𝑓𝑖𝑘
𝑗
]
(𝑚−1)×(𝑚−1)

 defined by  

𝑓𝑖𝑘
𝑗
≔ {

1, 𝑐𝑖𝑘 ≥ 𝑒1𝑗
0, 𝑐𝑖𝑘 < 𝑒1𝑗

 

such that 𝑖, 𝑘 ∈ 𝐼𝑚−1 and  𝑗 ∈ 𝐼|𝐷| 

Step 7. Obtain [𝑔1𝑗]1×|𝐷|
 defined by  

𝑔1𝑗 ≔ ∑ 𝜒(𝑗, 𝑘)

𝑚−1

𝑘=1

,   𝑗 ∈ 𝐼|𝐷| 

such that 

𝜒(𝑗, 𝑘) ≔ {
1, 1 < ∑ 𝑓𝑖𝑘

𝑗

𝑚−1

𝑖=1

< 𝑚 − 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Step 8. Obtain [ℎ1𝑗]1×(|𝐷|−1) defined by  

ℎ1𝑗 ≔ {

𝑒1𝑗 − 𝑒1(𝑗+1)

𝑔1(𝑗+1) − 𝑔1𝑗
, 𝑔1(𝑗+1) > 𝑔1𝑗

0, 𝑔1(𝑗+1) ≤ 𝑔1𝑗

,    𝑗 ∈ 𝐼(|𝐷|−1) 

Step 9. Obtain 𝜆 ≔ 𝑒1𝑝 such that 𝑝 ≔ 1 + argmax
𝑗

ℎ1𝑗 

Here, argmax
𝑗

ℎ1𝑗 is an index of the ℎ1𝑗 being maximum for all 𝑗 ∈ 𝐼(|𝐷|−1). 

Step 10. For all 𝑢𝑖 ∈ 𝑈, obtain �̅�𝑖 ≔ {𝑢𝑠 ∈ 𝑈 ∶  ∀𝑘 ∈ 𝐼𝑛, 𝑗 ∈ 𝐼|𝐷|(𝑓𝑖𝑘
𝑗
= 𝑓𝑠𝑘

𝑗
)} 

Step 11. Obtain the clustering set 𝐶 = {�̅�𝑖 ∶  𝑢𝑖 ∈ 𝑈} 

Step 12. For all 𝑟 ∈ 𝐼𝑛, obtain [𝑎𝑖𝑗
𝑟 ]
𝑚×(𝑛−1)

 deleting rth column of  [𝑎𝑖𝑗] 

Step 13. For all 𝑟 ∈ 𝐼𝑛, obtain [𝑏𝑖𝑘
𝑟 ](𝑚−1)×(𝑚−1) applying Step 3 to [𝑎𝑖𝑗

𝑟 ] 

Step 14. For all 𝑟 ∈ 𝐼𝑛, obtain [𝑐𝑖𝑘
𝑟 ](𝑚−1)×(𝑚−1) applying Step 4 to [𝑏𝑖𝑘

𝑟 ] 

Step 15. Obtain [𝑓𝑖𝑘
𝑟 ]
(𝑚−1)×(𝑚−1)

 defined by  

𝑓𝑖𝑘
𝑟 ≔ {

1, 𝑐𝑖𝑘
𝑟 ≥ 𝜆

0, 𝑐𝑖𝑘
𝑟 < 𝜆

 

such that 𝑖, 𝑘 ∈ 𝐼𝑚−1 and  𝑟 ∈ 𝐼𝑛 

Step 16. For all 𝑢𝑖 ∈ 𝑈, obtain �̅�𝑖
𝑟 ≔ {𝑢𝑠 ∈ 𝑈 ∶  ∀𝑘 ∈ 𝐼𝑛, (𝑓𝑖𝑘

𝑟 = 𝑓𝑠𝑘
𝑟 )} 

Step 17. For all 𝑟 ∈ 𝐼𝑛, obtain the clustering set 𝐶𝑟 = {�̅�𝑖
𝑟 ∶  𝑢𝑖 ∈ 𝑈} 

Step 18. Obtain [𝜎1𝑗]1×𝑛 defined by 

𝜎1𝑗 ≔ 1−
|𝐶 ∩ 𝐶𝑗|

𝑚 − 1
,    𝑗 ∈ 𝐼𝑛 

Step 19. Obtain [𝛽1𝑗]1×𝑛 defined by 
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𝛽1𝑗 ≔

{
 
 

 
 𝜎1𝑗
∑ 𝜎1𝑘
𝑛
𝑘=1

, ∑ 𝜎1𝑘

𝑛

𝑘=1

≠ 0

1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑗 ∈ 𝐼𝑛 

Step 20. Obtain [𝑤1𝑗]1×𝑛
 defined by 

𝑤1𝑗 ≔ 𝜅𝑎0𝑗 + (1 − 𝜅)𝛽1𝑗,    𝑗 ∈ 𝐼𝑛 

Here, 𝜅 is Bias coefficient chosen by decision-maker and 𝜅 ∈ [0,1] 

Step 21. Obtain [�̃�𝑖𝑗]𝑚×𝑛
 defined by �̃�0𝑗 ≔ 𝑤1𝑗 and �̃�𝑖𝑗 ≔ 𝑎𝑖𝑗, for all 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 22. Apply MRB02 [27] to [�̃�𝑖𝑗] 

[51,55,56] have introduced the same methods for fuzzy soft sets by combining grey relational analysis with 

the Dempster-Shafer theory of evidence and applied them to medical diagnosis. We configure the proposed 

methods therein as follows: 

Algorithm 3.12. XWL14(𝜶, 𝒒), LWX15(𝜶, 𝒒), and T15(𝜶, 𝒒) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖1](𝑚−1)×1 defined by 

𝑏𝑖1 ≔
1

𝑛
∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 3. Obtain [𝑐𝑖𝑗](𝑚−1)×𝑛
 defined by 

𝑐𝑖𝑗 ≔ |𝑎0𝑗𝑎𝑖𝑗 − 𝑏𝑖1| 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 4. For 𝛼 ∈ [0,1], obtain [𝑑𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑑𝑖𝑗 ≔ {

min
𝑘∈𝐼𝑚−1

𝑐𝑘𝑗 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑐𝑘𝑗

𝑐𝑖𝑗 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑐𝑘𝑗
, max

𝑘∈𝐼𝑚−1
𝑐𝑘𝑗 ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 5. For 𝑞 ∈ ℕ+, obtain [𝑒1𝑗]1×𝑛 defined by 

𝑒1𝑗 ≔
1

𝑚 − 1
(∑(𝑑𝑖𝑗)

𝑞
𝑚−1

𝑖=1

)

1
𝑞

,    𝑗 ∈ 𝐼𝑛 

Step 6. Obtain [𝑓𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑓𝑖𝑗 ≔

{
 
 

 
 𝑎0𝑗𝑎𝑖𝑗

∑ 𝑎0𝑗𝑎𝑘𝑗
𝑚−1
𝑘=1

, ∑ 𝑎0𝑗𝑎𝑘𝑗

𝑚−1

𝑘=1

≠ 0

1

𝑚 − 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 
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Step 7. Obtain [𝑔𝑖𝑗](𝑚−1)×𝑛 and [ℎ1𝑗]1×𝑛 defined by 

𝑔𝑖𝑗 ≔ (1 − 𝑒1𝑗)𝑓𝑖𝑗 

and 

ℎ1𝑗 ≔ 1− ∑ 𝑔𝑖𝑗

𝑚−1

𝑖=1

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 8. Obtain [𝐵𝑒𝑙𝑖1
𝑛−1]

𝑚×1
  defined by 

𝐵𝑒𝑙𝑖1
𝑗
≔

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑔𝑖1𝑔𝑖2 + 𝑔𝑖1ℎ12 + ℎ11𝑔𝑖2

|1 − ∑ ∑ 𝑔𝑘1𝑔𝑙2
𝑚−1
𝑙=1,𝑘≠𝑙

𝑚−1
𝑘=1 |

, 𝑖 ∈ 𝐼𝑚−1 and 𝑗 = 1

ℎ11ℎ12

|1 − ∑ ∑ 𝑔𝑘1𝑔𝑙2
𝑚−1
𝑙=1,𝑘≠𝑙

𝑚−1
𝑘=1 |

, 𝑖 = 𝑚 and 𝑗 = 1

𝐵𝑒𝑙𝑖1
𝑗−1
𝑔𝑖(𝑗+1) + 𝐵𝑒𝑙𝑖1

𝑗−1
ℎ1(𝑗+1) + 𝐵𝑒𝑙𝑚1

𝑗−1
𝑔𝑖(𝑗+1)

|1 − ∑ ∑ 𝐵𝑒𝑙𝑘1
𝑗−1
𝑔𝑙(𝑗+1)

𝑚−1
𝑙=1,𝑘≠𝑙

𝑚−1
𝑘=1 |

, 𝑖 ∈ 𝐼𝑚−1, 𝑗 ∈ 𝐼𝑛−1, and 𝑗 ≠ 1

𝐵𝑒𝑙𝑚1
𝑗−1
ℎ1(𝑗+1)

|1 − ∑ ∑ 𝐵𝑒𝑙𝑘1
𝑗−1
𝑔𝑙(𝑗+1)

𝑚−1
𝑙=1,𝑘≠𝑙

𝑚−1
𝑘=1 |

, 𝑖 = 𝑚, 𝑗 ∈ 𝐼𝑛−1, and 𝑗 ≠ 1

 

Step 9. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ 𝐵𝑒𝑙𝑖1
𝑛−1 such that 𝑖 ∈ 𝐼𝑚−1 

Step 10. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

XWL14(𝛼, 𝑞), LWX15(𝛼, 𝑞), and T15(𝛼, 𝑞) are the same. Therefore, we prefer the notation XWL14(𝛼, 𝑞). 

Algorithm 3.13. XWL14/2(𝜶, 𝒒), LWX15/2(𝜶, 𝒒), and T15/2(𝜶, 𝒒) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find and-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Apply XWL14 to [𝑐𝑖𝑝] 

XWL14/2(𝛼, 𝑞), LWX15/2(𝛼, 𝑞), and T15/2(𝛼, 𝑞) are the same. Therefore, we prefer the notation 

XWL14/2(𝛼, 𝑞). 

In [52], the scholars have suggested a new SDM method based on grey relational analysis and fuzzy soft sets. 

We configure the proposed method therein as follows: 

Algorithm 3.14. YHX14(𝜶, 𝜷) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝜆1𝑗]1×𝑛 defined by 

𝜆1𝑗 ≔
1

𝑚 − 1
∑ 𝑎𝑖𝑗

𝑚−1

𝑖=1

,    𝑖 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑏𝑖𝑗 ≔ {
𝑎0𝑗, 𝑎𝑖𝑗 ≥ 𝜆1𝑗
0, 𝑎𝑖𝑗 < 𝜆1𝑗

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 



94 

 

Journal of New Theory 34 (2021) 82-114 / Operability-Oriented Configurations of the Soft Decision-Making Methods ... 

Step 4. Obtain [𝑐𝑖1](𝑚−1)×1 defined by 

𝑐𝑖1 ≔∑𝑏𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain [𝑑1𝑗]1×𝑛 defined by 

𝑑1𝑗 ≔ max
𝑖∈𝐼𝑚−1

{𝑎0𝑗𝑎𝑖𝑗} ,    𝑗 ∈ 𝐼𝑛 

Step 6. Obtain [𝑒𝑖1](𝑚−1)×1 defined by 

𝑒𝑖1 ≔ −
1

𝑛 ln(2)
∑(𝑎0𝑗𝑎𝑖𝑗 ln (

휀 + 𝑎0𝑗𝑎𝑖𝑗

휀 +
1
2 (
𝑎0𝑗𝑎𝑖𝑗 + 𝑑1𝑗)

) + (1 − 𝑎0𝑗𝑎𝑖𝑗) ln(
1 + 휀 − 𝑎0𝑗𝑎𝑖𝑗

1 + 휀 −
1
2 (
𝑎0𝑗𝑎𝑖𝑗 + 𝑑1𝑗)

)

𝑛

𝑗=1

+ 𝑑1𝑗 ln(
휀 + 𝑑1𝑗

휀 +
1
2 (
𝑑1𝑗 + 𝑎0𝑗𝑎𝑖𝑗)

) + (1 − 𝑑1𝑗) ln(
1 + 휀 − 𝑑1𝑗

1 + 휀 −
1
2 (
𝑑1𝑗 + 𝑎0𝑗𝑎𝑖𝑗)

)) ,    𝑖 ∈ 𝐼𝑚−1 

Here, if 𝑎0𝑗𝑎𝑖𝑗 = 0, 𝑑1𝑗 = 0, 𝑎0𝑗𝑎𝑖𝑗 = 1, or 𝑑1𝑗 = 1, then ln (
𝑎0𝑗𝑎𝑖𝑗

1

2
(𝑎0𝑗𝑎𝑖𝑗+𝑑1𝑗)

), ln (
𝑑1𝑗

1

2
(𝑑1𝑗+𝑎0𝑗𝑎𝑖𝑗)

), 

ln (
1−𝑎0𝑗𝑎𝑖𝑗

1−
1

2
(𝑎0𝑗𝑎𝑖𝑗+𝑑1𝑗)

), or ln (
1−𝑑1𝑗

1−
1

2
(𝑑1𝑗+𝑎0𝑗𝑎𝑖𝑗)

) are undefined, respectively. To cope with these drawbacks, we 

modify them as ln (
𝜀+𝑎0𝑗𝑎𝑖𝑗

𝜀+
1

2
(𝑎0𝑗𝑎𝑖𝑗+𝑑1𝑗)

), ln (
𝜀+𝑑1𝑗

𝜀+
1

2
(𝑑1𝑗+𝑎0𝑗𝑎𝑖𝑗)

), ln (
1+𝜀−𝑎0𝑗𝑎𝑖𝑗

1+𝜀−
1

2
(𝑎0𝑗𝑎𝑖𝑗+𝑑1𝑗)

), and ln (
1+𝜀−𝑑1𝑗

1+𝜀−
1

2
(𝑑1𝑗+𝑎0𝑗𝑎𝑖𝑗)

), 

respectively, such that 휀 ≪ 1 is a positive constant, e.g.,  휀 = 0.0001. 

Step 7. For 𝛼 ∈ [0,1], obtain [𝑓𝑖1](𝑚−1)×1 and [𝑔𝑖1](𝑚−1)×1 defined by 

𝑓𝑖1 ≔ {

min
𝑘∈𝐼𝑚−1

{𝑛 − 𝑐𝑘1} + 𝛼 max
𝑘∈𝐼𝑚−1

{𝑛 − 𝑐𝑘1}

𝑛 − 𝑐𝑖1 + 𝛼 max
𝑘∈𝐼𝑚−1

{𝑛 − 𝑐𝑘1}
, max

𝑘∈𝐼𝑚−1
{𝑛 − 𝑐𝑘1} ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑖 ∈ 𝐼𝑚−1 

and 

𝑔𝑖1 ≔ {

min
𝑘∈𝐼𝑚−1

𝑒𝑘1 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑒𝑘1

𝑒𝑖1 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑒𝑘1
, max

𝑘∈𝐼𝑚−1
𝑒𝑘1 ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑖 ∈ 𝐼𝑚−1 

Step 8. For 𝛽 ∈ [0,1], obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ 𝛽𝑓𝑖1 + (1 − 𝛽)𝑔𝑖1,    𝑖 ∈ 𝐼𝑚−1 

Step 9. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[45] has applied an SDM method constructed via soft sets to a problem related to a company’s recruitment 

scenario. Moreover, the following method is a version constructed with 𝑡 fpfs-matrices of Z14 provided in 

[29]. We configure the proposed method therein as follows: 

Algorithm 3.15. Z14/2 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

,⋯ , [𝑎𝑖𝑗
𝑡 ]
𝑚×𝑛

  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 𝑏𝑖𝑗 ≔ max
𝑘∈𝐼𝑡

𝑎𝑖𝑗
𝑘  such that 𝑖 ∈ 𝐼𝑚−1

∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply MRB02 [27] to [𝑏𝑖𝑗] 

Z14 [29] is a special version of Z14/2.  
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In [53], the researcher has availed of the concept of fuzzy soft sets. We configure the proposed method therein 

as follows: 

Algorithm 3.16. A15 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain  [𝑏𝑖𝑘](𝑚−1)×(𝑚−1) defined by 

𝑏𝑖𝑘 ≔ {
∑𝑎0𝑗𝜒(𝑎𝑖𝑗 , 𝑎𝑘𝑗)

𝑛

𝑗=1

, 𝑖 ≠ 𝑘

0, 𝑖 = 𝑘

 

such that  

𝜒(𝑎𝑖𝑗, 𝑎𝑘𝑗) ≔ {
1, 𝑎𝑖𝑗 > 𝑎𝑘𝑗
0, 𝑎𝑖𝑗 ≤ 𝑎𝑘𝑗

,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

 

Step 3. Obtain  [𝑐𝑖𝑘](𝑚−1)×(𝑚−1) defined by 

𝑐𝑖𝑘 ≔ {

𝑏𝑖𝑘 , 𝑖 ≠ 𝑘

𝑛(𝑚 − 2) − ∑ 𝑏𝑙𝑘

𝑚−1

𝑙=1,

, 𝑖 = 𝑘
,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

Step 4. Obtain sum of the eigenvectors [𝑠𝑖1](𝑚−1)×1 associated with the dominant eigenvalues 𝜆 ≔ 𝑛(𝑚 − 2) 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[65] has modelled a car purchasing problem through fuzzy parameterized soft sets. We configure the proposed 

method therein as follows: 

Algorithm 3.17. DC15(𝜶) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain increasing sequence (𝑟𝑡) consisting of all the elements of 𝑅 ≔ {𝑗 ∶ 𝑎0𝑗 ≥ 𝛼} such that 𝛼 ∈

[0,1]. If 𝑅 = ∅, then  𝛼 ≔
1

𝑛
∑ 𝑎0𝑗
𝑛
𝑗=1 . 

Step 3. Obtain [𝑏𝑖𝑝]𝑚×|𝑅|2 defined by 𝑏𝑖𝑝 = min {𝑎𝑖𝑟𝑗 , 𝑎𝑖𝑟𝑘} such that 𝑝 = 𝑛(𝑗 − 1) + 𝑘, 𝑖 ∈ 𝐼𝑚−1
∗ , and  𝑗, 𝑘 ∈

𝐼|𝑅|. Here, |𝑅| denote the cardinality of 𝑅. 

Step 4. Obtain the score matrix [𝑠𝑖1]𝑚×1 defined by 

𝑠𝑖1 ≔
1

|𝑅|2
∑

|𝑅|2

𝑝=1

𝑏0𝑝𝑏𝑖𝑝,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈}  

[54,58] have proposed an SDM method based on fuzzy soft sets. We configure the proposed methods therein 

as follows: 

Algorithm 3.18. HJ15(𝝀) and H16(𝝀) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. For 𝜆 ∈ [0,1], obtain [𝑐𝑖𝑗]𝑚×𝑛 and [𝑑𝑖𝑗]𝑚×𝑛 defined by 
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𝑐𝑖𝑗 ≔ {
𝑎𝑖𝑗 , 𝑎𝑖𝑗 ≥ 𝜆

0, 𝑎𝑖𝑗 < 𝜆
 and 𝑑𝑖𝑗 ≔ {

𝑏𝑖𝑗, 𝑏𝑖𝑗 ≥ 𝜆

0, 𝑏𝑖𝑗 < 𝜆
 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛  

Step 3. Apply CE10a [27] to [𝑐𝑖𝑗] and [𝑑𝑖𝑗] 

In [71], the scholars have suggested two SDM methods based on grey relational analysis and fuzzy soft 

matrices. We configure the proposed methods therein as follows: 

Algorithm 3.19. XHL15(𝜶, 𝒒) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑗](𝑚−1)×𝑛
 defined by 

𝑏𝑖𝑗 ≔ (2𝑎0𝑗 − 1)(2𝑎𝑖𝑗 − 1) 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖1](𝑚−1)×1 defined by 

𝑐𝑖1 ≔
1

𝑛
∑𝑏𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain [𝑑𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑑𝑖𝑗 ≔ |𝑏𝑖𝑗 − 𝑐𝑖1| 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 5. For 𝛼 ∈ [0,1], obtain [𝑒𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑒𝑖𝑗 ≔ {

min
𝑘∈𝐼𝑚−1

𝑑𝑘𝑗 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑑𝑘𝑗

𝑑𝑖𝑗 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑑𝑘𝑗
, max

𝑘∈𝐼𝑚−1
𝑑𝑘𝑗 ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 6. For 𝑞 ∈ ℕ+, obtain [𝑓1𝑗]1×𝑛 defined by 

𝑓1𝑗 ≔
1

𝑚 − 1
(∑(𝑒𝑖𝑗)

𝑞
𝑚−1

𝑖=1

)

1
𝑞

,    𝑗 ∈ 𝐼𝑛 

Step 7. Obtain [𝑔1𝑗]1×𝑛 defined by 

𝑔1𝑗 ≔ 1− 𝑓1𝑗,    𝑗 ∈ 𝐼𝑛 

Step 8. Obtain [ℎ𝑖𝑗](𝑚−1)×𝑛 defined by 

ℎ𝑖𝑗 ≔ 𝑏𝑖𝑗𝑔1𝑗 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 9. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 

𝑠𝑖1 ≔ 𝛿𝑖(1,2, … , 𝑛),    𝑖 ∈ 𝐼𝑚−1 

such that  
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𝛿𝑖(1,2, … , 𝑛) ≔
𝛿𝑖(1,2, … , 𝑛 − 1) + ℎ𝑖𝑛
1 + 𝛿𝑖(1,2,… , 𝑛 − 1)ℎ𝑖𝑛

,    𝑖 ∈ 𝐼𝑚−1 and 𝑛 ≥ 2 

and 

𝛿𝑖(1,2) ≔
ℎ𝑖1 + ℎ𝑖2
1 + ℎ𝑖1ℎ𝑖2

,    𝑖 ∈ 𝐼𝑚−1 

Step 10. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

Algorithm 3.20. XHL15/2(𝜶, 𝒒) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find and-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Apply XHL15(𝛼, 𝑞) to [𝑐𝑖𝑝] 

[66] has benefited fpfs-sets to fill an announced position in a company. We configure the proposed methods 

therein as follows: 

Algorithm 3.21. ZXZ15(𝜶) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 

𝑐0𝑗 ≔ √(𝑎0𝑗)
2
+(𝑏0𝑗)

2

2
 and 𝑐𝑖𝑗 ≔ max

 
{𝑎𝑖𝑗, 𝑏𝑖𝑗} 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑑𝑖𝑗]𝑚×𝑛 defined by 

𝑑0𝑗 ≔ 𝑐0𝑗 and 𝑑𝑖𝑗 ≔ {
𝑐𝑖𝑗, 𝑐𝑖𝑗 ≥ 𝛼

0, 𝑐𝑖𝑗 < 𝛼
 

such that 𝛼 ∈ [0,1], 𝑖 ∈ 𝐼𝑚−1, and 𝑗 ∈ 𝐼𝑛 

Step 4. Apply CCE10 [27] to [𝑑𝑖𝑗] 

Algorithm 3.22.  ZXZ15/2(𝜶) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 

𝑐0𝑗 ≔ √(𝑎0𝑗)
2
+(𝑏0𝑗)

2

2
 and 𝑐𝑖𝑗 ≔ min

 
{𝑎𝑖𝑗 , 𝑏𝑖𝑗} 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑑𝑖𝑗]𝑚×𝑛 defined by 

𝑑0𝑗 ≔ 𝑐0𝑗 and 𝑑𝑖𝑗 ≔ {
𝑐𝑖𝑗, 𝑐𝑖𝑗 ≥ 𝛼

0, 𝑐𝑖𝑗 < 𝛼
 

such that 𝛼 ∈ [0,1], 𝑖 ∈ 𝐼𝑚−1, and 𝑗 ∈ 𝐼𝑛 

Step 4. Apply CCE10 [27] to [𝑑𝑖𝑗] 
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In [46], the researchers have revised two SDM methods based on soft sets and fuzzy soft sets. We configure 

the proposed methods therein as follows: 

Algorithm 3.23. ZZ15 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛defined by 𝑏0𝑗 ≔ {

𝑎0𝑗

∑ 𝑎0𝑘
𝑛
𝑘=1

, ∑ 𝑎0𝑘
𝑛
𝑘=1 ≠ 0

1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and 𝑏𝑖𝑗 ≔ 𝑎𝑖𝑗 such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply MRB02 [27] to [𝑏𝑖𝑗] 

Algorithm 3.24. ZZ15/2(𝝀) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Construct 𝜆 ≔ [𝜆1𝑗]1×𝑛
 such that 0 ≤ 𝜆1𝑗 ≤ 1 for 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝑏𝑖𝑗 ≔ {

𝑎0𝑗, 𝑖 = 0

1, 𝑖 ≠ 0 and 𝑎𝑖𝑗 ≥ 𝜆1𝑗
0, 𝑖 ≠ 0 and 𝑎𝑖𝑗 < 𝜆1𝑗

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛  

Step 4. Apply ZZ15 to [𝑏𝑖𝑗] 

[57] has propounded a novel approach associated with fuzzy soft sets. We configure the proposed method 

therein as follows: 

Algorithm 3.25. A16 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

,⋯ , [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
  

Step 2. Find and-product fpfs-matrix [𝑏𝑖𝑗]𝑚×𝑛 of [𝑎𝑖𝑗1
1 ], [𝑎𝑖𝑗2

2 ],⋯ , [𝑎𝑖𝑗𝑡
𝑡 ] such that 𝑛 = 𝑛1𝑛2…𝑛𝑡 

Step 3. Obtain [𝑐𝑖𝑘](𝑚−1)×(𝑚−1) defined by 

𝑐𝑖𝑘 ≔∑𝑏0𝑗𝜒(𝑏𝑖𝑗, 𝑏𝑘𝑗)

𝑛

𝑗=1

,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

such that 

𝜒(𝑏𝑖𝑗 , 𝑏𝑘𝑗) ≔ {

𝑏𝑖𝑗 − 𝑏𝑘𝑗

max
𝑡∈𝐼𝑚−1

{𝑏𝑡𝑗}
, 𝑏𝑖𝑗 > 𝑏𝑘𝑗

0, 𝑏𝑖𝑗 ≤ 𝑏𝑘𝑗

 

Step 4. Apply Step 3-6 of MBR01 [27] to [𝑐𝑖𝑘] 

[47] has assessed the eligibility of a group of students for a scholarship using soft sets and soft matrices. 

Moreover, [67] has revised the SDM method in [3] via fpfs-sets. We configure the proposed method therein as 

follows: 

Algorithm 3.26. AC16, AC16/2, RH16 

AC16, AC16/2, RH16, and CEC11 [29] are the same. Therefore, we prefer the notation CEC11. 
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In [72], the researchers have studied the fuzzy soft matrices by using different t-norms. We configure the 

proposed methods therein as follows: 

Algorithm 3.27. AM16 

AM16 is the same as MR13 [29]. Therefore, we prefer notation MR13. 

Algorithm 3.28. AM16/2 

AM16/2 is the same as MR13/2 [29]. Therefore, we prefer notation MR13/2. 

Algorithm 3.29. AM16/3 

AM16/3 is the same as MR13/3 [29]. Therefore, we prefer notation MR13/3. 

In [59], the authors have applied the concept of fuzzy soft sets to a problem concerning selecting an investing 

area. We configure the proposed method therein as follows: 

Algorithm 3.30. NRM16(𝑹) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛. 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔∏𝑎0𝑗𝑎𝑖𝑗
𝑗∈𝑅

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[67] has used fpfs-sets to decide on a car purchase problem. We configure the proposed method therein as 

follows: 

Algorithm 3.31. RH16/3(𝑹) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛1 × 𝐼𝑛2 

Step 3. Obtain increasing sequence (𝑟𝑡) consisting of all the elements of 𝑅 such that 𝑟𝑡 ≔ (𝑢𝑡, 𝑣𝑡) 

Step 4. Obtain [𝑑𝑖𝑡]𝑚×|𝑅| defined by 

𝑑𝑖𝑡 ≔ min
𝑟𝑡∈𝑅

{𝑎𝑖𝑢𝑡 , 𝑏𝑖𝑣𝑡} ,    𝑖 ∈ 𝐼𝑚−1
∗  

Here, |𝑅| denotes the cardinality of 𝑅. 

Step 5. Obtain [𝑒𝑖𝑡]𝑚×|𝑅| defined by 

𝑒0𝑡 ≔ 𝑑0𝑡 and 𝑒𝑖𝑡 ≔ 𝑑0𝑡𝑑𝑖𝑡 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑡 ∈ 𝐼|𝑅| 

Step 6. Apply MBR01 [27] to [𝑒𝑖𝑡] 

In [60], the researchers have employed fuzzy soft sets to choose practical and reliable social network sites. We 

configure the proposed method therein as follows: 

Algorithm 3.32. RK16 

RK16 is the same as MBR01 [27]. Therefore, we prefer the notation MBR01. 
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[61] has constructed an SDM method being a generalisation of MRB02 by using multiple fuzzy soft sets. We 

configure the proposed method therein as follows: 

Algorithm 3.33. RS16 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

,⋯ , [𝑎𝑖𝑗
𝑡 ]
𝑚×𝑛

  

Step 2. Obtain [𝑏𝑖1
1 ]

(𝑚−1)×1
, [𝑏𝑖1

2 ]
(𝑚−1)×1

, … , [𝑏𝑖1
𝑡 ]

(𝑚−1)×1
 defined by 

𝑏𝑖1
𝑘 ≔∑

𝑛

𝑗=1

𝑎0𝑗
𝑘 𝑎𝑖𝑗

𝑘  

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑘 ∈ 𝐼𝑡 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1: = ∑𝑏𝑖1
𝑘

𝑡

𝑘=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

In [62], the authors have drawn on fuzzy soft sets to solve a group decision-making problem. We configure 

the proposed method therein as follows: 

Algorithm 3.34. SMT16 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, … , [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑘
1 ]

(𝑚−1)×(𝑚−1)
, [𝑏𝑖𝑘

2 ]
(𝑚−1)×(𝑚−1)

, … , [𝑏𝑖𝑘
𝑡 ]

(𝑚−1)×(𝑚−1)
 defined by 

𝑏𝑖𝑘
𝑟 ≔∑

𝑛

𝑗=1

𝑎0𝑗
𝑟 𝜒(𝑎𝑖𝑗

𝑟 , 𝑎𝑘𝑗
𝑟 ),    𝑖, 𝑘 ∈ 𝐼𝑚−1, 𝑟 ∈ 𝐼𝑡 

such that 

𝜒(𝑎𝑖𝑗
𝑟 , 𝑎𝑘𝑗

𝑟 ) ≔ {
1, 𝑎𝑖𝑗

𝑟 ≥ 𝑎𝑘𝑗
𝑟

0, 𝑎𝑖𝑗
𝑟 < 𝑎𝑘𝑗

𝑟  

Step 3. Obtain [𝑐𝑖1
1 ]

(𝑚−1)×1
, [𝑐𝑖1

2 ]
(𝑚−1)×1

, … , [𝑐𝑖1
𝑡 ]

(𝑚−1)×1
 defined by 

𝑐𝑖1
𝑟 ≔ ∑ 𝑏𝑖𝑘

𝑟 ,

𝑚−1

𝑘=1

    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔∑𝑐𝑖1
𝑟

𝑡

𝑟=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[68] has developed an SDM method based on mean-product and max-max decision-making via soft matrices. 

We configure the proposed method therein as follows: 

Algorithm 3.35. VMH16 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 
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Step 2. Find the mean-product matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ max
𝑘∈𝐼𝑛1

{
max
𝑝∈𝐼𝑘

(𝑐0𝑝𝑐𝑖𝑝) , 𝐼𝑘 ≠ ∅

0, 𝐼𝑘 = ∅
 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝐼𝑘 ≔ {𝑝 | ∃𝑖 ∋ 𝑐0𝑝𝑐𝑖𝑝 ≠ 0, (𝑘 − 1)𝑛2 < 𝑝 ≤ 𝑘𝑛2} 

Step 4. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[63] has propounded two novel methods based upon ambiguity measure and Dempster-Shafer theory of 

evidence in the fuzzy soft sets space. We configure the proposed methods therein as follows: 

Algorithm 3.36. WHXDD16 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑏𝑖𝑗 ≔

{
 
 

 
 𝑎0𝑗𝑎𝑖𝑗

∑𝑚−1𝑘=1 𝑎0𝑗𝑎𝑘𝑗
, ∑

𝑚−1

𝑘=1

𝑎0𝑗𝑎𝑘𝑗 ≠ 0

1

𝑚 − 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛. 

Step 3. Obtain [𝑐1𝑗]1×𝑛 defined by  

𝑐1𝑗 ≔ −∑ 𝑏𝑖𝑗 log2(휀 + 𝑏𝑖𝑗)

𝑚−1

𝑖=1

,    𝑗 ∈ 𝐼𝑛 

Here, if 𝑏𝑖𝑗 = 0, then 𝑐1𝑗 ≔ −∑ 𝑏𝑖𝑗
𝑚−1
𝑖=1 log2 𝑏𝑖𝑗 is undefined. To cope with this drawback, we modify it as 

𝑐1𝑗 ≔ −∑ 𝑏𝑖𝑗
𝑚−1
𝑖=1 log2(휀 + 𝑏𝑖𝑗) such that 휀 ≪ 1 is a positive constant, e.g.,  휀 = 0.0001. 

Step 4. Obtain [𝑑1𝑗]1×𝑛 defined by  

𝑑1𝑗 ≔

{
 
 

 
 𝑐1𝑗
∑ 𝑐1𝑘
𝑛
𝑘=1

, ∑ 𝑐1𝑘

𝑛

𝑘=1

≠ 0

1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑗 ∈ 𝐼𝑛 

Step 5. Obtain [𝑒𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑒𝑖𝑗 ≔ 𝑏𝑖𝑗(1 − 𝑑1𝑗) 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 6. Obtain [𝑓1𝑗]1×𝑛 defined by 

𝑓1𝑗 ≔ 1− ∑ 𝑒𝑖𝑗

𝑚−1

𝑖=1

,    𝑗 ∈ 𝐼𝑛 

Step 7. Apply Step 7-10 of XWL14 to [𝑓1𝑗]  
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Algorithm 3.37. WHXDD16/2 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find and-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Apply WHXDD16 to [𝑐𝑖𝑝] 

4. Test Cases for the Comparison of the SDM Methods 

This section proposes five test cases to compare decision-making performances of SDM methods. SDM 

methods employ single, double, or multiple fpfs-matrices. Therefore, each test case consists of 𝑡 fpfs-matrices 

[𝑎𝑖𝑗
1 ], [𝑎𝑖𝑗

2 ],… , [𝑎𝑖𝑗
𝑡 ], which has order 𝑚 × 𝑛 and manifest the same ranking order of alternatives without 

employing SDM methods. If an SDM method employs a single fpfs-matrix, we only use [𝑎𝑖𝑗
1 ]. Similarly, if 

double, we use [𝑎𝑖𝑗
1 ] and [𝑎𝑖𝑗

2 ]. If an SDM method produces the ranking order provided in a test case, then it 

is said to accomplish the test case. In this section, let 𝑡 = 3, 𝑚 = 5, 𝑛 = 4, 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} be the set of 

alternatives, and 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} be the set of parameters. 

4.1. Test Case 1 

Test Case 1 constructs three fpfs-matrices [𝑎𝑖𝑗
1 ]

5×4
, [𝑎𝑖𝑗

2 ]
5×4

, and [𝑎𝑖𝑗
3 ]
5×4

 such that for all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑎01
𝑘 = 𝑎02

𝑘 = 𝑎03
𝑘 = 𝑎04

𝑘  and 𝑎1𝑗
𝑘 < 𝑎2𝑗

𝑘 < 𝑎3𝑗
𝑘 < 𝑎4𝑗

𝑘 . Therefore, 𝑎0𝑗
𝑘 𝑎1𝑗

𝑘 < 𝑎0𝑗
𝑘 𝑎2𝑗

𝑘 < 𝑎0𝑗
𝑘 𝑎3𝑗

𝑘 < 𝑎0𝑗
𝑘 𝑎4𝑗

𝑘 , for 

all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3. For each fpfs-matrix herein, the ranking order of alternatives is 𝑢1 ≺ 𝑢2 ≺ 𝑢3 ≺ 𝑢4. For 

example,  

[𝑎𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.4 0.4 0.4 0.4

0.7 0.6 0.5 0.4

0.8 0.7 0.6 0.5

0.9 0.8 0.7 0.6

1 0.9 0.8 0.7]
 
 
 
 
 

,  [𝑎𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.4 0.4 0.4 0.4

0.3 0.2 0.1 0

0.4 0.3 0.2 0.1

0.5 0.4 0.3 0.2

0.6 0.5 0.4 0.3]
 
 
 
 
 

,  and [𝑎𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.4 0.4 0.4 0.4

0.5 0.4 0.3 0.2

0.6 0.5 0.4 0.3

0.7 0.6 0.5 0.4

0.8 0.7 0.6 0.5]
 
 
 
 
 

  

4.2. Test Case 2 

Test Case 2 constructs three fpfs-matrices [𝑏𝑖𝑗
1 ]
5×4

, [𝑏𝑖𝑗
2 ]
5×4

, and [𝑏𝑖𝑗
3 ]
5×4

 such that for all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑏01
𝑘 = 𝑏02

𝑘 = 𝑏03
𝑘 = 𝑏04

𝑘  and 𝑏4𝑗
𝑘 < 𝑏3𝑗

𝑘 < 𝑏2𝑗
𝑘 < 𝑏1𝑗

𝑘 . Therefore, 𝑏0𝑗
𝑘 𝑏4𝑗

𝑘 < 𝑏0𝑗
𝑘 𝑏3𝑗

𝑘 < 𝑏0𝑗
𝑘 𝑏2𝑗

𝑘 < 𝑏0𝑗
𝑘 𝑏1𝑗

𝑘 , for 

all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3. For each fpfs-matrix herein, the ranking order of alternatives is 𝑢4 ≺ 𝑢3 ≺ 𝑢2 ≺ 𝑢1. For 

example,  

[𝑏𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.7 0.7 0.7 0.7

1 0.9 0.8 0.7

0.9 0.8 0.7 0.6

0.8 0.7 0.6 0.5

0.7 0.6 0.5 0.4]
 
 
 
 
 

,  [𝑏𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.7 0.7 0.7 0.7

0.6 0.5 0.4 0.3

0.5 0.4 0.3 0.2

0.4 0.3 0.2 0.1

0.3 0.2 0.1 0 ]
 
 
 
 
 

,  and [𝑏𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.7 0.7 0.7 0.7

0.8 0.7 0.6 0.5

0.7 0.6 0.5 0.4

0.6 0.5 0.4 0.3

0.5 0.4 0.3 0.2]
 
 
 
 
 

  

4.3. Test Case 3 

Test Case 3 constructs three fpfs-matrices [𝑐𝑖𝑗
1 ]
5×4

, [𝑐𝑖𝑗
2 ]
5×4

, and [𝑐𝑖𝑗
3 ]
5×4

 such that for all 𝑖, 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑐01
𝑘 < 𝑐02

𝑘 < 𝑐03
𝑘 < 𝑐04

𝑘 , 𝑐𝑖𝑖
𝑘 = 𝜆 ∈ [0,1], and if 𝑖 ≠  𝑗, then 𝑐𝑖𝑗

𝑘 = 0. Therefore, 𝑐01
𝑘 𝑐11

𝑘 < 𝑐02
𝑘 𝑐22

𝑘 < 𝑐03
𝑘 𝑐33

𝑘 <

𝑐04
𝑘 𝑐44

𝑘  and if 𝑖 ≠  𝑗, then 𝑐0𝑗
𝑘 𝑐𝑖𝑗

𝑘 = 0, for all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3. For each fpfs-matrix herein, the ranking order of 

alternatives is 𝑢1 ≺ 𝑢2 ≺ 𝑢3 ≺ 𝑢4. For example, 
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[𝑐𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.6 0.7 0.8 0.9

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

,  [𝑐𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.4 0.5 0.6 0.7

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

,  and [𝑐𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.2 0.3 0.4 0.5

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

  

4.4. Test Case 4 

Test Case 4 constructs three fpfs-matrices [𝑑𝑖𝑗
1 ]

5×4
, [𝑑𝑖𝑗

2 ]
5×4

, and [𝑑𝑖𝑗
3 ]
5×4

 such that for all 𝑖, 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑑04
𝑘 < 𝑑03

𝑘 < 𝑑02
𝑘 < 𝑑01

𝑘 , 𝑑𝑖𝑖
𝑘 = 𝜆 ∈ [0,1], and if 𝑖 ≠  𝑗, then 𝑑𝑖𝑗

𝑘 = 0. Therefore, 𝑑04
𝑘 𝑑44

𝑘 < 𝑑03
𝑘 𝑑33

𝑘 <

𝑑03
𝑘 𝑑33

𝑘 < 𝑑01
𝑘 𝑑11

𝑘  and if 𝑖 ≠  𝑗, then 𝑑0𝑗
𝑘 𝑑𝑖𝑗

𝑘 = 0, for all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3. For each fpfs-matrix herein, the 

ranking order of alternatives is 𝑢4 ≺ 𝑢3 ≺ 𝑢2 ≺ 𝑢1. For example, 

[𝑑𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.9 0.8 0.7 0.6

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

,  [𝑑𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.7 0.6 0.5 0.4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

 , and [𝑑𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.5 0.4 0.3 0.2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

  

4.5. Test Case 5 

Test Case 4 constructs three fpfs-matrices [𝑒𝑖𝑗
1 ]
5×4

, [𝑒𝑖𝑗
2 ]
5×4

, and [𝑒𝑖𝑗
3 ]
5×4

 such that for all 𝑖, 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑒𝑖𝑗
𝑘 = 𝜆 ∈ [0,1]. For each fpfs-matrix herein, the ranking order of alternatives is  

𝑢1 ≈ 𝑢2 ≈ 𝑢3 ≈ 𝑢4. Here, ≈ denotes the same ranking order. For example, 

[𝑒𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5]
 
 
 
 
 

,  [𝑒𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5]
 
 
 
 
 

,  and [𝑒𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5]
 
 
 
 
 

  

4.6. Results of Test Cases 

In this subsection, we test the configured SDM methods using the aforesaid five test cases. Here, the methods 

working with a single matrix employ the first fpfs-matrices in each test case. Similarly, the methods working 

with double matrices utilise the first two fpfs-matrices. Moreover, the other methods use all the fpfs-matrices. 

For example, in Test Case 1, the methods employing single matrix, double matrices, and multiple matrices use 

the first fpfs-matrix [𝑎𝑖𝑗
1 ], the first two fpfs-matrices [𝑎𝑖𝑗

1 ] and [𝑎𝑖𝑗
2 ], and all the fpfs-matrices [𝑎𝑖𝑗

1 ], [𝑎𝑖𝑗
2 ], and 

[𝑎𝑖𝑗
3 ], respectively. 

Table 8 indicates in which test cases the methods are successful. It can be seen from Table 8 that 20 of 37 

methods, namely MBR01, MRB02, CCE10, CEC11, CXL13(𝜆1), WQ14(𝜅), YHX14(𝛼, 𝛽), DC15(𝛼), ZZ15, 

CXL13/2(𝜆1), HG13, ZXZ15(𝛼), VMH16, MR13, MR13/2, SM13(𝑤, 𝛼), Z14/2, RS16, SMT16, and 

NKY17(𝜆2), pass all the tests. Moreover, the numbers of the passed tests are provided in the last column of 

Table 8. Here, 𝛼 = 0.5, 𝛽 = 0.5, 𝜅 = 0.4, 𝜆 = 0.5, 𝜆1 = [1 1 1 1], 𝜆2 = [0.25 0.25 0.25 0.25], 𝜆3 =

[0.5 0.5 0.5 0.5], 𝑞 = 2, 𝑅 = {1, 2, 3, 4}, and 𝑤 = [0.34 0.34 0.34]. 
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Table 8. Success of the methods in the test cases 

 Algorithms\Test Cases 
Test 

Case 1 

Test 

Case 2 

Test 

Case 3 

Test 

Case 4 

Test 

Case 5 

Passed 

Test’s 

Numbers 

1 NS11 [BSD13, SR15]  ✓ ✓ ✓ ✓ 4 

2 CXL13(𝜆1) ✓ ✓ ✓ ✓ ✓ 5 

3 CXL13/2(𝜆1) ✓ ✓ ✓ ✓ ✓ 5 

4 GLF13(𝑅) ✓ ✓   ✓ 3 

5 HG13 ✓ ✓ ✓ ✓ ✓ 5 

6 SM13(𝑤, 𝛼) ✓ ✓ ✓ ✓ ✓ 5 

7 MRB02 [GDC14, RH16/2] ✓ ✓ ✓ ✓ ✓ 5 

8 NKY17(𝜆2) [GDC14/2] ✓ ✓ ✓ ✓ ✓ 5 

9 K14  ✓   ✓ 2 

10 CCE10 [MM14] ✓ ✓ ✓ ✓ ✓ 5 

11 WQ14(𝜅) ✓ ✓ ✓ ✓ ✓ 5 

12 XWL14(𝛼, 𝑞) [LWX15(𝛼, 𝑞), T15(𝛼, 𝑞)] ✓ ✓   ✓ 3 

13 XWL14/2(𝛼, 𝑞) [LWX15/2(𝛼, 𝑞), T15/2(𝛼, 𝑞)] ✓ ✓   ✓ 3 

14 YHX14(𝛼, 𝛽) ✓ ✓ ✓ ✓ ✓ 5 

15 Z14/2 ✓ ✓ ✓ ✓ ✓ 5 

16 A15   ✓ ✓ ✓ 3 

17 DC15(𝛼) ✓ ✓ ✓ ✓ ✓ 5 

18 HJ15(𝜆) [H16(𝜆)]  ✓   ✓ 2 

19 XHL15(𝛼, 𝑞)  ✓ ✓ ✓ ✓ 4 

20 XHL15/2(𝛼, 𝑞)  ✓ ✓ ✓ ✓ 4 

21 ZXZ15(𝛼) ✓ ✓ ✓ ✓ ✓ 5 

22 ZXZ15/2(𝛼)   ✓ ✓ ✓ 3 

23 ZZ15 ✓ ✓ ✓ ✓ ✓ 5 

24 ZZ15/2(𝜆3)   ✓ ✓ ✓ 3 

25 A16  ✓  ✓ ✓ 3 

26 CEC11 [AC16, AC16/2, RH16] ✓ ✓ ✓ ✓ ✓ 5 

27 MR13 [AM16] ✓ ✓ ✓ ✓ ✓ 5 

28 MR13/2 [AM16/2] ✓ ✓ ✓ ✓ ✓ 5 

29 MR13/3 [AM16/3]     ✓ 1 

30 NRM16(𝑅) ✓ ✓   ✓ 3 

31 RH16/3(𝑅) ✓ ✓   ✓ 3 

32 MBR01 [RK16] ✓ ✓ ✓ ✓ ✓ 5 

33 RS16 ✓ ✓ ✓ ✓ ✓ 5 

34 SMT16 ✓ ✓ ✓ ✓ ✓ 5 

35 VMH16 ✓ ✓ ✓ ✓ ✓ 5 

36 WHXDD16     ✓ 1 

37 WHXDD16/2 ✓    ✓ 2 

 Total 26 31 26 27 37  
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5. An Application of Some of the Configured Methods to a PVA Problem 

This section applies the configured methods herein to a PVA problem concerning the salt-and-pepper noise 

(SPN) removal performance of the filters provided in [73]. Therefore, firstly, we present the results of the 

filters in [73] produced by the quality metrics Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 

(SSIM) [74], and Visual Information Fidelity (VIF) [75] for 20 traditional images at noise density occurring 

between 10% and 90% in Table 9, 10, and 11, respectively. Moreover, the bold values in the tables signify 

the filters with the best performance. 

Table 9. Mean-PSNR results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBAIN 37.52 34.29 31.96 29.83 27.86 25.89 23.90 21.55 18.55 

MDBUTMF 36.80 32.18 29.02 28.48 28.81 28.34 26.95 23.42 15.29 

BPDF 36.98 33.54 31.03 28.88 26.82 24.60 21.98 17.74 10.51 

NAFSMF 36.08 33.27 31.49 30.15 29.02 27.96 26.82 25.47 22.34 

AWMF 36.34 35.00 33.83 32.69 31.47 30.14 28.68 26.99 24.70 

DAMF 39.58 36.33 34.14 32.45 30.99 29.64 28.28 26.69 24.35 

ARmF 40.04 37.12 35.14 33.53 31.99 30.45 28.86 27.08 24.74 

Table 10. Mean-SSIM results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBAIN 0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966 

MDBUTMF 0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566 

BPDF 0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585 

NAFSMF 0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190 

AWMF 0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028 

DAMF 0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964 

ARmF 0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056 

Table 11. Mean-VIF results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBAIN 0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635 

MDBUTMF 0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730 

BPDF 0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334 

NAFSMF 0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226 

AWMF 0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928 

DAMF 0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913 

ARmF 0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955 

 

In this PVA problem, the alternatives are indicated as 𝑢1 ≔ “DBAIN”, 𝑢2 ≔ “MDBUTMF”, 𝑢3 ≔ “BPDF”, 

𝑢4 ≔ “NAFSMF”, 𝑢5 ≔ “AWMF”, 𝑢6 ≔ “DAMF”, and 𝑢7 ≔ “ARmF” such that 𝑈 =

{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7}. Moreover, the parameters are denoted by 𝑥1 ≔ “SPN ratio 10%”, 𝑥2 ≔ “SPN ratio 

20%”, 𝑥3 ≔ “SPN ratio 30%”, 𝑥4 ≔ “SPN ratio 40%”, 𝑥5 ≔ “SPN ratio 50%”, 𝑥6 ≔ “SPN ratio 60%”, 

𝑥7 ≔ “SPN ratio 70%”, 𝑥8 ≔ “SPN ratio 80%”, and 𝑥9 ≔ “SPN ratio 90%” such that 𝐸 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9}.  
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Suppose that the noise removal performances of the filters at high noise densities are more significant than at 

the other densities. In such a case, it is anticipated that the membership degrees at high noise densities are 

greater than at the other noise densities. In other words, the first rows of the fpfs-matrices are considered to be 

[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] herein. Furthermore, while the SSIM and VIF values are in the interval 

[0,1], the PSNR values are not. Hence, the PSNR values are normalised via the maximum value provided in 

Table 9 to construct the fpfs-matrix [𝑎𝑖𝑗]. Thus, Table 9, 10, and 11 can be represented with fpfs-matrices 

[𝑎𝑖𝑗]8×9
, [𝑏𝑖𝑗]8×9

, and [𝑐𝑖𝑗]8×9
 as follows: 

 

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633

0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819

0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625

0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579

0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169

0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081

1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179]
 
 
 
 
 
 
 
 

 

 

[𝑏𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966

0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566

0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585

0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190

0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028

0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964

0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056]
 
 
 
 
 
 
 
 

 

and 

[𝑐𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635

0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730

0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334

0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226

0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928

0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913

0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955]
 
 
 
 
 
 
 
 

 

Nine of the SDM methods having passed all the test cases, namely MBR01, MRB02, CCE10, CEC11, 

CXL13(𝜆1), WQ14(𝜅), YHX14(𝛼, 𝛽), DC15(𝛼), and ZZ15, employ only an fpfs-matrix. Similarly, 

CXL13/2(𝜆1), HG13, ZXZ15(𝛼), and VMH16 utilise two fpfs-matrices, and the others work with multiple 

fpfs-matrices. Moreover, we consider the variables 𝛼 = 0.5, 𝛽 = 0.5, 𝜅 = 0.4, 𝜆1 = [1 1 1 1 1 1 1 1 1], 𝜆2 =

[
1

7
 
1

7
 
1

7
 
1

7
 
1

7
 
1

7
 
1

7
]
𝑇

, and 𝑤 = [1 1 1]. 

Secondly, we apply the SDM methods to the aforesaid fpfs-matrices [𝑎𝑖𝑗]8×9, [𝑏𝑖𝑗]8×9, and [𝑐𝑖𝑗]8×9. The 

decision sets and ranking orders produced by these SDM methods are manifested in Table 12 and 13, 

respectively. The last column in Table 13 demonstrates the number of the methods producing the same ranking 

order. 
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Table 12. Decision sets produced by SDM methods (in the event of more-importance-attached noise removal 

performance at high noise densities) 

Algorithms Matrices Decision Sets 

MBR01 [𝑎𝑖𝑗] { DBAIN 
0.2227 , MDBUTMF, 

0.2422 BPDF 
0 , NAFSMF 

0.3828 , AWMF 
0.7891 , DAMF 

0.6719 , ARmF 
1 } 

MRB02 [𝑎𝑖𝑗] { DBAIN 
0.8391 , MDBUTMF, 

0.8446 BPDF 
0.7361 , NAFSMF 

0.9143 , AWMF 
0.9835 , DAMF 

0.9776 , ARmF 
1 } 

CCE10 [𝑎𝑖𝑗] { DBAIN 
0.8391 , MDBUTMF, 

0.8446 BPDF 
0.7361 , NAFSMF 

0.9143 , AWMF 
0.9835 , DAMF 

0.9776 , ARmF 
1 } 

CEC11 [𝑎𝑖𝑗] { DBAIN 
0.8450 , MDBUTMF, 

0.8523 BPDF 
0.7523 , NAFSMF 

0.9137 , AWMF 
0.9818 , DAMF 

0.9772 , ARmF 
1 } 

CXL13(𝜆1) [𝑎𝑖𝑗] { DBAIN 
0.4077 , MDBUTMF, 

0.4027 BPDF 
0 , NAFSMF 

0.6642 , AWMF 
0.9219 , DAMF 

0.9125 , ARmF 
1 } 

WQ14(𝜅) [𝑎𝑖𝑗] { DBAIN 
0.8483 , MDBUTMF, 

0.8480 BPDF 
0.7550 , NAFSMF 

0.9124 , AWMF 
0.9788 , DAMF 

0.9776 , ARmF 
1 } 

YHX14(𝛼, 𝛽) [𝑎𝑖𝑗] { DBAIN 
0.2630 , MDBUTMF, 

0.2779 BPDF 
0 , NAFSMF 

0.6484 , AWMF 
0.9819 , DAMF 

0.9750 , ARmF 
1 } 

DC15(𝛼) [𝑎𝑖𝑗] { DBAIN 
0.4628 , MDBUTMF, 

0.4727 BPDF 
0 , NAFSMF 

0.7927 , AWMF 
0.9880 , DAMF 

0.9526 , ARmF 
1 } 

ZZ15 [𝑎𝑖𝑗] { DBAIN 
0.8391 , MDBUTMF, 

0.8446 BPDF 
0.7361 , NAFSMF 

0.9143 , AWMF 
0.9835 , DAMF 

0.9776 , ARmF 
1 } 

CXL13/2(𝜆1) [𝑎𝑖𝑗], [𝑏𝑖𝑗] { DBAIN 
0.4358 , MDBUTMF, 

0.3630 BPDF 
0 , NAFSMF 

0.6997 , AWMF 
0.9437 , DAMF 

0.9327 , ARmF 
1 } 

HG13 [𝑎𝑖𝑗], [𝑏𝑖𝑗] { DBAIN 
0.3674 , MDBUTMF, 

0.3409 BPDF 
0 , NAFSMF 

0.6317 , AWMF 
0.8651 , DAMF 

0.8459 , ARmF 
1 } 

ZXZ15(𝛼) [𝑎𝑖𝑗], [𝑏𝑖𝑗] { DBAIN 
0.7437 , MDBUTMF, 

0.7582 BPDF 
0.6995 , NAFSMF 

0.9321 , AWMF 
0.9925 , DAMF 

0.9878 , ARmF 
1 } 

VMH16 [𝑎𝑖𝑗], [𝑏𝑖𝑗] { DBAIN 
0.2722 , MDBUTMF, 

0.5393 BPDF 
0 , NAFSMF 

0.7090 , AWMF 
0.9870 , DAMF 

0.9513 , ARmF 
1 } 

MR13 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.6585 , MDBUTMF, 

0.7256 BPDF 
0.5448 , NAFSMF 

0.7414 , AWMF 
0.9616 , DAMF 

0.9627 , ARmF 
1 } 

MR13/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.4119 , MDBUTMF, 

0.5444 BPDF 
0.2777 , NAFSMF 

0.6026 , AWMF 
0.9569 , DAMF 

0.9290 , ARmF 
1 } 

SM13(𝑤, 𝛼) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.3799 , MDBUTMF, 

0.3521 BPDF 
0 , NAFSMF 

0.6412 , AWMF 
0.9208 , DAMF 

0.9287 , ARmF 
1 } 

Z14/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.8608 , MDBUTMF, 

0.8483 BPDF 
0.7614 , NAFSMF 

0.9321 , AWMF 
0.9925 , DAMF 

0.9878 , ARmF 
1 } 

RS16 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.3523 , MDBUTMF, 

0.3832 BPDF 
0 , NAFSMF 

0.6067 , AWMF 
0.9411 , DAMF 

0.9278 , ARmF 
1 } 

SMT16 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.2237 , MDBUTMF, 

0.2666 BPDF 
0 , NAFSMF 

0.3641 , AWMF 
0.7867 , DAMF 

0.6723 , ARmF 
1 } 

NKY17(𝜆2) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.2412 , MDBUTMF, 

0.2490 BPDF 
0 , NAFSMF 

0.3696 , AWMF 
0.7899 , DAMF 

0.6732 , ARmF 
1 } 

The ranking orders in Table 13 manifest that MBR01, MRB02, CCE10, CEC11, YHX14(𝛼, 𝛽), DC15(𝛼), 

ZZ15, ZXZ15(𝛼), VMH16, MR13/2, RS16, SMT16, and NKY17(𝜆2) produce the same ranking order just as 

CXL13(𝜆1), WQ14(𝜅), CXL13/2(𝜆1), HG13, and Z14/2 do. Moreover, the ranking orders produced by MR13 

and SM13(𝑤, 𝛼) except for those of MDBUTMF and DBAIN tend to generate the same pattern. The results 

show that the decision-making abilities of SDM methods herein agree that ARmF outperforms the other filters 

and BPDF exhibits the minimum performance compared to the others. 
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Table 13. Ranking orders produced by SDM methods (in the event of more-importance-attached noise 

removal performance at high noise densities) 

Algorithms Matrices Ranking Orders Frequency 

MBR01 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

MRB02 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

CCE10 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

CEC11 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

CXL13(𝜆1) [𝑎𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

WQ14(𝜅) [𝑎𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

YHX14(𝛼, 𝛽) [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

DC15(𝛼) [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

ZZ15 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

CXL13/2(𝜆1) [𝑎𝑖𝑗], [𝑏𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

HG13 [𝑎𝑖𝑗], [𝑏𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

ZXZ15(𝛼) [𝑎𝑖𝑗], [𝑏𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

VMH16 [𝑎𝑖𝑗], [𝑏𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

MR13 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺AWMF≺DAMF≺ARmF 1 

MR13/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

SM13(𝑤, 𝛼) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 1 

Z14/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

RS16 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

SMT16 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

NKY17(𝜆2) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

On the other hand, assume that the noise removal performances of the filters at low noise densities are more 

significant than at the higher densities. In such a case, it is anticipated that the membership degrees at low 

noise densities are greater than at the higher noise densities. In other words, the first rows of the fpfs-matrices 

are considered to be [0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1] herein. Therefore, Table 9, 10, and 11 can be 

represented with fpfs-matrices [𝑑𝑖𝑗]8×9, [𝑒𝑖𝑗]8×9, and [𝑓𝑖𝑗]8×9 as follows: 

[𝑑𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633

0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819

0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625

0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579

0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169

0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081

1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179]
 
 
 
 
 
 
 
 

 

[𝑒𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966

0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566

0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585

0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190

0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028

0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964

0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056]
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and 

[𝑓𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635

0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730

0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334

0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226

0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928

0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913

0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955]
 
 
 
 
 
 
 
 

 

Thirdly, we apply the SDM methods to the fpfs-matrices [𝑑𝑖𝑗]8×9
, [𝑒𝑖𝑗]8×9

, and [𝑓𝑖𝑗]8×9
. The decision sets and 

ranking orders generated by the SDM methods are provided in Table 14 and 15, respectively. The last column 

in Table 15 demonstrates the number of the methods producing the same ranking order. 

Table 14. Decision sets produced by SDM methods (in the event of more-importance-attached noise removal 

performance at low noise densities) 

Algorithms Matrices Decision Sets 

MBR01 [𝑑𝑖𝑗] { DBAIN 
0.2546 , MDBUTMF, 

0 BPDF 
0.0093 , NAFSMF 

0.1111 , AWMF 
0.5556 , DAMF 

0.6944 , ARmF 
1 }  

MRB02 [𝑑𝑖𝑗] { DBAIN 
0.8964 , MDBUTMF, 

0.8784 BPDF 
0.8610 , NAFSMF 

0.9041 , AWMF 
0.9555 , DAMF 

0.9774 , ARmF 
1 }  

CCE10 [𝑑𝑖𝑗] { DBAIN 
0.8964 , MDBUTMF, 

0.8784 BPDF 
0.8610 , NAFSMF 

0.9041 , AWMF 
0.9555 , DAMF 

0.9774 , ARmF 
1 }  

CEC11 [𝑑𝑖𝑗] { DBAIN 
0.9023 , MDBUTMF, 

0.9805 BPDF 
0.8717 , NAFSMF 

0.9030 , AWMF 
0.9512 , DAMF 

0.9779 , ARmF 
1 }  

CXL13(𝜆1) [𝑑𝑖𝑗] { DBAIN 
0.2896 , MDBUTMF, 

0.2641 BPDF 
0 , NAFSMF 

0.4731 , AWMF 
0.8380 , DAMF 

0.8623 , ARmF 
1 } 

WQ14(𝜅) [𝑑𝑖𝑗] { DBAIN 
0.8894 , MDBUTMF, 

0.8760 BPDF 
0.8450 , NAFSMF 

0.9057 , AWMF 
0.9576 , DAMF 

0.9780 , ARmF 
1 }  

YHX14(𝛼, 𝛽) [𝑑𝑖𝑗] { DBAIN 
0.1511 , MDBUTMF, 

0.0652 BPDF 
0 , NAFSMF 

0.1412 , AWMF 
0.5084 , DAMF 

0.9463 , ARmF 
1 }  

DC15(𝛼) [𝑑𝑖𝑗] { DBAIN 
0.2460 , MDBUTMF, 

0 BPDF 
0.0489 , NAFSMF 

0.2624 , AWMF 
0.7380 , DAMF 

0.7937 , ARmF 
1 }  

ZZ15 [𝑑𝑖𝑗] { DBAIN 
0.8964 , MDBUTMF, 

0.8784 BPDF 
0.8610 , NAFSMF 

0.9041 , AWMF 
0.9555 , DAMF 

0.9774 , ARmF 
1 }  

CXL13/2(𝜆1) [𝑑𝑖𝑗], [𝑒𝑖𝑗] { DBAIN 
0.3143 , MDBUTMF, 

0.2127 BPDF 
0 , NAFSMF 

0.5349 , AWMF 
0.8828 , DAMF 

0.9884 , ARmF 
1 }  

HG13 [𝑑𝑖𝑗], [𝑒𝑖𝑗] { DBAIN 
0.2511 , MDBUTMF, 

0.0346 BPDF 
0 , NAFSMF 

0.3467 , AWMF 
0.6800 , DAMF 

0.7787 , ARmF 
1 } 

ZXZ15(𝛼) [𝑑𝑖𝑗], [𝑒𝑖𝑗] { DBAIN 
0.9318 , MDBUTMF, 

0.9022 BPDF 
0.9126 , NAFSMF 

0.9583 , AWMF 
0.9871 , DAMF 

0.9901 , ARmF 
1 } 

VMH16 [𝑑𝑖𝑗], [𝑒𝑖𝑗] { DBAIN 
0.3679 , MDBUTMF, 

0.1858 BPDF 
0.2334 , NAFSMF 

0 , AWMF 
0.0406 , DAMF 

0.8737 , ARmF 
1 } 

MR13 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.8361 , MDBUTMF, 

0.8030 BPDF 
0.7619 , NAFSMF 

0.8153 , AWMF 
0.9337 , DAMF 

0.9715 , ARmF 
1 }  

MR13/2 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.8222 , MDBUTMF, 

0.7156 BPDF 
0.7516 , NAFSMF 

0.7477 , AWMF 
0.8485 , DAMF 

0.9575 , ARmF 
1 }  

SM13(𝑤, 𝛼) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.3023 , MDBUTMF, 

0.1238 BPDF 
0 , NAFSMF 

0.3911 , AWMF 
0.7184 , DAMF 

0.8759 , ARmF 
1 }  

Z14/2 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.9435 , MDBUTMF, 

0.9112 BPDF 
0.9188 , NAFSMF 

0.9583 , AWMF 
0.9871 , DAMF 

0.9901 , ARmF 
1 } 

RS16 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.2930 , MDBUTMF, 

0.0990 BPDF 
0 , NAFSMF 

0.3115 , AWMF 
0.7384 , DAMF 

0.8701 , ARmF 
1 } 

SMT16 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.2734 , MDBUTMF, 

0.0230 BPDF 
0 , NAFSMF 

0.1229 , AWMF 
0.5300 , DAMF 

0.6959 , ARmF 
1 } 

NKY17(𝜆2) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.3049 , MDBUTMF, 

0.0717 BPDF 
0 , NAFSMF 

0.1121 , AWMF 
0.5995 , DAMF 

0.7040 , ARmF 
1 } 
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The ranking orders in Table 15 show that MRB02, CCE10, CXL13(𝜆1), WQ14(𝜅), ZZ15, CXL13/2(𝜆1), 

HG13, SM13(𝑤, 𝛼), and RS16 produce the same ranking order. The ranking orders produced by MBR01 and 

MR13/2 except for those of NAFMSF and BPDF tend to exhibit the same pattern. Moreover, YHX14(𝛼, 𝛽), 

MR13, SMT16, and NKY17(𝜆2) have the same ranking order just as DC15(𝛼), ZXZ15, and Z14/2 do even 

though CEC11 and VMH16 have more incoherent ranking order than the others. Despite the different decision-

making skills of all the SDM methods herein, all the methods validate that ARmF performs better than the 

other filters, and all the SDM methods except for MBR01, DC15(𝛼), ZXZ15, VMH16, MR13/2, and Z14/2 

indicate that BPDF displays the minimum performance. 

Table 15. Ranking orders produced by SDM methods (in the event of more-importance-attached noise 

removal performance at low noise densities) 

Algorithms Matrices Ranking Orders Frequency 

MBR01 [𝑑𝑖𝑗] MDBUTMF≺BPDF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 1 

MRB02 
[𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

CCE10 
[𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

CEC11 
[𝑑𝑖𝑗] BPDF≺ DBAIN ≺NAFMSF≺AWMF≺DAMF≺MDBUTMF≺ARmF 1 

CXL13(𝜆1) [𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

WQ14(𝜅) [𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

YHX14(𝛼, 𝛽) [𝑑𝑖𝑗] BPDF≺MDBUTMF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 4 

DC15(𝛼) [𝑑𝑖𝑗] MDBUTMF≺BPDF≺ DBAIN ≺NAFMSF≺AWMF≺DAMF≺ARmF 3 

ZZ15 
[𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

CXL13/2(𝜆1) [𝑑𝑖𝑗], [𝑒𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

HG13 [𝑑𝑖𝑗], [𝑒𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

ZXZ15(𝛼) [𝑑𝑖𝑗], [𝑒𝑖𝑗] MDBUTMF≺BPDF≺ DBAIN ≺NAFMSF≺AWMF≺DAMF≺ARmF 3 

VMH16 [𝑑𝑖𝑗], [𝑒𝑖𝑗] NAFSMF≺AWMF≺MDBUTMF≺BPDF≺ DBAIN ≺DAMF≺ARmF 1 

MR13 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 4 

MR13/2 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] MDBUTMF≺NAFMSF≺BPDF≺ DBAIN ≺AWMF≺DAMF≺ARmF 1 

SM13(𝑤, 𝛼) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

Z14/2 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] MDBUTMF≺BPDF≺ DBAIN ≺NAFMSF≺AWMF≺DAMF≺ARmF 3 

RS16 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

SMT16 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 4 

NKY17(𝜆2) 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 4 

6. Conclusion 

In this study, we configured SDM methods constructed with the concepts of soft sets, fuzzy soft sets, fuzzy 

parameterized soft sets, fpfs-sets, soft matrices, fuzzy soft matrices, and fuzzy parameterized soft matrices, 

faithfully to the original. Hereby, in 2013 and 2016, we completed the configurations of the methods proposed 

via these concepts to the fpfs-matrices space. Afterwards, we implemented the configured methods to five test 

cases. By doing so, we determined the methods passing all the test cases. We then applied them to a PVA 

problem to order the state-of-the-art filters with respect to their noise removal performance. 

https://tureng.com/tr/turkce-ingilizce/incoherent
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SDM methods constructed by the superstructures of fpfs-sets were not included in this study. In the future, 

researchers can also configure methods constructed via these superstructures to convenient spaces, such as 

intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices space [76] and interval-valued intuitionistic 

fuzzy parameterized interval-valued intuitionistic fuzzy soft sets/matrices space [77]. Furthermore, the 

configured methods can be compared by applying them to decision-making problems in different fields, such 

as medical diagnosis. Besides, it will be possible to compare all the SDM methods put forward via the aforesaid 

concepts in the literature and apply them to different decision-making problems once these methods have been 

configured. 
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