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Abstract

For a certain subclass of Bazilevic functions, Faber polynomials expansions are used to
obtain bi-univalent properties. Estimates on the nth Taylor-Maclaurin coefficients of func-
tions in this class are found. Moreover, some special cases are also indicated.
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1. Introduction

Let A be the class of all analytic functions in the open unit disc U = {z € C : |z| < 1}
with Taylor expansion

f(2) :z—i-Zanz” . (1.1)
n=2

When the function f € A is univalent, we denote the subclass of these functions by S. The
univalence property of the function f € S guarantees the existence of the inverse function

1, by using the Koebe one-quarter theorem [9] in U* = {w eC:|w| < i}, which is
defined by f~1(f(2)) =2 (2 €U) and f(f'(w)) = w (w € U*) with the power series

g(w) = fFHw) = w — agw? + (203 — a3)w® — (5a3 — Basaz + asg)w* + ... .
For the function f € S, if the inverse function f~! is univalent in U, then f is called bi-
univalent function in U. Let o be the class of all bi-univalent functions in U which are given
by (1.1). In 1967, Lewin [18] was the first author who studied the class of analytic and
bi-univalent functions. Later, the first two coefficients |as| and |as| for different subclasses

of analytic and bi-univalent functions were estimated by many authors, see for example
(3,4,6,7,12,13,15-17,19,20,22-24,27,28]. In 1903, Faber [10] introduced Faber polynomials
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which have an effective role in some branches of mathematics. In addition, Airault and
Bouali [1] determined the coefficients of the inverse function g = f~! as follow

[o.¢]
_ 1
g(w)=f(w)=w+ Z ;anl (ag, a3, ...,an) w",

where KP (a2, as, ..., ap) are given by

-1
KY = pas, K§=p(p2)a§+pa3,
—1)(p—2
K% = p(p—l)a2a3+pa4+p—(p ?))'(p )a;
plp—=1) o plp—1)(P—-2) 5 pl
KZ — p(p — 1)&2(14 =+ pas -+ 9 a3 —+ 9 a2a3 + m
More generally,
p! p! 2 p! 3
KP = n n n
" (p—n)!n!a2+(p—n+1)!(n—2)!a2 CL?’—I_(p—n—|—2)!(n—3)!aQ “
p! n—4 p—n+3 ,
ot (et P
(p 3)(n —4)!

o0
ay~° lag + (p — n+4)azas] + Y _ a5 'V,
' j=>6

where Vj is a homogeneous polynomial of degree j in the variables ag, as, ..., ap. In [1] and
[2], we see that

zf (z z _
;(i)) <fi > ZF’H" Y(ag, as, ..., an) 2" (1.2)
and
f/ ) n—1
=1- ZFn 1 a21a3a“-a )Z ) (13)
f(z) opur’
where Fﬁl(ag, as,...,a;j), j > 2, are the generalized Faber polynomials given by Fnt/ =

— (1 + ?) KJ and F,_i(ag,as,...,a,) , n > 2, are the nth Faber polynomials such that
F, = FJ (see [2, page 351] and [5, page 52]). We note that

KB K)

FF = —kay, FF= 5 — kas,

F¥ = k(4= kg)‘(k — 5)a§’ + k(4 — k)agas — kay,

FFo— k(5 — k>‘(/<;4'_ 6)(k—17) iy k(5 — k2)'(k —-6) o2as — K(5 — k)asay
+k(52—k)a§ — kas,

FEo— k(6 —k)(k — 75)'(/% —8)(k — Q)ag N k(6 — k:)(k3'— (k- 8)a§’a3
—|—k(6 — k2)<k =7 asay + k(6 = k2)(k il asa3 + k(6 — k)azay
+k(6 — k)azas — kag. (1.4)

It is well known that 14 zf" (2) /f (2) = 2(zf (2)) /zf (2), using (1.3) we have
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m = — ,;Fn_l (2az, 3as, ..., nay) 2" L. (1.5)

For two analytic functions fi (z) and f2 (2) in U, fi (2) is subordinate to f2 (z), written
o0

f1 < fa or fi(2) < fa(z), if there exists a Schwarz function w (z) = 3. w, 2™ which is
n=1

analytic in U with w (0) =0 and |w(z)| <1 forall z € U such that fi(z)= fo(w(2)).

Definition 1.1. Let T (A, u, ¢) be the class of functions f € S satisfying the following
subordination condition

pol zf" (2 zf (2
e (R “(f'(i))*“_“)(l_ ff(i))>)<¢(2)’

for some A\, > 0 and ¢ is an analytic function with positive real part in U and ¢(U) is
symmetric with respect to the real axis such that

¢(z) =1+ Biz + Byz® + B3z’ + ... (B > 0).

By putting different values of A, u and ¢, in the above definition, various previous results
are deduced.

(1) Putting ¢ = %igz, —1 < B < A <1, the subclass of Bazilevic functions which was

considered by Wang and Jing [29] is obtained.

(2) The classes T(O 0, }Igi) = S[A,B] and T (1 0, }Igi) = K[A,B](-1 < B <

A <1) are the well-known Janowski starlike and convex functions.

(3) The classes T (0,0, @) = S*(a) and YT (1,0, W) = K(«) are the
classes of starlike and convex functions of order o(0 < o < 1).

(4) Theclass Y (0,0,+/1 + z) = S} was introduced and studied by Soké! and Stankiewicz

[26].
(5) The class T (0,0, z+V1+ 22) = 8¢ was introduced and studied by Raina and
Sokét [25].

(6) The class T (0,0, ﬁ) = SThpi(s) (0 < s < 1) was introduced and studied by

Kanas et al. [14].
(7) The class Y (0,0 ez) S¥ was introduced and studied by Mendiratta et al. [21].

(8) The class T (0 0
[11].

Definition 1.2. A function f € o is said to be in the class T, (A, i, ¢) if both f and its
inverse map g = f~! are in Y (\, u, ¢) .

N et +e - ) = Sg was introduced and studied by Goel and Kumar

Remark 1.3. There are new classes if we take special cases for the function ¢ (z) z € U
in Definition 1.2 such as

(1) It
¢(z):1+B =14+(A-B)z—B(A-B)z*+B“(A-B)z’+..,.-1<B<A<1,
z
then we get the new class Y, (A, u, A, B) which is defined by
T, (A1, A, B) =
g f(2)>“‘1 2" (2) 2 (2))) | 1+A4z
{fEa.f(z)< : +A s-w (1= ) < 5

-1 1
o () (e (1 ) <
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(2) If
1 (0%
o (2) = (1+z> =1+2az+20%22+...,0<a <1,
-z
then we obtain the new class Y, (A, u, @) which is defined by
T, ()\,M,Oé) =
e )<z

POV (@ )
arg<f SIES “(fwz) ta ’“(1 f())
<

g @V (g @) (- wg (W) Ay
arg(g<w>(w) +A<g,(w)+<1 u)(l g(w))» 2},

(3) If
=1421-8)z2+20 - 22+..,0<B <1,

_ 1+(1-28)=2

6(2) =

then we acquire the new class Y2 (X, 1) which is defined by
Yo\ p) =

, : N\ 2f" (2) B 2 (®)
{fEU%(f(Z)( . ) —l—)\(f,(z) +(1 p,)(l 1P >>>>5,
+

1 1
qb(Z): \/1+Z:1+§Z—§Zz+,
then we get the new class Y1, (A, 1) which is defined by

TLU (Aa N) =

1

—1 / 2
<f'(z)<fiz)>“ +A<Z;(i§)+(1_/~‘) <1_sz(£§)>>> 1

—1 ’ 2
(o () (e 0o (- 55))) -

1 1
qﬁ(z):z—l—\/1+22:1+z+§z2—fz4+....,

8
then we obtain the new class T2 (), 1) which is defined by
TJA ()\7/"L):
2\ 1 zf (z zf (z 2
feo: (f (z)(f(z)) +>\[]{,(i))—l—(1 0] <1— J{i))ﬂ) -1
/ 2\ 1 2f (= 2f (=
<2|r' () (£2) +A[1{’(i>)+(1 2 <1 J{(;))} ’
2
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(6) If
¢(2) = (1_12)3 :1+sz—|—5(52—r1)22 S(S—f—13)!(5+2)Z3+w7 0<s<l,
then we acquire the new class Y, (A, i, s) which is defined by
TU ()\?)LL’ S) =
e (LN O I 2 () 1
{fEa.f(z)( > + A ) +(1 u)(l f(z)) —<(1—z)s’

1 1
d)(z):eZ:1+Z+522+§23+....,

then we get the new class Tye (A, 1) which defined by
Toe (A p) =

-1 2 (5 2f (=
{feo—: log (f/ (2) (fiZ)) +>‘< j{(i)) (=) <1_ }c(i))»)

1 " '
o (50 (422)"™ 0 (B2 0 (1 252 ) <}

In this paper, Faber polynomials expansions are used to find estimate of the nth (n > 3)
Taylor-Maclaurin coefficients |a,| of functions belong to the class Y, (A, i, ¢). Moreover,
estimates of the first coefficients |as| and |as| are also obtained.

"

<1,

2. The estimates of the coefficients for the class T, (A, y, ¢)

In the next theorem, estimate of the nth (n > 3) Taylor-Maclaurin coefficients |a,,| of
functions belong to the class T, (A, i, @) is found by using Faber polynomials expansions.

Theorem 2.1. Let the function f € Yo (A, 1, ¢) and a, =0 for 2 <k <n-—1. Then

By
< >3, A, u>0. 2.1
S T EramoTyy "2 M2 (21)
Proof. If u and v are Schwarz functions in U such that
u(z) =biz + Z bpz"  and  wv(z)=c1z+ Z 2", (zeU), (2.2)
n=2 n=2
then
|bp] <1 and ey <1 foralln=1,2,3,.. (2.3)

which are proved by Duren [9]. Since f € T, (A, i, ¢), then there are two analytic functions
u,v : U — U given by (2.2) such that

@ (H) (jf Era- (1— jfff)) —o() (24
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where g (w) = f~!(w). By using (1.2),(1.3) and (1.5), we get

1 1 /
7 ) (ff))“ o\ (ZJ{ (S) LU <1 . ZJ{(S)))

o
—1-3 (F,f_*f‘l (a2, as, ..., an) + AFy_1 (2a2, 3as, ..., nay)

n=2

- (1 - ,U') Fn—l (a27 ag, ..., an)) Zn—l,

1 /
) 2

—1-3 (F;;jf‘l (do, ds, ..., dn) + AF,_1 (2da, 3ds, ..., ndy,)

n=2

M1 = p) Fy_q (da,ds, ..., dp)) w1,

and

where d,, = %K;fl (ag,as, ...,a,) . Simple calculation yields
oo
¢(u(z)) = 1=B1> K, (b1,ba,....bn, B1, By, ..., By) 2"
n=1

= 1+ Bibhiz+ (Blbg—l—BQb%) 22—{—..., (ZE U),

and
p(w(w) = 1—5B Z K, (c1,¢co,....Cn, By, Bo, ..., By) w™
n=1
= 14+ Bicqw + (B102+BQC%) w? + ..., (wel),

where the coefficients K? (k1, ko, ..., kn, B1, B, ..., By) are given by(see [8])

(p—n)n!™? B

K? (ki,ko,...,kn, B1,Ba, ..., By) =

N ! grzg, (1 B
(p—n+1)!(n-2)" B
+ p' kn_gkg (_1)”‘1 ang
(p—n+2)(n—3)"" B
p! _
+ L 4

(p—n+3)(n—4)
n—2 n—1
<k4(—1) Bus p—n+ 3k2k3( 1) Bn2>

Oo .
+) kX,
j>5

(2.7)

(2.8)

(2.9)

where X; is a homogeneous polynomial of degree j in the variables k1, ko, ..., k. By com-

paring the corresponding coefficients of (2.6) and (2.8), we obtain

F,’fff_l (a2, a3, ...,an) + AF,—1 (2a2,3as, ...,na,) — A (1 — p) Fr—1 (ag,as, ..., an)

= B1K,;' (b1,by,....;bn_1,B1,Ba, ..., Bn_1).

(2.10)
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Now comparing the corresponding coefficients of (2.7) and (2.9), we get
F#j_ln_l (dg, dg, ceny dn) + )\Fn—l (ng, ?)dg7 ceey ndn) — )\ (1 — ,u) Fn—l (dg, d3, ceey dn)
= BlKrjil (Cl7 C2,y...,Cp—1, Bl, BQ, ceey Bn—l) . (211)

Under the assumption ay =0 for 2<k<n-1,d, =—a, and
FP=l — (40— 1), (2.10) and (2.11) become

(p+n—1D4+AX(n—=1)n—-AX(1—-p)(n—1)]a, = Bib,—1 (2.12)
and
[—(p+n—1)=A(n—=1)n+AX(1—p)(n—1)]a, = Bicp—1 - (2.13)
From (2.12), (2.13) and (2.3), we get
Jan] < =
"= (ptn -1 +A(n-1)]
which completes the proof. O

o0
Lemma 2.2. [8] Let the function ® (z) = > ®p2" be a Schwarz function with |® (z)| < 1,
n=1

z € U. Then for —oo < p < 00

1-(1-p)|@f] p>0
’4’2 + P‘I’%) < {
1—(1+p)[®] p=<0
In the following theorem, Faber polynomials expansions are also used to find estimates
of the first coefficients |as| and |as| of functions belong to the class Y, (A, i, @).

Theorem 2.3. Let the function f € Ty (N, 1, ¢). Then

Biv2h, By <0,B; + By >
VD ((ut 22 2) B2 1) (A1) (B1 + Ba)) 220,51+ 5, 20
lag| <
B1v25, B Bi— By >
V) (1 +23+2) B2+2(u1) (A +1)2 (B1— Ba)) 2>0,B1 - By 20
and 5
ESPREsy By = | By
’ag - a%‘ < (2.14)
B
(u+2)(%l/\+1) By < |By|
Proof. Put n=2 and n =3 in (2.10) and (2.11), respectively, we obtain that
(4+1)(A+1)az = Biby (2.15)
-1 +2
(n+2)(2A+1)az + (0‘)2(“) —A(u+3)> a3 = Biby + Bob? (2.16)
— (,U,—i—l) ()\—l—l) as = Bicy (217)
-1 +2
—(p+2)(2X+ 1) ag+ <(,u)2(u) —“Ap+3)+2(p+2) 2N+ 1)) a? = Bico+Boc?.
(2.18)
From (2.15) and(2.17), we get
bl = —C]. (2.19)

Adding (2.16) and (2.18), we find that
[(1+1) (4 27+ 2)] a3 = Ba (ba + ¢2) + B (b + 3. (2.20)



1674 A.Y. Lashin, A.O. Badghaish, A.Z. Bajamal

Thus

’a2‘< B ( —l—BQ).
A=+ 1) (p422+2) B;

Case 1. If By < 0 and By 4+ By > 0, using Lemma 2.2 with p = g—f < 0 and (2.19), we

have 9B B, L B
’a%‘g(u+1)(u—:—2)\+2) (1 ( 1Bl 2)‘17%‘)'

Using (2.15), we find that

ba + ==b
2 + Bl 1

By1v2B;

|a2|§ .
\/(M+1) ((,u—l—2/\+2)B%+2(u+1)()\+1)2(B1+B2)>

(2.21)

Case 2. If By > 0 and By — By > 0, using Lemma 2.2 with p = £2 > 0 and (2.19), we

have 9B B
1 1 —
3] < TES ) (1 ( B )‘ﬂ)

Using (2.15), we find that

B1v2B;
\/(u+1) ((u+2/\+2)3%+2(M+1)(>\+1)2(Bl—B2))

Therefore, (2.21) and (2.22) are the required estimate of |az|.To estimate the next part of
this theorem, we subtract (2.18) from (2.16) to obtain

lag| < (2.22)

2(i+2) (2A+1) (a5 — a3) = Bi (b — ) + B (0 — ). (2.23)
Then B B By
—a2| < ! (b 22| 4 22 > .
‘“3 a2‘—2(u+2)(2A+1) 2t B +Bl

Case 1. If By <0, using Lemma 2.2 with p = & < 0 we have

‘“3 _ag‘ = 2(u+2])3}2/\+ 1) <(1 = +BQ ‘bQD (1 B BI;B2 M))

Using the assumption By + By > 0, we get

B
2 1
as — ay| < . 2.24
s 2‘*(/wrQ)(zAJﬂ) (2.24)
But if B; + Bz < 0 and by using (2.3), we get
-B
2 2
as — ay| < . 2.25
s 2‘_(u+2)(2>\+1) (2.25)
Case 2. If By > 0, using Lemma 2.2 with p = % > 0 we have
B B —B B, —B
2 1 1 ) 1 2|2
- 1- 2L 2 R — .
jas - a3 < 2(u+2) 2\ + 1) <( B, | 1‘) +< B ‘Cl’))
Using the assumption By — By > 0, we get
B
2 1
az — a5| < . 2.26
s 2‘_(u+2)(2)\+1) (2.26)
But if B; + B2 < 0 and by using (2.3), we get
B
lag — a3| < 2 (2.27)

(L+2)(2A+1)

Therefore, (2.24),(2.25),(2.26) and (2.27) are the desired estimations of |ag — a3| and this
completes the proof.
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In Theorem 2.1 and Theorem 2.3, taking the special cases for the function ¢(z) as in

Remark 1 leads to the following corollaries.

Corollary 2.4. If the function f € Yo (A, p, A, B) and ap, =0 for 2 <k <n—1, then

A-B
p+n—1)1+A(n—1))
Corollary 2.5. If the function f € Ty (A, 1, A, B), then

|an|§( n>3, \u>0.

(A_B)v2 0<B<1
V(D) (p+22342) (A= B)+2(u+1)(A+1)2(1-B)) =

las| <

(A-B)v2 ~1<B<0
V(D) (p+223+2) (A= B)+2(u+1) (A1) (1+B)) -

and

A-B
n+2) 2+ 1)

‘ag—a%‘ < (

Corollary 2.6. If the function f € Yo (A, p, ) and ap, =0 for 2 <k <n—1, then

2c
p+n—1)1+A(n—1))’
Corollary 2.7. If the function f € Ty (A, p, ), then

]an|§( n>3, Ap>0.

200

\/(u+1) ((u+2)\+2)0z—|—(u+1)()\+1)2(1—oz))

las| <

and

2c
p+2)(2A+1)

‘a:’,—a%‘ < (

Corollary 2.8. If the function f € Y2 (\,u) and a, =0 for 2 <k <n—1, then

2(1-5)
p+n—1)14+A(n—1))’

Corollary 2.9. If the function f € Y5 (\, p), then

!anIS( n=3, Ap=>0.

1-8
Mﬂ§2¢0H4Jw+2A+m

and

2(1-5)
(p+2)(2A+1)°

‘a:s —a%\ <

Corollary 2.10. If the function f € Yo (A, ) and ap =0 for 2<k <n—1, then

1
nl < . n>3, Au>0.
ol < ST DA mo) " a

Corollary 2.11. If the function f € Yo (A, ), then
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1

\/(u+1) ((u+2x\+2)+3(u+1)(>\+1)2)

lag| <

and

1
(u+2) X +1)
Corollary 2.12. If the function f € T2 (A, u) and ap =0 for 2 <k <n—1, then
1
(u+n—-1)1+A(n—1))’
Corollary 2.13. If the function f € Y2 (\, ), then

‘ag—ag‘ < 5

’an’§ n=>3, Apu=>0.

V2
\/(u+1) ((u+2>\+2)+(u+1)(>\+1)2)

lag| <

and

1
f+2) 2N+ 1)

Corollary 2.14. If the function f € Yo (A, u,8) and ap =0 for 2 <k <n-—1, then

‘%-a%‘ < (

ptn—1(1+Ar(n—1)

Corollary 2.15. If the function f € Ty (A, i, s), then

|an|§( n>3, Au>0.

5v/2
\/(,u—i-l) ((u+2)\+2)s+(u+1)()\+1)2(1—3))

|ag| <

and

s

= (L+2)2x+1)

Corollary 2.16. If the function f € Tye (A, p) and ap, =0 for 2 <k <mn-—1, then
1

p+n—1)(1+X(n—-1))"

Corollary 2.17. If the function f € YTse (A, 1), then

‘ag—a%‘

|an|§( n>3, Au>0.

V2

|az| <
: \/(u+1) ((u+2)\+2)+(u+1)()\+1)2)

and

1
w+2) (22 +1)

’a;;—a%’ < (
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3. Distortion theorem

An important consequence of Bieberbach’s inequality |az| < 2 is that it provides sharp
lower and upper bounds of |f| and ‘ f/‘ usually referred to as growth and distortion the-

orems, respectively. In this section, we obtain the distortion theorem of functions in the
class Ty (A, 1, 9)

Theorem 3.1. If f € T, (\, p, ) and z = e, then

(1—r)M-t / (14 r)M-1
-— < < —r .
(14 r)M+1 = f (Z)‘ =1 )M+ (3.1)
where
B1V2B1 < S
VD) (u+2342) B2 2(u+ ) (A1) (B1 +B2)) B2=0,B1+ 5,20
M =

L2l B By — By >
VD) ((u+2342) B2+ 1) (A1) (B1—B2)) 2> 0,81~ 5220

Proof. Using the same method and technique given by Duren [9, Theorem 2.5, Page 32],
we have

2Mr

zf"(2) 272 <
' —1-r2

1 (2) 12

In particular,

2 4 2
2r< —2Mr < Zf/ (2) < 2r +2M7".
S\ )T 1

This leads to 3
2r —2M T 2r +2M
T S g el = T
Integrating and exponentiating, we find that
(1—r)M-1
(1 _|_,,~)M+1 -

0

Acknowledgment. The authors would like to thank the referee for his helpful com-
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