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ABSTRACT

In this study in the space R, the cross—product was defined as analogous vector—product
in R3. We showed that this product makes R® a Lie algebra. Therefore, it was showed that the
Lie algebras (R%0) and (A, [,]) are isomorphic. As a generalization, in the space of dimension
m = n (n-1)/2, cross—product can be given as

R™ x R™ -~ R™, xoy = J7! [J(X), J(V)]

where J = R™ > An is Lie algebra isomorphism. At the end, we showed that the cross — product
we defined is vector product well known for n = 3.

INTRODUCTION

Studying kinematics, the set A; = {A € M (3x3, R)/A~1 =AT}
is very important. A; is the Lie algebra with the product [A, B} =
AB-BA. And (A;, [ ,] is the Lie algebra of orthogonal matrices of or-
der 3 x 3, 0(3). Moreever (R3, x) is the other Lie algebra and this algeb-
ra is isomorphic to (A;, [ ,]) [1]. This isomorphism gave to use an inspi-
ration. Is it possible to define a product in Ay, m = L(I;;l)—— .
which makes R a Lie algebra under a isomorphism ? We showed that
it is possible. At the first we studied in R6 (which is isomorphic to A,).

The product we will define is handy to study the theory of dual
numbers and of the dual sphere [2]. For this purpose we used the pro-
perties of anti-symmetric mappings, permutations and determinant
fupetion [3]. ,

2. Let Sg be permutation group of the set M = {1,2,..... 6}. We
define a relation on Sy as following. For every o, A are elements of Sg,
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6~ A = 6(5) = M5) and o(6) = A(6)

This relations is a equivalence relation on S¢. So we have equivalence
class. Each equivalence class is known by an element of the set

PGS = {(1.2), (1.3), (1.4), (L5), (1,6), (2,3), (2.4), (2:5), (2.6),
(3:4), (3,5), (3,6), (4,5), (4,6), (5,6)}

For (3, B) € PC6,, the equivalence class is shown by o35 Half of the per-
mutations of g) are even the others are odd. So o) = (o38)e U (o28)o-
But we will use only even permutations and write 38 for (op))e-

3. Cross product in RS

Let {e;, ey, e3, e, es, €c} be the standard base of R6. We define
the product ® as the following.

(03] € €, €3 €4 es €5
e 0 €, —es e, e 0
e, e, 0 —eg —e 0 e;
e €5 e 0 0 —e —e,
ey | —€, e 0 0 —es —es
es | —e; 0 e e 0 —e,
€6 0 —e; €, —es ey 0
Tableau 1.

If 6 € opyp), then ez Q@ egi = e @ eg. Also we have

by det [X, Y, €G5(1) 2o R 65(4)] €5(s) ® es(6) =
LN

= 12 det [X, Y, e5y)s €o2)r €o3)r €ata)] €1 O eg

where 6 is an element of 6(;,8). In such a manner that, det [X,Y, ey
IS \0'(4)] =

v, S v
W1 So@1 Ssen So(4)1 do(5)1 2s(6)1
~ 1 % %@2 o3z o 3s(5)2 3o(6)2
3s(1)3 %@3  Po3)3 Oo(4)3 35(5)3 3s(6)3
S Pop Yen 3 o(4)4 35(5)4 O o(6)4
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To(l) T2 Fo(3) To4) To(5)  *o(6)
Yo(l)  Yo@)  Yo3) Yo(4) Yo(5) Yo(6)

1 0 0 0 0

0
= det 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
— —
= Xo(5) Yot6) — Xo(6) Yo(s)-

So we have
1. Definition: For every X.Y e R6 the product

XOY = B det [X,Y, e51)s €o2)s a3y Coa)] Cots) ® €oo)
(S /e :

is called cross-product in RS.
2. Proposition: If X, Y € RS then
NX®Y=—Y ®X,X ®X = 0 (anti-symetry-property)
2) The product ® is bilinear.

Proof: It is easy to show by using the properties of determinant
function.

3. Proposition: If X, Y € RS, ¢ € 633 and (2, §) € PCS, then
X @Y= 2Z(Xas Yoi9 — Xote Yot ) €ots) ® €ote)

With the direct calculation, X ® Y can be written in compenent of X
and Y as follows

X @Y = (x4y,—ysX2+Xsy3— ¥sX3)e; + (X174,—Y1X4 + X6¥3 — Ys¥3)e,
+ (X1Ys—Y1X5+X2¥6 — VaXg)es + (X2y1 — Y2X1+X6Ys — YeXs)es
+ (XY 6—YaX6HX3Y1—Y3%1)es + (X372 — ¥3%Xp + X5y, — Y5X4)%6

4. Theorem: The product ® in RS has the following properties.
1) For every X, Y € RS, ‘ - ‘
<X@YV,X>=0,<XQ®Y,Y>=0
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2) For every X, Y, Z ¢ R6
< XY, Z>=<X,YQRZ>
3) For every X, Y, Z € R¢ |
X(YQRZ)+-Y®(EZ ®X)+Z®(X®Y)
Proposition 2 and theorem 3 show that (RS, ®) is a Lie algebra.

5. Isomorphism between the Lie algebras (RS, ®) and (A, [,])
Let A, be the set of all anti-symmetric matris order of 4x4. The system
(Ayp @5 (R, +,.), ®) is a vector space of dimensions 6 and Ajisa
Lie algebra with the Lie bracket operator [,],

L]l =AxA - A, [X, Y] = XY —Y.X

Therefore we have the Lie algebra (RS, ). We can define a mapping
J between RS and A, as follows. - ‘

J = R6 = A,
0 ‘ X3 Xy X3
JxuxpXypXeXsXe) = | =% —xy 0 %6
—X3 Xy —X¢ 0

5. Theorem: The mapping J is a Lie algebra isomorphism.

Proff: The mapping J is one-to-one and onto. Moreover, for
X7= % (Xi._'e)l,Yz .26;1 Yi-gia

JXQY)=1J X4Y2 YaXz -+ XsY3 — ¥s5X3, X1y4 — Y1X4 -+ X6Y3 — YeX3»

X1¥s5 — Y1Xs + Xo¥6 — YoXe» Xo¥1 — ¥Y2X1 -+ X6¥5 — Y6Xs

X4Y6 — Y4¥6 T X3¥1 — ¥3¥p» X3Y3 — ¥3Xp 4~ Xs¥4 — YsX4)

0 X X X3 O yi Y2 V3
—x 0 X4 X5 -y 0 Y4 Vs
= T Xy 0 x4 —Y2 —VYa 0 ys¢| —
—X; X5 —Xg 0 —¥3s —Y¥s —¥s 0 '
0 i Y2 il | O X; Xy X3 )

—v: 0 Ya Vs | | —%x; O x, x5 | = XY=YX
Yz —Ya4 0 s —X —xy 0 -xg

—¥s —¥s —¥s 0 X3 X5 —3¢ 0
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The isomorphism J between (RS, ®) and (A,, [,]) allows to present an
anologous product on R™, where m is the boy A;. As we know the di-

mension of An’ is Mn(n;—l) . So we have the product @m as
Om
®m = Rmx Rm.__—— . Rm
] !
| |
7| J Ea
v v ‘
Apx A, — A,

X ®Y = It (), Jy)
®m, has the properties of vector-product. That is
1) ®m is anti-symmetric
2) For every X,YeRm, <X @Y, X> = 0 and <X®nY, Y> = 0
3) The product ®m is bi-linear. |

4. The special case forn = 3.

Now we will show that the product we défined in definition 1 is the
vector product in R3 well known. Consider the set M = {1,2,3}. Let
Se (3) be the all even permutations of M, i.e. ono

Se(3) = {(1,2,3,) (2:3,1), (3,1,2)}.

Moreever Se(3) is the set all of permutations which has the properties.
6(2) = 1(2), 6(3) = 1(3) for every o, © € S¢(3). So, For X = (x4,%5X;),
Y = (y;,¥2,¥3) € R3 and 6 € S¢(3) we have

X & Y = 2 det (X,Y,ec(l) ) €5(2) &® €g(3) v
o3

If we set ¢, = e;, €, =— —e,, €, = —e. from tableau. 1. then we can
1 10 V2 3> ¥3 5
give the vector product as in tableau 2.

’ e €, e
e 0 e3 —e,
e —e; 0 €
e €5 —e,; 0

Tableau 2.
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Clearly, we have

X ® Y= det (X,Yoer)e; + det (X,Y,e,)e, + det (X,Y,es)eq
1 - -
= X det (X,Y,e;) €;
i=1

OZET

Bu ¢aliymada, R6 uzaymda, R3 teki vektorel ¢arpimn bir benzeri
tanimlandi. Tamimlanan bu vektérel ¢arpinin R6 uzaymin bir Lie cebiri
yaptigim gosterdik. Ayrica (RS, ®) Lie cebiri ile (A, [,]) Lie cebirinin

izomorfik olduklar ispatlandi. Bir genelleme olarak, m = __n(n__..l)

2
boyutlu uzaylarda

L] A x Ay > Ay
Qarblml yardimryla, R™ uzayinda bir genel vektérel ¢arpimmn,
Rmx Rm > Rm, X @ Y = J-1 [J(X), J(Y)]
ile verilebilecegi gosterildi.
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