Commun. Fac. Sci. Univ. Ank. Series A₁ V. 39. pp. 15-20 (1990)

GENERALIZED CROSS PRODUCT in R⁶ and R^m, m =
$$\frac{n(n-1)}{2}$$

BÜLENT KARAKAŞ

Department of Mathematics, Faculty of Arts and Sciences University of Gazi, Ankara, Turkey.

HALİT GÜNDOĞAN

Institute of Science and Technology, University of Gazi Ankara-Turkey

ABSTRACT

In this study in the space R^6 , the cross-product was defined as analogous vector-product in R^3 . We showed that this product makes R^3 a Lie algebra. Therefore, it was showed that the Lie algebras (R^6 ,0) and (A_4 , [,]) are isomorphic. As a generalization, in the space of dimension m = n (n-1)/2, cross-product can be given as

$$R^m \times R^m \rightarrow R^m$$
, $xoy = J^{-1} [J(X), J(Y)]$

where $J = R^m \rightarrow An$ is Lie algebra isomorphism. At the end, we showed that the cross – product we defined is vector product well known for n = 3.

INTRODUCTION

Studying kinematics, the set $A_3 = \{A \in M \ (3x3, R)/A^{-1} = AT\}$ is very important. A_3 is the Lie algebra with the product [A, B] = AB-BA. And $(A_3, [,])$ is the Lie algebra of orthogonal matrices of order 3×3 , 0(3). Moreever (R^3, x) is the other Lie algebra and this algebra is isomorphic to $(A_3, [,])$ [1]. This isomorphism gave to use an inspiral of the standard of the stan

ration. Is it possible to define a product in
$$A_m$$
, $m = \frac{n (n-1)}{2}$,

which makes R^m a Lie algebra under a isomorphism? We showed that it is possible. At the first we studied in R^6 (which is isomorphic to A_4).

The product we will define is handy to study the theory of dual numbers and of the dual sphere [2]. For this purpose we used the properties of anti-symmetric mappings, permutations and determinant function [3].

2. Let S_6 be permutation group of the set $M = \{1, 2, \ldots, 6\}$. We define a relation on S_6 as following. For every σ , λ are elements of S_6 ,

$$\sigma \sim \lambda \rightarrow \sigma(5) = \lambda(5)$$
 and $\sigma(6) = \lambda(6)$

This relations is a equivalence relation on S_6 . So we have equivalence class. Each equivalence class is known by an element of the set

$$PC62 = \{(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)\}$$

For $(\lambda, \beta) \in PC_2$, the equivalence class is shown by $\sigma_{\lambda\beta}$ Half of the permutations of $\sigma_{\lambda\beta}$ are even the others are odd. So $\sigma_{\lambda\beta} = (\sigma_{\lambda\beta})_e \cup (\sigma_{\lambda\beta})_o$. But we will use only even permutations and write $\sigma_{\lambda\beta}$ for $(\sigma_{\beta\lambda})_e$.

3. Cross product in R6

Let $\{e_1, e_2, e_3, e_4, e_5, e_6\}$ be the standard base of \mathbb{R}^6 . We define the product \otimes as the following.

If $\sigma \in \sigma_{(\lambda,\beta)}$, then $e_{\sigma(5)} \otimes e_{\sigma(6)} = e_{\lambda} \otimes e_{\beta}$. Also we have

= 12 det [X, Y, $e_{\sigma(1)}$, $e_{\sigma(2)}$, $e_{\sigma(3)}$, $e_{\sigma(4)}$] e_{λ} O e_{β}

where σ is an element of $\sigma_{(\lambda,\beta)}$. In such a manner that, det $[X, Y, e_{\sigma(1)}, \dots, e_{\sigma(4)}] =$

$$= \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ y_1 & y_2 & y_3 & y_4 & y_5 & y_6 \end{bmatrix}$$

$$\begin{cases} \delta_{\sigma(1)1} & \delta_{\sigma(2)1} & \delta_{\sigma(3)1} & \delta_{\sigma(4)1} & \delta_{\sigma(5)1} & \delta_{\sigma(6)1} \\ \delta_{\sigma(1)2} & \delta_{\sigma(2)2} & \delta_{\sigma(3)2} & \delta_{\sigma(4)2} & \delta_{\sigma(5)2} & \delta_{\sigma(6)2} \\ \delta_{\sigma(1)3} & \delta_{\sigma(2)3} & \delta_{\sigma(3)3} & \delta_{\sigma(4)3} & \delta_{\sigma(5)3} & \delta_{\sigma(6)3} \\ \delta_{\sigma(1)4} & \delta_{\sigma(2)4} & \delta_{\sigma(3)4} & \delta_{\sigma(4)4} & \delta_{\sigma(5)4} & \delta_{\sigma(6)4} \end{bmatrix}$$

$$= \det \begin{bmatrix} \mathbf{x}_{\sigma(1)} & \mathbf{x}_{\sigma(2)} & \mathbf{x}_{\sigma(3)} & \mathbf{x}_{\sigma(4)} & \mathbf{x}_{\sigma(5)} & \mathbf{x}_{\sigma(6)} \\ \mathbf{y}_{\sigma(1)} & \mathbf{y}_{\sigma(2)} & \mathbf{y}_{\sigma(3)} & \mathbf{y}_{\sigma(4)} & \mathbf{y}_{\sigma(5)} & \mathbf{y}_{\sigma(6)} \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$= x_{\sigma(5)} y_{\sigma(6)} - x_{\sigma(6)} y_{\sigma(5)}.$$

So we have

1. Definition: For every $X.Y \in \mathbb{R}^6$ the product

$$XOY = \sum_{\sigma(S_6/\backsim)_e} \det [X,Y, e_{\sigma(1)}, e_{\sigma(2)}, e_{\sigma(3)}, e_{\sigma(4)}] e_{\sigma(5)} \otimes e_{\sigma(6)}$$

is called cross-product in R6.

- 2. Proposition: If $X, Y \in \mathbb{R}^6$ then
 - 1) $X \otimes Y = -Y \otimes X$, $X \otimes X = 0$ (anti-symetry-property)
 - 2) The product \otimes is bilinear.

Proof: It is easy to show by using the properties of determinant function.

3. Proposition: If X, Y \in R⁶, $\sigma \in \sigma_{\lambda\beta}$ and $(\lambda, \beta) \in PC^{6}_{2}$ then

$$X \otimes Y = \sum_{\sigma} (X_{\sigma(5)} \ Y_{\sigma(6)} - X_{\sigma(6)} \ Y_{\sigma(5)}) \ e_{\sigma(5)} \otimes e_{\sigma(6)}$$

With the direct calculation, $X \otimes Y$ can be written in compenent of X and Y as follows

$$\begin{array}{l} X \otimes Y = (x_{4}y_{2}-y_{4}x_{2}+x_{5}y_{3}-y_{5}x_{3})\vec{e}_{1} + (x_{1}y_{4}-y_{1}x_{4}+x_{6}y_{3}-y_{5}x_{3})\vec{e}_{2} \\ \\ + (x_{1}y_{5}-y_{1}x_{5}+x_{2}y_{6}-y_{2}x_{6})\vec{e}_{3} + (x_{2}y_{1}-y_{2}x_{1}+x_{6}y_{5}-y_{6}x_{5})\vec{e}_{4} \\ \\ + (x_{4}y_{6}-y_{4}x_{6}+x_{3}y_{1}-y_{3}x_{1})\vec{e}_{5} + (x_{3}y_{2}-y_{3}x_{2}+x_{5}y_{4}-y_{5}x_{4})\vec{e}_{6} \end{array}$$

- 4. Theorem: The product \otimes in \mathbb{R}^6 has the following properties.
 - 1) For every X, Y \in R⁶, < X \otimes Y, X > = 0, < X \otimes Y, Y > = 0

- 2) For every X, Y, Z \in R⁶ < X \otimes Y, Z > = < X, Y \otimes Z >
- 3) For every X, Y, Z \in R⁶ $X \otimes (Y \otimes Z) + Y \otimes (Z \otimes X) + Z \otimes (X \otimes Y) = 0$

Proposition 2 and theorem 3 show that (R^6, \otimes) is a Lie algebra.

5. Isomorphism between the Lie algebras (R^6, \otimes) and $(A_4, [,])$ Let A_4 be the set of all anti-symmetric matris order of 4x4. The system $(A_4, \oplus, (R, +, .), \odot)$ is a vector space of dimensions 6 and A_4 is a Lie algebra with the Lie bracket operator [,],

$$[,] = A_4 x A_4 \rightarrow A_4, [X, Y] = X.Y - Y.X$$

Therefore we have the Lie algebra (R^6 , \otimes). We can define a mapping J between R^6 and A_4 as follows.

$$J = R^6 \rightarrow A_4$$

$$\mathbf{J}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6) = \begin{bmatrix} 0 & \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ -\mathbf{x}_1 & 0 & \mathbf{x}_4 & \mathbf{x}_5 \\ -\mathbf{x}_2 & -\mathbf{x}_4 & 0 & \mathbf{x}_6 \\ -\mathbf{x}_3 & -\mathbf{x}_5 & -\mathbf{x}_6 & 0 \end{bmatrix}$$

5. Theorem: The mapping J is a Lie algebra isomorphism.

Proff: The mapping J is one-to-one and onto. Moreover, for

$$X = \sum_{i=1}^{6} x_i \cdot \vec{e}_i , Y = \sum_{i=1}^{6} y_i \cdot \vec{e}_i ,$$

$$J(X \otimes Y) = J x_4 y_2 - y_4 x_2 + x_5 y_3 - y_5 x_3, x_1 y_4 - y_1 x_4 + x_6 y_3 - y_6 x_3, x_1 y_5 - y_1 x_5 + x_2 y_6 - y_2 x_6, x_2 y_1 - y_2 x_1 + x_6 y_5 - y_6 x_5 x_4 y_6 - y_4 x_6 + x_3 y_1 - y_3 x_1, x_3 y_2 - y_3 x_2 + x_5 y_4 - y_5 x_4)$$

$$=\begin{bmatrix} 0 & \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ -\mathbf{x}_1 & 0 & \mathbf{x}_4 & \mathbf{x}_5 \\ -\mathbf{x}_2 & -\mathbf{x}_4 & 0 & \mathbf{x}_6 \\ -\mathbf{x}_3 & -\mathbf{x}_5 & -\mathbf{x}_6 & 0 \end{bmatrix} \begin{bmatrix} 0 & \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 \\ -\mathbf{y}_1 & 0 & \mathbf{y}_4 & \mathbf{y}_5 \\ -\mathbf{y}_2 & -\mathbf{y}_4 & 0 & \mathbf{y}_6 \\ -\mathbf{y}_3 & -\mathbf{y}_5 & -\mathbf{y}_6 & 0 \end{bmatrix} = -$$

$$\begin{bmatrix} 0 & \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 \\ -\mathbf{y}_1 & 0 & \mathbf{y}_4 & \mathbf{y}_5 \\ -\mathbf{y}_2 & -\mathbf{y}_4 & 0 & \mathbf{y}_6 \\ -\mathbf{y}_3 & -\mathbf{y}_5 & -\mathbf{y}_6 & 0 \end{bmatrix} \begin{bmatrix} 0 & \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ -\mathbf{x}_1 & 0 & \mathbf{x}_4 & \mathbf{x}_5 \\ -\mathbf{x}_2 & -\mathbf{x}_4 & 0 & \mathbf{x}_6 \\ -\mathbf{x}_3 & -\mathbf{x}_5 & -\mathbf{x}_6 & 0 \end{bmatrix} = \mathbf{X}\mathbf{Y} - \mathbf{Y}\mathbf{X}$$

The isomorphism J between (R^6, \otimes) and $(A_4, [,])$ allows to present an anologous product on R^m , where m is the boy A_n . As we know the di-

mension of A_n is $\frac{n(n-1)}{2}$. So we have the product \otimes_m as

⊗m, has the properties of vector-product. That is

- 1) \otimes_m is anti-symmetric
- 2) For every $X,Y \in \mathbb{R}^m, \langle X \otimes Y, X \rangle = 0$ and $\langle X \otimes_m Y, Y \rangle = 0$
- 3) The product \otimes_m is bi-linear.

4. The special case for n = 3.

Now we will show that the product we defined in definition 1 is the vector product in R³ well known. Consider the set $M = \{1, 2, 3\}$. Let S_e (3) be the all even permutations of M, i.e.

$$S_e(3) = \{(1,2,3,), (2,3,1), (3,1,2)\}.$$

Moreover $S_e(3)$ is the set all of permutations which has the properties $\sigma(2) = \tau(2)$, $\sigma(3) = \tau(3)$ for every σ , $\tau \in S_e(3)$. So, For $X = (x_1, x_2x_3)$, $Y = (y_1, y_2, y_3) \in R^3$ and $\sigma \in S_e(3)$ we have

$$X \; \otimes \; Y = \sum\limits_{\sigma} \; \det \; (X,Y,e_{\sigma(1)} \;) \; e_{\sigma(2)} \; \otimes \; e_{\sigma(3)} \; \; \ldots .$$

If we set $e_1 = e_1$, $e_2 = -e_3$, $e_3 = -e_5$ from tableau. 1. then we can give the vector product as in tableau 2.

	. e ₁	• ₂	e ₃
$\mathbf{e_1}$ $\mathbf{e_1}$	0 —e ₃	${f e_3} 0$	$-\mathbf{e}_2$ \mathbf{e}_1
$\mathbf{e_1}$	$\mathbf{e_2}$	$-\mathbf{e_1}$	0

Tableau 2.

Clearly, we have

$$X \otimes Y = \det (X,Y,e_1)\vec{e_1} + \det (X,Y,e_2)\vec{e_2} + \det (X,Y,e_3)\vec{e_3}$$

$$= \sum_{i=1}^{1} \det (X,Y,\vec{e_i}) \vec{e_i}$$

ÖZET

Bu çalışmada, R⁶ uzayında, R³ teki vektörel çarpımın bir benzeri tanımlandı. Tanımlanan bu vektörel çarpımın R⁶ uzayının bir Lie cebiri yaptığını gösterdik. Ayrıca (R⁶, \otimes) Lie cebiri ile (A₄, [,]) Lie cebirinin izomorfik oldukları ispatlandı. Bir genelleme olarak, $m = \frac{n(n-1)}{2}$ boyutlu uzaylarda

$$[,]: A_n \times A_n \to A_n$$

çarpımı yardımıyla, Rm uzayında bir genel vektörel çarpımın,

$$R^m \times R^m \rightarrow R^m, X \otimes Y = J^{-1} [J(X), J(Y)]$$

ile verilebileceği gösterildi.

REFERENCES

- KARGER, ADOLF And NOVAK, JOSEF. Space Kinematics and Lie Groups. Gordon and Science Publishers S.A. 1985, New York.
- HACISALİHOĞLU, H. HİLMİ. Hareket Geometrisi ve Kuaterniyonlar Teorisi. Gazi Üni. Fen Edebiyat Fakültesi Yayınları Mat. No: 2 1983–Ankara-Türkiye
- 3. GREUB, WERNER H. Linear Algebra. Springer -Verlag, 1975. Berlin.