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ON THE LINEAR VECTOR FIELDS IN E2n+1

by ABOLFAZL ACRATALISHIAN*

OZET
Karger ve Novak [1], E3 de bir X lineer vektor alammmm matrisi
-A C-
_0 1

olduguna gore X in integral egrilerinin (i). rank [AC] = 3 olmas1 halin-
de ortak eksenli ve aym parametreli helis egrileri, (ii). rank [AC] = 2
olmas1 halinde birbirine paralel diizlemlerde yatan ve merkezleri bu
diizlemlere dik bir eksen iizerinde bulunan gemberler, (iii) rank [AC] =1
olmas: halinde paralel dogrular oldugunu giistermi§lerdir.'

Bu ¢alismada Karger ve Novak’mn sonuglari 2n-+1 > 3 olmak
iizere E20+1 de genellestirilmistir. Sonuclarin tamamen gegerli oldugu
gosterilmis ve bazi irdelemeler verilmistir.

ABSTRACT

Karger and Novak [1] has shown that the integral curves of a linear vector field X on
E3 which has a matrix

A €~
are: '_ 0 1_
(i). Helices with common axes and the same parameter if rank [AC] = 3,

(ii). Circles which lie on planes parallel to each other, and which have centers on the axis per-
pendicular to those parallel planes, if rank [AC] = 2,

(iii) .Parallel straight lines, if rank [AC] = 1.

In this study, the results of Karger and Novak are extended to E?"+! where n>1. It is
shown that of all the results are also valid in this general case and some further elaborations
are included.

* University of Teheran. Tefrech, Tefresh (IRAN). Doctoral Dissertation in the Univer-
sity of GAZI, Ankara.
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I. INTRODUCTIONS

Integral curves of a linear vector field of E* are depend on the
rank of linear vector fields. The integral curves are circles or helices in
the cases of the matrix of the linear vector ifeld has rank even or odd.

Recent years the theory of helices in higher dimensions has been
completed so it is reasonable to study the theory of integral curves of
a linear vector field.

We show that the theory of integral curves of a linear vector field
in (2n-1)-dimensional Euclidean Space, n > 1, is the same of the case
of n=1).

II. BASIC CONCEPTS
Let
«: ] ———— Em
t o(t)
be a parametric curve and X be a vector field in Em,
If

de

—3— = X@) ,yrel

is satisfied, then the curve « is called an integral curve of the vector
field X.

Let V be a vector space over IR of dimension m. A vector field X
on V is called linear if

X() = A@v) , yv eV

where A is a linear mapping from V into V.

i
Let A € IR be a skew-symmetric matrix. Then we can choose
2n+1

an orthonormal base ¢ in ITR22+1 such that the matrix A reduces to
the form as
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S0 A 0 ... 0 0 0~
— 0 % ... 0 0 0 onp
0 —x 0 ... 0 0 0 | eIR
. 2n+1
0 0 0 ... 0 Ang O
0 0 0 ... —on_y
0 0 0 ..... 0

where A €IR — {0}. If C eIR 201, is a column matrix such as

Ta; 7]

ap
C= |.

_azn+1_l

then we showed that the value of X at any point P of E20%1 can be
written as

I‘X(P)_ - A C) |I'™P~
1 Lo 1 | |1
where the matrix
- A C-
0 1

is called the matrix of the linear vector field X.

TI1. INFEGRAL CURVES OF A LINEAR VECTOR FIELD
TII. 1. Linear Vector Fields in E3. '

Let X be a linear veetor field in E3 and an orthonormal frame of

E3 be {O; uj, uy, uy}. Then the matrix in this frame can be written
as

T A C~ -

, rank [AC] = 3.

oo o
oo o>
cooo
—oe e
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Then the value of X at
a point P = (x, y, z) of E3 is

T X(P) | N | a_l T x 7
=2 0 0 b1 y
- 0 0 0 ¢ z
R 0 o0 o 1 _| |_1_
or
X(P) = (0oy + a, —Ax + b, ¢).
On the otherhand if a curve
o I - J3
t () = (21(t), ao(t)s a3(t))
is an integral curve of X then we can write the differential equation
__fl_i‘_ — X(a(t), ytel (IT1.1.1)
or the system of differential equations
dx
. A
dy ]
== —AX -].-
5 ax - b (T11.1.2)
dz l
a |

For the shake of the shortnes, we can have A = 1 and the system
(ITI. 1.2) reduces to

dx
dt =y +ta

dy
dt

dz
dt

— —x -+ b _ (IT1.1.3)

Then the solution of the last equation of this system is
z = ct + d. (J1I1.1.4)

For the solutions of the first two equations we derivate the second equ-
ation and obtain that
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d2y dx

dez T dt

and using the first equation we have

which is a first order linear differential equation with constant coeffi-
cient.

We know that the solution of this equation is
y = A cost + B sint - a. (I11.1.5)

On the otherhand the derivation of (III.1.5) and the second equ-
ation of (III.1.3) give us that

x = A sint — B cost 4 b, (I1IT.1.6)
Thus the integral curves of X can be written as

a(t) = (A sint — B cost + b, A cost - B sint — a, ct -I- d). (II1.1.7)

This 1s a familly of inclined curves with common axes and the same
y ‘
parameter since we have

ky — 1 \/'Az_;_Bz ,

H = k2 C

where k; and k, are the curvatures of the curve and H is constand for
each one of the curves.

Now assume the case that rank [AC] = 2.

In this case ¢ = 0 since we know that 23£0. So (III.1.7) gives us
the equation of integral curves as

(t) = (A sint — B cost -+ b, A cost -} B sint — a, d). (HI.1.7)

The curves are the circles each one of which lies on the parallel
planes and the centres of these circles are located on an axis perpendi-
cular to those parallel planes.

Finally, assume that rank [AC] = 1.

In this case we have that A=0 and the system (III1.1.2) reduces
to the system
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dx o ]
axa
dy ]

= .1.2)
Jt b . (111 )
dz
a T ° J

Then the solution of this system'is
a(t) = (at - d, bt | dy, et + dj). (111.1.7)"
These integral curves are the parallel straight lines.

II1.2. Linear Vector Fields In E20+1

I11.2.1. The General Case

2n+1
Let AcIR be a skew-symmetric matrix and Ce IR27*1 be a
2n+1]

column matrix such that

-0 7\1 0 “ee 0 O 0 al
Ay 0 Ay ... 0 0 0 a,
A= 0 -x» 0 ...0 0 0 a;
. . . -
0 0 0 ...0 hong O am_1
O 0 O LI *7\211_1 O O aZn
_ 0 0 0 el 0 0 0 _ _aony -
For a linear vector field X and all of the points
P = (x5 X5+ «++» Xpnyy) € E 2071, we have that

, rank [AC] = 2n+1

- X(®) _. [—A C“. l'P_
. =

Lo 1. |1

or
X(P) = (\xy + ap, =M Xp + Xg%3 + 8y 50 -5 “hngXonp +
Monog Xpno1 + Am_ys “An_1Xpnog am » 8gni) -
In addition, if the curve

o« I ————— E2ntl
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is an integral curve of this linear vector field X then it has to satisfy
the differential equation

?ft( = X((1)) ytel (I11.2.1)
and (II1.2.1) gives us the following system of differential equations
dx ]
' dtl = MXy + 3
dx . )
dt2 = MX R Xy Ay
T, I11.2.2
di = “Men-2Xono2 b Aonog Xon + amgf . (II1.2.2)
dx
"ﬁ?— = ~Aa_j Xonq + am
dX2
. d:+1 = amy,

If we rewrite the matrix A by renumbering its non-zero elements 2;
we obtain that

- X(P)~ A 0 A“l l"P_
= 0 0 B! (I11.2.3)
_ 1 0 0 1 _| |_ 1_ '
where
— _ o ~a,
O 7\1 O m+1 A., 32
A=1-50", elIR , O = = |,
0 Ay m+] B
— - - - —omyy _

m+1 2n.m
and A'eIR , BelR

m+1 1

If we use the notation
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(IT1.2.1) and (I11.2.3) give us that

- A’
dX . AP — C/ , CI — ‘ l
dt l B

which is a first order linear differential matrix equation with constant

(IT1.2.4)

coefficient. The solution of this equation can be given as

{ —
a(t) = o ( j ¢ oA du) + D (I11.2.5)
o]
or since we have that
A - o th (0] ]
€ = L
o Ton-m

(II1.2.5) can be given as the form

_ . -
et}\ j eUr A’ du
0

oft) == 4 D (I11.2.6)
Bt

or since the matrix A is skew-symmetric the rank A is even and so m is
odd and detr#o0 and A1 is exist. Then we can write that

1A 4 ol e A
oft) = [ . ] + D (I11.2.7)
t

and we give the following results:

(i) The last 2n-m components of the curve « are in the form
bjt—}—di.
@) P = " A+ [BP
= [AF + [BJ?
this means that
lo'(t) | = constant.

Thus we can say that, in E20+1, choosing an orthonormal frame

{O; Uiy ooy Umyp1s Umag2s ooy u2n+1}
we can have that

<a'(t), up> = Jo'(t)] . Juy] . cos Op,m + 2 <r < 2ntl
= VIFP T BP eosts
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This means that the angle in between each curve of the curves
family a(t) and each one of the base vectors u, is constant. Therefore,
each one of the curves «(t) makes a constant angle with the space

Sp {umiy .. .5 Uiy}

On the otherhand, since the first m--1 components of each one of
the curves a(t) can be represented by the vector

‘ [~ -
m-1 1
— WA ot efh D, D;eIR , D= [ ) .
1

Using the curves

B(t) = - 21 A £t P A 4D
and the point

“3TA 4Dy =0Q = (qp -++» Gmp1)
we obtain that

d (Q, &(t)) = constant.
Therefore we can say that:

All of the curves a(t) are the inclined curves and they lie on the
right hypercylinders whose bases are S™ and the centres of S™ are the
points

(41> 920 -+ > Gmigs 0 ..., 0)
and the radiuses of those S™ are |p—1 A’ .

So we can give the following theorem:

Theorem II1.2.1. Let X be a linear vector field on E20+1 deter-
mined by the matrix

- A C-
_0 1]
with respect to an orthonormal frame {O; uy, uy, ..., wyn, ), where

A is a skew-symmetric matrix and C is a column matrix. Then the in-
tegral curves of this vector field X are the following ones:

(1) The integral curves of X are the inclined curves whose axises
are the same.
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(2) Each one of the integral curves of X lie on a rtank A- dimen-

sional right hypercylinder.

111.2.2. The Normal Form Case:

The normal form of the skew-symmetrie martrix A is

-0 2, 0 0 0...0 0 07
2 0 0 0 0...0 0 0
A: 0 0 0 —‘7\2 O...O 0 0 2041
. . . . . . . . elR

2n+1,
e e . . . » eIR-{0} .

O 0 0 0 0...0 0 0

o 0 0 0 0 ... 0 0
0 0 0 0 0...0 0o 0

In this case we can prove the following theorem:

Theorem I111.2.2. Let X be a linear vector field in E2nt1 deter-
mined by the matrix

l"‘A C -

.o 1

with respect to an orthonormal frame ‘{O; Uy, Uy ooy Uynyq}. Whose
A is normal formed skew-symmetric matrix, C is a column matrix.
Then the integral curves of X have the following properties:

(i) If rank [AC] =2k + 1,1 < k < n, then these curves are
same parametrized circular helices which have a common axis.

(ii) If rank [AC] = 2k, 1 < k < n, then those curves are circles
in parallel planes whose centres lie on a same straight line perpendicu-
lar to those planes.

(iii) If rank [AC] = 1, then these curves are the parallel straight
lines.

Proof: Let X be a lineear vector field for all points
P == (Xl PEEEEY X2n+1) € E2n+1 .

Then we have

- X(P) 1T A C-

1

o1

[0 1

or
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X(P) = (7\1 X2+ al,—7\1X1+32,. . -,7\nx2n+azn_1,——)\nxl]__l+azn,azn_.l_l) .
Moreover, if a curve
« : IcIR ——— E20f1

is an integral curve of the vector field X, then we can write that

d« ) )
'——aT'— = X((Z(t)) .
The integral curve, with the initial condition «(t) = P and
P = (x1 ,..., Xynyq) is a solution curve of the differential equation
do — X(P)

dt

which means that

doy : oo de da '
on_
I =x2—{—al, dt2 = — X1—|—32 pe ey dt_l = X2n+32n—1 ?
do da . .
din = —Xon_;+am, % = ayn,; = OC. This means that

d=1,and, 1 <i <n.
If we solve the differential equation

do‘2n+1 _
I

we get
Oonty1 = Ct+d .

The other 2n equations can be solved in pairs. For example let us
solve the first two equations

dotl dd
._..dt_ :X2+a19 .—dtZ_- = —xl—l—az .

The general solution of these equations are
%y, = A; cost + B sint—a, »
%, = A, sint—B,; cost+a, .
Continuing in this way, we get
Xon_1 = A, sint—By, cost4-a,,

Xyn = Ap cost+By sint—a,, ; .
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Using these solutions the expression of o(t) can be written as
a(t) = (Asint—B; costta,, A; cost+B; sint—a; ,..., A, sint
—Byp costtay, , Ay cost+4-Bysint—a,y_y, ct--d).

Now, we show that «(t) is an helix in E27+! and we find the axis of
it. o - : '

In order to show this, we must show that [2]
X,
ky

H, =

= cost.

" The vectors o, ¢, o' and o) ye oo @01 are linearly dependent.
Hence there exists two curvatures k; and k,. Since the curve «f(t) does
not have the unit velocity, we must apply the change of parameter
to normalize the velocity.

«'(t) = (Ajcost+B;sint,—Asint-+Bjcost,. .., Ajcost--Bysint,~Aysint--
Bncost,C) o

n
and if we denote X (A,2+4B;2),by Y we have
, i

()| dt

WOl = YT s = |

and if we denote 4/ Y-}-c2byy we get t == ——;——— .
Since E(s)==B’(s) and
<B()B()> = 0, <p(s), B(s) > = 0.

Ey)=B"(s) Esld) = — (6"/6)+Y, Er(s)

and

0 B
MO = TEET

Hy(s) = \/:E: .

we have
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This means that the curve f(s) and so the curve o(t) are helices.

Let U be the axis of «(t). Since U € Sy, {V,, V3},

we have
U = cos ¢ Vi 4 sin ¢ V3,

where V, and V, are the Frenet Vector fields of the curve.

Since
ro Ele) e Ee)
Vi TEer 0T TEer @

; I " ; ~
Hi(s) = \/ éf tan ¢ and ¢ = Arctan \/—z—

¢ VY

I.T: TV1+ V3 ..... (b)

By combining (a) and (b) we get
U = (0,0,...,0,1},

The curve «(t) is a cincular helix because if the curve «{t) is trans-
laled by T, where

T = (—apa)—aga;—..., am, 0).
we obtain
. ‘ v
a2 + a2 +...+ a7 = T (A;24'Bi2) =r = constant.

2n o

—

This completes the proof of the first part of the theoreri.
2— Let rank [AC] = 2k, 1< k < n then:

a) if rank [AC] = 2n, k=n then differential equation system be-
cames, - : ' '

Xm
= X, +— &
dt ,‘2 + 1.

dx,
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dxon_y

dt = Xpn + amg

din

It = —Xpn_ -+ am

bony g
dt
This system of differential equations has the solution
«(t) = (A; sint —Bjcost+a,, A; cost+B; sint—a; ,..., Apsint—
Bycost+4-ayy,, Apcost-+Bpsint—a,n_y,d).
It is trivial to show that the curves a(t) are cireles.

b) Let rank [AC] = r, r=2, ..., 2n—2,

in this case

Rank [AC]=r & »=0, 3 + 1 <i<n.

So that
Xm dX 1
dt = Xp+ap,..., ——'d—rt— = Xr-t-ar_g
dx, dx, dx; . \
Tt =—x;+}a,..., It =—x;-+ay, 5 =0,r+1<j<2n+1.

Therefore in this case a(t) is
a(t)= (A; sint-B; cost{-a,,A; cost+ B, sint-a,,...,A;, sint-B, ,cost+ar,
Ay jpeost—Bypsint—ar_1, drip dryz. .., dongq).
Again the curves «(t) are circles.
3. Rank [AC] = 2kt1, 1<k<n.
a) If rank [AC] = 2k+41, k=n,
«(t) is the same as the first part of the theorem.
b) Let rank [AC] = 2k+1
= r+1, r=24,....2n—2,
=0

then rank [AC] = r}1 < .
ap, 17£0 , rH1<i<n,
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dx dx
Hence 5 = Xy+ay , —————dtz = —x;tay ,... ,
dx; ¢ dx, dxy dx;
. 41 ]
—_— =X a — —X: a ——— T & pound
dt R T S T T+ T

r4+-2<j<2n-+1.
The solution of this system is

a(t) = (A;sint—Bjcost-+a,, A; cost--B; sint—ay,...,
Ay psint-Br ycost+4-ay, Ay pcost4 By psint-ar_y, ap, 1t+d, drygs. . oodongq).
Obviously «(t) are again circular helices.

4. If rank [AC] = 1. then %; = 0 which gives us a system
of the differential equations. This system of differential equations has
the solution «(t) which are parallel straight lines, in E20+1,
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