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ABSTRACT

In:this work, thé homothetic Matrix Lie Group has been considered as an action group
and the homothetic mapping sets have been obtained as a subset of mapping sets on E™

1. INTRODUCTION

Consider that G is a group and M is a differentiable manifold. As
a conséquence,

(a) The points on M coincide with elements of G

b)yo: MxM —— M

(a,b) ——— aob!

this operation is also differentiable in every where. (M, G) representation
which has these two axioms is called a Lie Group [1].

It

{[aijlnxn Jas; € IR}

is a submanifold of matrix space and a group with respect to matrix

multiplication, then this group is defined as a matrix Lie Group [2].

Let M, M be n-dimentional C* — manifolds and

diffeomorphism i,

o : M
such that

o : TM—ou—» TM, v x, ve Tulp)

and
< 94(x), 0(y)> (9@ = €2 < x, y> |p, where ¢2 is a constant.

The transformation ¢ which satisfies above equality is defined as a Ho-
mothetic Transformation [3].
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Since homothetic transformations are free of metric choice, there
is no need to any specialization in the metric.

If A is an orthogonal nxn matrix and k==cl; is a scalar matrix, then
H = kA,
is called a homothetic matrix.

The set of homothetic transformations (H(M)) is a group with res-
pect to the operation of composition of functions. The set of homothetic
matrices (J(M)) which corresponds to the set of homothetic transfor-
mations (H(M)) is also a group with respect to matrix multiplication.
Thus, the set (H(M)) which corresponds to the set (J¢ (M)) is a group
isomorphism [4].

The set of homothetic matrices (J¢ (M)) is also a Matrix Lie Group

[4].
2. MAPPING ON g¢ (En)

Definition (Homothetic mapping): Let E2 be an n-dimentional
C* — manifold and (U, {) be a coordinate neighborhood. Then, there
exist such functions;

fx —_ {hl 1}(9 112 ’Xv LIRS hn ?X 5 X}’ V X € ‘IJ (U)’ fx E\T]g B(En)’

n
hi [ x == ¢ axi 7
k=1 Xk

Ix -

The linear mapping (fx) is called a homothetic mapping on Em.

Theorem 1: {B(E®) (En, GL (n,IR))) is given as a main fibre set.
Then, the following transformation exists:

VeER, ¢ : no1(V) ——> VxGL(n,IR).

By means of above transformation, homothetic mapping converges
to a homothetic matrix. In other words, every homothetic matrix in-
dicates a homothetic mapping.

Proof: Let
fx € 3¢ B(En) 5 (h; [x, hylx 5., hnlx 5 x}

then, one obtains that
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n 0
o — (x. [xn: e S e 9
fx V(fx) (\e [\}u])a h; |x kél Xki N
In fact,
g¢ B(Er) < B(En).
Thus, one can say that [xx; ] € GL (n, IR).
£« TR, 20 T ()
£P = [xu] p
" -
X xpipi
i
' n 8 n o
fxP = . ' ::( X]ipi) -:—~l + J\( » Xnipi) -
) i1 OXj < fu | Oxn N
n
%1 XnipPi

|

ox

n 0
fP = ( Y canpi ) L
i=1

X

Using the above equality, we can write
[xki] = [ecam], 1 < i, k < n
[xw] e J¢ (Er)

or, in other way,

[caxi] € K (En) is given

if
[cani] € J¢ (EM)
then
[caki] € G L (n, IR)
Thus,
IfxeBEY)s 'y = | [x.,..., hnlx;x}
where n Py
hiy |x = ki cagi T Ix

Finally, we can write

f'x € J¢ B(En)
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Theorem 2: Let x be an any point on the n-dimentional Enclidean
space En, If ¢ is a homothetic transformation of ED then there is a radial
transformation r of K0 and a rotation g around x and a sliding t{or
ancther sliding t') of En, such thax

¢ = torog or ¢ = rogot’,
Proof: Let an orthogonal system with initial point x at En be
{Xl, X1s eves Xn}

and a homothetic transformation be ¢. Using the orthogonal system,
homothetic motion, with matrix representation, will be,

kA B~

y x
= , k = clhes(n), AeO(n), Belp™y
1 0 1
and using the fact that D = ——:(l:— A-1 B one can obtain
Ty T rely 071 ITA 0_, _—Lk D7 |™x~
= c
1 _, 0 1 ,MO 1; |0 | |1 |

In the above equality, the first left matrix represents a scalar matrix
k=cly, which gives us a radial transformation r. Second matrix defines
a rotation around the point x and the third matrix indicates a sliding
of EM which is defined by

1
¢

D= A-1 B. So we can write that ¢ = rogot.

One can shows that the set of homothetic motions J¢(n) is a grouyp
with respect to the matrix multiplication.

Theorem 3:
For x,y € En and fy, fy € g¢ B(E®) there is only one homothetic

motion ¢ such as
o (fx) = 1.
Proof: Let

fX = {hl lehz ’X?v"ahn !X;X} 5 fy/ - {hll lyo’ vy h/n ‘y; Y} EggB(En)
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where ¢ denotes the homothetic motion,
r denote: the radial transformation,
g denotes the orthogonal transformation,
t denotes the sliding motion.
By wusing the theorem 2, one can write
© = torog.

On the other hand, by using the technique given in [1], one obtains
(in the following figure)

t(x) = v, when t € T(n),
similarly, for only one rog,

ty I(h') = (rog)y (hi)
h'y = t,(rog), (hy)
b’y = (torog), (h;)
by = ¢, (hy).
Thus we can write that
o({h1 [x. - Shn|xs x1) = {ou(bile(x) o -0 @u(hnlex)); o(x)}
= {hll !yv' . -vhln IV'Y)}
o(fx) = fy.

This result shows us the availability of a homothetic motion ¢ and its
singularity.
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(figure)
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