SOME SUBRING PROPERTIES OF THE RING OF HOLOMORPHIC FUNCTIONS ON A NON-EMPTY SUBSET OF AN OPEN RIEMANN SURFACE

NURHAYAT İSPİR İ. KAYA ÖZKIN

Ankara University, Faculty of Sciences, Mathematics Department, Tandoğan, 06100 Ankara,

Throughout this paper R and S will denote open Riemann surfaces and X, Y will be non-empty subsets of R and S, respectively. A function $\varnothing\colon X\to S$ is said to be analytic if for each point $p\in X$ there is an open neighborhood U_p of p and an analytic function $\psi_p\colon U_p\to S$ such that ψ_p and \varnothing coincide on $U_p\cap X$. This is equivalent to assuming that there is a single open set $U\supset X$ and an analytic function $\varnothing\colon U\to S$ such that $\psi\mid X=\varnothing$. Let A(X,Y) denote the set of all analytic functions $\varnothing\colon X\to S$ with $\varnothing(X)\subseteq Y$. For $Y=S=\mathbf{C}$, a function in $A(X,\mathbf{C})$ is called holomorphic and we write $H(X)=A(X,\mathbf{C})$.

It is well known that H(X) forms a ring under pointwise addition and multiplication. In fact, H(X) is an algebra over both the complex numbers C and the real numbers R.

This paper is concerned with proper subrings R^* of H(X) which are isomorphic images of H(Y), the ring of all analytic functions on a non-empty subset Y of an open Riemann surface $S.\Phi$ will denote a homomorphism from H(Y) into H(X) which maps each constant function onto itself; i.e., a **C**-algebra homomorphism. \varnothing denotes an analytic mapping from X into $Y \subset S$; i.e., $\varnothing \in A(X,Y)$, and R_\varnothing the subring of H(X) which is composed of the functions go \varnothing for $g \in H(Y)$. It has been shown that if Φ is a homomorphism of H(Y) into H(X) and Φ maps each constant function onto itself, then there is a unique analytic mapping $\varnothing \in A(X,Y)$ such that $\Phi(g) = go \varnothing$, $g \in H(Y)$ [4]. Thus $\Phi(H,Y)$, the image of H(Y) under Φ , is the subring R_\varnothing for some analytic mapping $\varnothing \in A(X,Y)$. Now we give some basic definitions and properties of R_\varnothing .

A two-dimensional manifold is defined as a connected Hausdorff space M with the property that each point of M is contained in an open set homeomorphic to an open set in the Euclidean plane. The two-

dimensional manifold M is an analytic manifold or abstract Riemann surface if there is a collection $\{(U_i,\,\theta_i)\colon i\in I\}$ where for the index set I, $\{U_i\colon i\in I\}$ is an open covering of M and θ_i is a homeomorphism of U_i onto an open set in the complex plane. Also, if $U_i\cap U_j$ is non-empty, then θ_i o θ_i^{-1} is a conformal sense-preserving mapping of θ_i ($U_i\cap U_j$) onto θ_j ($U_i\cap U_j$), that is $w=\theta_j$ o θ_i^{-1} (z) = f(z) is an analytic function of z in θ_i ($U_i\cap U_j$). We say $\{(U_i,\,\theta_i)\colon i\in I\}$ defines an analytic structure on the manifold M, and another collection $\{(V_j,\,\psi_j)\colon j\in J\}$ defines the same analytic structure if the union of the two sets satisfies the conditions for an analytic structure on M. We say the Riemann surface is open if it is not compact.

If M is a Riemann surface, (U, θ) belongs to $\{(U_i, \theta_i): i \in I\}$ on M, p_0 belongs to U, then $z = \theta(p)$ is a local parameter about p_0 in U and there is another local parameter $w = \psi(p)$ about p_0 with $\psi(p_0) = 0$ and $|w| \leq 1$. We define $w = (z-z_0)/r$ where $\theta(p_0) = z_0$ and $\{z: |z-z_0| \leq r\}$ is contained in θ (U). The structure of M is not changed. A complex-valued function f on M is called analytic or holomorphic at the point p_0 if in terms of the local parameter $z=\theta(p)$, $\theta(p_0)=0$, the function $f(\theta^{-1}(z))$ is an analytic function of z for |z| < r for some r > 0. f is holomorphic on M if f is holomorphic at each point of M. If f is a mapping of the Riemann surface M_1 into the Riemann surface M_2 , $p_0 \in M_1$, $f(p_0) = q_0$, $z=\theta(p)$ is a local parameter about p_0 , $w=\psi(q)$ is a local parameter about p_0 , we say f is analytic on p_0 if the function p_0 is a local parameter about p_0 and p_0 is an analytic function of z for all $p_0 \in M_1$. The two surfaces p_0 and p_0 are conformally equivalent if there is a one to-one analytic mapping of p_0 onto p_0 and p_0 are conformally equivalent if there is a one to-one analytic mapping of p_0 onto p_0 and p_0 are conformally equivalent if there is a one to-one analytic

Suppose X and Y are non-empty subsets of open Riemann surfaces R and S respectively. We define a mapping of H(Y) into H(X) by $\Phi(g)=go \varnothing$ for $g \in H(Y)$. $go \varnothing$ is holomorphic on X and Φ is a homomorphism. The image of Φ , $R_{\varnothing}=\Phi$ (H(Y)) is a subring of H(X). If λ is a constant function on Y then $\Phi(\lambda)=\lambda o \varnothing=\lambda$ so Φ preserves constant functions. C.D. Minda proved that if R and S are open Riemann surfaces and X, Y non-empty subsets of R, S respectively, and if Φ : $H(Y) \to H(X)$ is a **C**-algebra homomorphism, then there is a unique analytic function \varnothing of X into Y such that Φ (g) = $go \varnothing$ for $g \in H(Y)$ [4]. Also if Φ is an isomorphism of H(Y) into H(X), then \varnothing is a one-to-one mapping of X into Y. Thus a subring R^* of H(X) is a homomorphic image of a ring H(Y) under a **C**-algebra homomorphism if and only if $R^*=R_{\varnothing}=\{g_1o \varnothing: g \in H(Y), \varnothing \in A(X,Y)\}$. R_{\varnothing} contains the

constant functions, denoted by C, since $C \subseteq H(Y)$ and $\Phi(\lambda) = \lambda$ for $\lambda \in C$.

A relation between $\Phi,\ \varnothing,$ and R_\varnothing is given by the following theorem.

THEOREM 1. Let R and S be open Riemann surfaces and X, Y non-empty subsets of R, S respectively. If $\Phi\colon H(Y) \to H(X)$ is a ring homomorphism defined by $\Phi(g) = go \varnothing$ for $g \in H(Y), \varnothing \in A(X,Y)$ and if $R_\varnothing = \Phi(H(Y))$, then the following three conditions are equivalent:

- (a) R_{\emptyset} properly contains the constant functions,
- (b) Ø is not a constant function,
- (C) H(Y) is isomorphic to R_{\emptyset} .

Proof. Suppose R_{\varnothing} properly contains C. We shall show that \varnothing is not a constant function. On the contrary, if we suppose that $\varnothing(X) = \{c\}$, then $\Phi(g) = g$ o $\varnothing = g(c)$ for $g \in H(Y)$ which implies $R_{\varnothing} = \Phi(H(Y)) = C$. Because of this contradiction \varnothing is not a constant function.

Now we shall show that (b) implies (c). Suppose that \varnothing is not a constant function and \varnothing (X) is a non-empty subset of Y. Let f and g be any two holomorphic functions on $\varnothing(X)$ belonging to H(Y). Then there is an open set $U \supset \varnothing(X)$ and functions F, G holomorphic on U such that $f=F \mid \varnothing(X), g=G \mid \varnothing(X),$ respectively. Since f-g is holomorphic on $\varnothing(X)$, it is clear that $\Phi(f) - \Phi(g) = \Phi(f-g) = (f-g)$ o \varnothing . Thus if $\Phi(f) - \Phi(g) = 0$, then f-g=0 or equivalently f=g. This shows that Φ is an isomorphism.

Finally we shall show that (c) implies (a). If Φ is an isomorphism, then $R_{\varnothing} \neq C$ because H(Y) contains a non-constant function g [3] and if Φ (g) = λ , a constant function, then the set Φ^{-1} (λ) would contain λ and g and Φ would not be one-to-one. Thus R_{\varnothing} properly contains the constant function.

COROLLARY TO THEOREM 1. A subring R* of H(X) is isomorphic to H(Y) under a **C**-algebra isomorphism if and only if R* = $\{g \ o \ \varnothing : g \in H \ (Y), \ \varnothing \in A \ (X, \ Y)\}$ and R* properly contains C the constant functions on X.

In the following theorems we shall investigate some of the relations between R_\varnothing and \varnothing .

THEOREM 2. If \varnothing is a one-to-one analytic mapping of X on to Y and Φ maps H(Y) into H (X) by Φ (g) = g o \varnothing , g \in H (Y), then Φ (H (Y)) = H (X).

Proof. If \varnothing is a one-to-one analytic mapping of X onto Y, then \varnothing^{-1} is a one-to-one function from Y onto X. If $q_0 \in Y$, then $p_0 = \varnothing^{-1}$ $(q_0) \in X$. By considering the definition of a Riemann surface and analiticity of a function between the non-empty subsets of two open Riemann surfaces we let $z=\theta$ $(p), w=\psi$ (g) be local parameters about p_0 and q_0 such that θ $(p_0)=0, \psi$ $(q_0)=0$. Then ψ o \varnothing o θ^{-1} (z) is analytic and one-to-one on $\{z:|z|<\mathbf{r}_1\}$ for some $\mathbf{r}_1>0$ and θ o \varnothing^{-1} o ψ^{-1} is analytic and one-to-one analytic function is analytic. Thus \varnothing^{-1} is a one-to-one analytic mapping of Y onto X. If $f\in H(X)$, then f o $\varnothing^{-1}\in H(Y)$ which implies (f o $\varnothing^{-1})$ o $\varnothing=f\in\Phi$ (H(Y)). This gives us Φ (H(Y))=H(X).

If $R_{\varnothing}=\Phi\left(H\left(Y\right)\right)$ is to be a proper subring of $H\left(X\right)$, then \varnothing may be one-to-one or onto or neither, but not both.

THEOREM 3. Suppose \varnothing is a one-to-one analytic mapping of X into Y, λ is a non-constant analytic mapping of X into Y but not one-to-one, Φ (g) = g o \varnothing and Λ (g) = g o λ for $g \in H$ (Y), $R_\varnothing = \Phi$ (H (Y)), $R_\lambda = \Lambda$ (H(Y)). Then R_\varnothing and R_λ are isomorphic but $R\varnothing \neq R_\lambda$.

Proof. Φ and Λ are isomorphisms from H(Y) onto R_\varnothing and R_λ , respectively, so Λ o Φ^{-1} is an isomorphism from R_\varnothing onto R_λ . Suppose $R \varnothing = R_\lambda$. Let $g \in H(Y)$. Then there is $h \in H(Y)$ such that $g \circ \varnothing(z) = h \circ \lambda(z)$, $z \in X$. \varnothing is one-to-one and λ is not one-to-one implies there are z_1 and z_2 in X such that $z_1 \neq z_2$, $\lambda(z_1) = \lambda(z_2)$ and $\varnothing(z_1) \neq \varnothing(z_2)$. H(Y) separates the points of Y[2] implies there is $g \in H(Y)$ such that $g(\varnothing(z_1)) \neq g(\varnothing(z_2))$. But $g \circ \varnothing(z_1) = h \circ \lambda(z_1) = h \circ \lambda(z_2) = g \circ \varnothing(z_2)$. Since we reach a contradiction, $R_\varnothing \neq R_\lambda$.

REFERENCES

- AHLFORS L. V. and SARIO L. Riemann surfaces, Princeton Math. Series no. 26 Princeton University Press Princeton, Fifth Printing, 1974.
- BEHNKE, H., and SCHEJA, G., Studies in mathematical analysis and related topics, Stanford University Press 1962.
- 3. BEHNKE, H., and SOMMER, F., Theorie der analytischen Funktionen einar komplexen Veranderlichen, Springer-Verlag, Berlin, 1962.
- MINDA C.D. Rings of holomorphic and meromorphic functions on subsets of Riemann surfaces
 Journal of the Indian Math. Soc. 40 (1976) 75-85.
- 5. SPRINGER, G., Introduction to Riemann Surfaces, Addison-Wesley, Reading, Mass., 1967.