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Throughout this paper R and S will denote open Riemann surfa-
ces and X, Y will be non-empty subsets of R and S, respectively. A func-
tion @: X — 5 is said to be analytic if for each point p € X there is an
open neighborhood Uy, of p and an analytic function ¢: U - S such
that J, and & coincide on Uy, n X. This is equivalent to assuming
that there is a single open set U 5 X and an analytic function @:U S
such that ¢ | X= g.Let A(X,Y) denote the set of all analytic functions
@: X > S with g(X) < Y.For Y =S = C, a functionin A(X, C) is
called holomorphic and we write H(X) = A(X,C).

It is well known that H(X) forms a ring under pointwise addition
and multiplication. In fact, H(X) is an algebra over both the complex
numbers € and the real numbers IR.

This paper is concerned with proper subrings R* of H(X) which
are isomorphic images of H(Y), the ring of all analytic functions on a
non-empty subset Y of an open Riemann surface S.® will denote a
homomorphism from H(Y) into H(X) which maps each constant func-
tion onto itself; i.e., a C-algebra homomorphism. & denotes an analy=~
tic mapping from X into Y < S;ie., geA(X,Y), and Ry the subring
of H(X) which is composed of the functions go & for g € H(Y). It has
been shown that if @ is a homomorphism of H(Y) into H(X) and @
maps each constant function onto itself, then there is a unique analytic
mapping & e A(X,Y) such that ®(g) = go &, g e H(Y) [4]. Thus @
(H,Y)), the image of H(Y) under ®, is the subring Ry for some analytic
mapping & € A(X,Y). Now we give some hasic definitions and proper-
ties of Ry.

A two-dimensional manifold is defined as a connected Hausdorff
space M with the property that each point of M is contained in an open
set homeomorphic to an open set in the Euclidean plane. The two-
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dimensional manifold M is an analytic manifold or abstract Riemann
surface if there is a collection }(Uj, 6;): i € I} where for the index set I,
{Us: i € I} is an open covering of M and 0; is 2 homeomorphism of U;
onto an open set in the complex plane. Also, if U; n Uj is non-empty,
then 6; o 0;~1 is a conformal sense-preserving mapping of 6; (U; n Uj)
onto 0; (U; n Uj), that is w = 0 0 6;7L (z) = f(z) is an analytic function
of zin 0; (Us n Uj). We say {(Us, 05): i € I} defines an analytic structure
on the manifold M, and another collection {(Vj, {j): j € J} defines the
same analytic structure if the union of the two sets satisfies the condi-
tions for an analytic structure on M. We say the Riemann surface is
open if it is not compact.

If M is a Riemann surface, (U, 0) belongs to {(Uj, 0;): i € 1} on M,
po belongs to U, then z = 0(p) is a local parameter about p, in U and
there is another local parameter w = {(p) about p, with $(py) = 0 and
lw| < 1. We define w = (z—7) /v where 6(p)) = 7, and {z:|z—z|
< 1} is contained in § (U). The structure of M is not changed. A comp-
lex-valued function f on M is called analytic or holomorphic at the point
P, if in terms of the local parameter z=0(p), 8(po)=0, the function
£(6—1(z)) is an analytic function of z for |z | < r for some r > 0. f is ho-
lomorphic on M if f is holomorphic at each point of M. If f is a mapping
of the Riemann surface M; into the Riemann surface M,, py € My, £(p)
= (g z=0(p) is a local parameter about py, w=1y(q) is a local para-
meter about q,, we say f is analytic on M; if the function w = (f(6-1
(z)))==g(2) is an analytic function of z for all p, € M;. The two surfaces
M,; and M, are conformally equivalent if thereis a one to-one analytic
mapping of M; onto M, [1], [5].

Suppose X and Y are non-empty subsets of open Riemann sur-
faces R and S respectively. We define a mapping of H(Y) into H(X) by
O(g)=go & for g ¢ H(Y). go @ is holomorphic on X and ® is a homo-
morphism. The image of ®, Ry = @ (H(Y)) is a subring of H(X). If2
is a constant function on Y then ®(2) = ho Z=2X so ® preserves cons-
tant functions. C.D. Minda proved that if R and S are open Riemann
surfaces and X, Y non-empty subsets of R, S respectively, and if ®:
H(Y) - H(X) is a C-algebra homomorphism, then there is a unique
analytic function @ of X into Y such that @ (g) = go o for g ¢ H(Y)
[4]. Also if ® is an isomorphism of H(Y) into H(X), then & is a one-
to-one mapping of X into Y. Thus a subring R* of H(X) is a homo-
morphic image of a ring H(Y) under a C-algebra homomorphism if and
only if R*=Ry= lgjoo: g e H(Y), @ ¢ A(X, Y)}. Ry contains the
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constant functions, denoted by C, since C<H(Y) and ®(3) == A for
»eC.

A relation between @, @, and Ry is given by the following the-
orem.

THEOREM 1. Let R and S be open Riemanun surfaces and X,
Y non-empty subsets of R, S respectively. If ®: H(Y) > H(X) is a ring
homomorphism defined by @(g) = go & for g ¢ H(Y), o € A(X,Y) and
if Ry = @®(H(Y)), then the following three conditions are equivalent:

(a) Rz properly contains the constant functions,

(b) @ is not a constant function,

(C) H(Y) is isomorphic to Ry.

Proof. Suppose Ry properly contains C. We shall show that o
is not a constant function. On the contrary, if we suppose that &(X)
= {c}, then ®(g) = g o g = g(c) for g € H(Y) which implies Ry =
® (H(Y)) = C. Because of this contradiction & is not a constant func-
tion.

Now we shall show that (b) implies (c). Suppose that & is not a
constant function and @ (X) is a non-empty subset of Y. Let f and g
be any two holomorphic functions on @(X) belonging to H(Y). Then
there is an open set U 5 @ (X) and functions F, G holomorphic on U
such that f=F | o (X), g=G | @ (X), respectively. Since f—g is ho-
lomorphic on @ (X), it is clear that ® (f) — @ (g) = © (f—g) = (f—g)
o . Thus if ® (f) — ® (g) = 0, then f — g = 0 or equivalently f=g.
This shows that @ is an isomorphism.

Finally we shall show that (c) implies (a). If ® is an isomorphism,
then Ry 5~ C because H(Y) contains a non-constant function g [3]
and it @ (g) = A, a constant function, then the set @1 (1) would con-
tain ) and g and @ would not be one-to-one. Thus Ry properly con-
tains the constant function.

COROLLARY TO THEOREM 1. A subring R* of H(X) is iso-
morphic to H(Y) under a C-algebra isomorphism if and only if R* =
{go @ :ge H(Y), o €A (X,Y)} and R* properly contains C the cons-
tant functions on X.

In the following theorems we shall investigate some of the relations
between Ry and g.

THEOREM 2. If g is a one-to-one analytic mapping of X on to
Y and ® maps H(Y) into H (X) by ® (g) = go @, g € H (Y), then ®
(H (Y)) = H (X). '
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Proof. If & is a one-to-one analytic mapping of X onto Y, then
@1 is a one-to-one function from Y onto X. If ¢, € Y, then py = o1
(q¢) € X. By considering the definition of a Riemann surface and ana-
liticity of a function between the non-empty subsets of two open Ri-
emann surfaces we let z = 0 (p), w = ¢ (g) be local parameters about
Po and q such that 0 (pg) = 0, Y (qy) = 0. Then Y 0 & 0 61 (z) is analy-
tic and one-to-one on {z : |z| << r;} for somer; > 0 and 6 o Z~! 0!
is analytic and one-to-one on {w: |w| << r,} for some r, > 0 since the
inverse of a one-to-one analytic function is analytic. Thus @~!is a one-
to-one analytic mapping of Y onto X. If f ¢ H(X), then f o g~1 € H(Y)
which implies (fo 1) 0o @ = f e ® (H (Y)). This gives us ® (H(Y)) =

If Ry = @ (H(Y)) is to be a proper subring of H (X), then ¢ may
be one-to-one or onto or neither, but not both.

THEOREM 3. Suppose o is a one-to-one analytic mapping of X
into Y, X is a non-constant analytic mapping of X into Y but not one-
to-one, @ (g) = go gand A(g) = gorforgeH(Y), Ry = @ (H(Y)),
Ry = A (H(Y)). Then Ry and R, are isomorphic but Rg 7= R;.

Proof. ® and A are isomorphisms from H(Y) onto Ry and R,,
respectively, so A o ®~! is an isomorphism from Ry onto R;. Suppose
R o = R;. Let g € H (Y). Then there is h ¢ H(Y) such that go & (z) =
h o A (z), z € X. @ is one-to-one and A is not one-to-one implies there
are z; and z, in X such that zy 7% 2z,, A (z1) = A (z,) and & (z1) # &
(z,). H (Y) separates the points of Y [2] implies there is g € H (Y) such
that g (2 (1)) % g (2 (27))- But g0 @ (z1) = ho & (z)) = ho & (z) =
g o I (z,). Since we reach a contradiction, Ry 7 R;.
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