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Abstract
In this article, we consider multi-modal circular data and nonparametric inference. We
introduce a doubly flexible method based on Dirichlet process circular mixtures in which
parameter assumptions are relaxed. We assess and discuss in simulation studies the effi-
ciency of the proposed extension relative to the standard finite mixture applications in the
analysis of multi-modal circular data. The real data application shows that this relaxed
approach is promising for making important contributions to our understanding of many
real-life phenomena particularly in environmental sciences such as animal orientations.
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1. Introduction
In many sciences including environmental, biological, pharmaceutical, geophysical and

astrophysical, the data are directional, e.g. orientations of animals such as birds and
turtles, wind directions, orientation of geological deposits and arrival directions of the
ultra high energy cosmic rays. Focus of the current article is univariate circular data.
These are directional data observed on the unit circle. Most circular data are multi-modal
(i.e. number of modes ≥ 2), [24, 25]. For instance, orientation behaviour of migratory
nocturnal songbirds, Sylvia communis in particular, is multi-modal. They are shown to
prefer seven different migration routes ranging from 39.8o to 326.6o clockwise from North
with standard deviations ranging from 5o to 14.4o [23]. Recent literature is abundant with
examples on multi-modal avian migration routes preferred by some other species as well
[2, 10]. Other examples include the turtle orientations given in Section 4.

Fisher [6] (p. 96) lists the main questions regarding multi-modal circular data: what is
the number of unimodal populations present in the sample; what are the mean directions
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of these groups; what are the relative proportions of the groups? Appropriate statisti-
cal analysis of multi-modal circular data should address these questions and distinguish
distributions (clusters/groups) with different mean and concentration (or dispersion) prop-
erties present in the data. For bimodal circular data, where number of modes is equal to
2, generalized von Mises [8, 31] and asymmetric generalized von Mises [17] distributions
can be used. Various types of multi-modal circular data can be analyzed using mixture
of unimodal symmetric circular distributions, particularly mixture of von Mises (vM) and
mixture of wrapped Cauchy (wC) distributions [11,16,19]. In finite mixtures, multi-modal
circular density is a linear combination of finite number of unimodal circular densities. Let-
ting θ ∈ [0, 2π) or θ ∈ [−π, π) be a circular random variable, probability density function
of circular mixture distribution is given as follows

f(θ; p1, ..., pC , φ1, φ2, ..., φC) =
C∑

k=1
pkfk(θ; φk), (1.1)

where C is the number of distributions in the mixture, 0 ≤ pk ≤ 1 for k = 1, ..., C
are unknown mixing probabilities subject to

∑C
k=1 pk = 1, fk is the probability density

function of the population k, and φk is the vector of parameters associated with the
kth mixing distribution. The pk is proportion of that particular density in the overall
mixture distribution. In the finite mixture approach, number of mixing components is
assumed known and C is set fixed. A general account of identifiability of finite circular
mixture distributions is given by [12] (Theorem 2.1. on p. 441) where identifiability for
vM mixtures in particular is given by [7].

Nonparametric mixture approaches provide a flexible alternative to finite mixtures be-
cause number of mixing components need not be known in advance and C is left un-
specified. Dirichlet process (DP) mixture models, in which C → ∞, is the most popular
nonparametric approach particularly for data on Euclidean space. Its adoption for cir-
cular data has been difficult due to the computational demands mostly arising from the
normalizing constants of the popular circular distributions that are not usually available
in closed forms. These difficulties have been alleviated by introducing assumptions about
the parameters of mixing densities. One assumption is to use completely known prior
distributions for the concentration parameters [4, 9]. Another assumption is homogeneity
of concentration parameters of mixing distributions [21, 22]. These approaches are the-
oretically and computationally attractive and used in many applications. On the other
hand concentration parameters of different populations present in the sample need not
be the same [16] and there are recent examples, e.g. [23], where dispersions (concentra-
tion) of underlying groups in the data are different. In the current article, we relax these
assumptions and provide a doubly flexible DP approach to analyze the most common
circular distributions. To the best of our knowledge, this is the first paper to study DP
circular mixture models with different mixing circular precision parameters assuming un-
known priors. The contribution of our approach yields simultaneously both the number of
underlying populations as well as the estimates of their corresponding parameters. These
populations define the underlying clusters. This paper also enables that the problem of
determining the optimal number of clusters, the critical step of any usual clustering ap-
proach and which is often done through an optimality criterion based on, e.g. information
criterion like generalized Akaike information criterion or Bayesian information criterion, is
no longer needed here. Thus the only problems remaining are that of identifying the mem-
bers of these clusters and the efficiency of this clustering approach. Following model-based
clustering for toroidal data [26,27] (see also [15]), the identification is here done by the DP
circular mixture models where each observation is allocated by its membership measure
and the efficiency of our method is determined by the misclassification rate. These are
presented in details in the relevant section of our paper. Rest of the article is organized
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as follows. Section 2 gives a brief review of DP mixture approach. Section 3 gives our
doubly flexible DP mixture model for the analysis of multi-modal circular data using well
known circular distributions, an efficient Bayesian method for inference is also provided
in this section. In Section 4, efficiency of the proposed model is evaluated using extensive
numerical studies including a set of hypothetical data, a Monte Carlo study and a real
data. Section 5 gives concluding remarks and ends with possible extensions.

2. A review of DP mixture approach
Let G denote an unknown cumulative distribution function. A suitable prior for G is

G ∼ DP(G0, α) where DP is Dirichlet process prior, G0 is a suitably chosen baseline dis-
tribution over the space Ω and α is the precision parameter that shows whether G is in the
close realisation of G0. Letting (A1, ..., Ak) be a partition of Ω such that A1U...UAk = Ω,
that representation is equivalent to (G(A1), ..., G(Ak)) ∼ Dir(αG0(A1), ..., αG0(Ak)) where
Dir denotes Dirichlet distribution [5]. Mixture of Dirichlet processes, i.e. DP mixture
models, is a Bayesian nonparametric method in which prior distribution of parameters are
specified using DP [3].

Adoption of DP mixture approach for multi-modal circular response variables is as
follows. Suppose θi, i = 1, 2, ..., n are circular random variables of size n from a mixture
distribution F (φ) with parameter vector φ and G is an unknown joint prior distribution
for φ. A basic DP mixture model representation is then

θi|φ ∼ F (φ) for i = 1, ..., n

φ|G ∼ G (2.1)
G ∼ DP(G0, α).

Equivalent model can be obtained by taking the limit of the following C component
model as C goes to infinity, [20]

θi|Ki,φφφ ∼ F (φKi)
Ki|ppp ∼ Discrete(p1, ..., pC) (2.2)

φk ∼ G0, k = 1, ..., C

ppp ∼ Dir(α/C, ..., α/C),

where Ki denotes the latent class the observation θi belongs to, φk is the vector of pa-
rameters characterizing the distribution of class (component) k and ppp = (p1, ..., pC) are
unknown mixing proportions of classes that are assigned Dirichlet prior with parameters
each set at α/C.

DP mixture in Equation (2.2) can be constructed using the stick breaking priors intro-
duced by [28]. Accordingly, for qj ∼ Beta(1, α), letting p1 = q1, and pk = qk

∏k−1
j=1(1 − qj)

for k = 2, ..., ∞ define G =
∑∞

k=1 pkδφk
where φk ∼ G0 and δφk

is a probability den-
sity function degenerate at φk. It is shown that an accurate approximation to G can be
achieved by truncating the infinite sum at a finite integer C [14]. A theoretical method
for truncation is also provided therein. In practice, C is initialized at a reasonably large
integer and accuracy of the approximation is determined using the posterior distribution
of the number of clusters (see, Figure 2). Probability density function centering around
numbers smaller than the initial value indicates sufficient approximation is achieved.

3. DP mixture circular models
In this section, a flexible DP mixture model is presented for mixtures of vM and mixtures

of wC distributions, the standards for medium and heavy tail circular distributions in most
applied problems.
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3.1. DP mixture von Mises model
Consider the following model where µkϵ[0, 2π) or µkϵ[−π, π) and κkϵ[0, ∞) are location

and concentration parameters respectively for the kth mixing vM distribution.
θi|Ki,φφφ ∼ vM(µKi , κKi), i = 1, ..., n

Ki|ppp ∼ Discrete(p1, ..., pC) (3.1)
φk = (µk, κk) ∼ G0, k = 1, ..., C

α ∼ Gamma(v1, v2).
Here G0 is an appropriate bivariate distribution such as G0 = vM(µ0, κ0)⊗Gamma(a0, b0),
φφφ = (φK1 , ..., φKn), and KKK = (K1, ..., Kn) ∈ (1, ..., C)n under G. The parameters of the
Gamma density used throughout the article are shape and rate parameters respectively.
Stick breaking priors are assigned for the unknown weights ppp = (p1, ..., pC).

A suitable prior distribution for α is Gamma distribution. Its parameters values are
chosen so that they agree with the desired truncation. Larger (smaller) prior variance is
associated with truncation at a larger (smaller) number.

3.2. DP mixture wrapped Cauchy model
In a similar fashion, a flexible DP mixture wC model is defined as follows:

θi|Ki,φφφ ∼ wC(µKi , ρKi), i = 1, ..., n

Ki|ppp ∼ Discrete(p1, ..., pC) (3.2)
φk = (µk, ρk) ∼ G0, k = 1, ..., C

α ∼ Gamma(v1, v2),
where µkϵ[0, 2π) or µkϵ[−π, π) and ρkϵ[0, 1) are location and concentration parameters of
the kth mixing wC distribution respectively and G0 is an appropriate bivariate distribution
for them e.g. G0 = vM(µ0, κ0) ⊗ Beta(a0, b0) where the hyperparameters are fixed.

3.3. Inference via Gibbs sampling
To obtain direct inference for G, we adopt blocked Gibbs sampling approach described

in [14]. To avoid label switching problem, an identifiability constraint, κ1 ≤ κ2 ≤ ... ≤ κC

for DP vM mixtures and ρ1 ≥ ρ2 ≥ ... ≥ ρC for DP wC mixtures are used to separate the
labels subspace. Letting g denote a posterior density, posterior distribution of DP mixture
vM model is given below

g(φ, p, Kφ, p, Kφ, p, K, α|θθθ) ∝
n∏

i=1
vM(θi|µKi , κKi) × vM(µKi |µ0, κ0) × Gamma(κKi |a0, b0)

×
n∏

i=1
Discrete(Ki|pC) × π(pC = pC(qC−1)) × Gamma(α|v1, v2), (3.3)

where π denotes the prior distribution of ppp which is obtained by stick breaking algorithm
with Beta priors. Marginal posterior distributions are not available in closed forms and
thus Gibbs sampling is used for the marginal posterior inference. Full conditional densities
for Gibbs sampling are given below

g(φφφ|KKK,ppp, α,θθθ) =g(φφφ|KKK,θθθ) ∝
n∏

i=1
vM(θi|µKi , κKi) × vM(µKi |µ0, κ0) × Gamma(κKi |a0, b0),

g(KKK|p, φp, φp, φ, α,θθθ) =g(KKK|p, φ, θp, φ, θp, φ, θ) ∝
n∏

i=1
vM(θi|µKi , κKi) × Discrete(Ki|pC),
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g(ppp|K, φK, φK, φ, α,θθθ) =g(ppp|KKK, α) ∝
n∏

i=1
Discrete(Ki|pC) × π(pC = pC(qC−1)) × Gamma(α|v1, v2),

(3.4)
g(α|p, φ, Kp, φ, Kp, φ, K,θθθ) =g(α|ppp) ∝ π(pC = pC(qC−1)) × Gamma(α|v1, v2).

This procedure generates samples from the joint posterior distribution g(φ, p, Kφ, p, Kφ, p, K, α|θθθ).
Upon convergence of the chain, (φφφ∗, ppp∗) produced in each Gibbs cycle are samples of (φ, pφ, pφ, p)
from the joint posterior. These samples generate a random probability measure as shown
below:

G∗(.) =
C∑

k=1
p∗

kδφ∗
k
(.), (3.5)

where G∗ can be used directly to estimate the posterior distribution G|θθθ. The Gibbs
algorithm starts from initial values (φφφ(0), ppp(0),KKK(0), α(0)) and simulates (φφφ(t), ppp(t),KKK(t), α(t))
from the conditional distributions in Equation (??). To initialize the parameters in the
Gibbs algorithm, we let a pilot Markov chain Monte Carlo (MCMC) run and used the
values in the final iteration as initials for the actual MCMC run. Full conditionals for DP
mixture wC model are defined in a similar manner. These are given in the Appendix.

4. Numerical studies
This section provides an evaluation of the performances of the flexible DP circular

mixture approaches from various different aspects. Main questions are identifiability of
the parameters and properties of the estimators. These questions are investigated using
hypothetical as well as real datasets. Circular [1] and R2OpenBUGS [30] packages of
R are used for circular data generation and MCMC algorithms respectively. To ensure
the MCMC convergence, dynamic traces of Gibbs sampling are monitored and Brooks-
Gelman-Rubin’s diagnostics are used. To assess the model fit, we used circular kernel
density estimation in R. Circular package of R (functions bw.nrd and bw.cv.ml) is used
for the bandwidth selection in circular kernel density approximation.

4.1. A simulation study for identifiability
In this section identifiability of the parameters is examined, which may be a potential

risk particularly when not only the location parameters but all the parameters of the mix-
ing distributions are component specific and infinite sum of DP mixture is approximated
by a rather large C.

We use a representative set of datasets common in practice. Their circular histograms
are given in Figure 1. In the figure, the data given in panel (a) show tendency to two main
directions (Type 1); data in panel (b) show high concentration around two distinct peaks
but the number of peaks is somewhat obscure (Type 2); data in panel (c) show tendency
to multiple directions with possibly heavy tails (Type 3); data in panel (d) are almost
uniformly distributed (Type 4). Following models are used to generate the multi-modal
circular data (in radian for µ) given in these panels respectively, for i = 1, 2, ..., 1000:

θi ∼ 0.50 vM(π/3, 5) + 0.50 vM(4π/3, 10),
θi ∼ 0.25 vM(2π/3, 5) + 0.25 vM(π/3, 30) + 0.50 vM(π, 40),
θi ∼ 0.25 wC(π/3, 0.90) + 0.25 wC(π/2, 0.80) + 0.50 wC(π, 0.90),
θi ∼ 0.25 wC(π/3, 0.20) + 0.25 wC(π/6, 0.30) + 0.50 wC(π, 0.40).
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(a) Type 1 (b) Type 2

(c) Type 3 (d) Type 4

Figure 1. Sample circular histograms, DP mixture fitted models, and kernel
densities for a representative set of multi-modal circular data.

Baseline distributions for DP priors for the parameters φk, k = 1, ..., C are set as
G0 = vM(0.01, 7) ⊗ Gamma(1, 1) and G0 = vM(0.01, 7) ⊗ Beta(1, 1) for analysis with DP
mixture vM and DP mixture wC respectively. Prior distribution for α is α ∼ Gamma(2, 2).
We set C = 10. For corresponding datasets, the results of DP mixture vM and DP mixture
wC are presented here. In the MCMC analysis, first 25000 iterations are burnt in and
the next 25000 iterations are used for Bayesian calculations. Using the generic notations
β, β0, and Dobs for a parameter, its true value, and observed data vector respectively,
posterior central location and posterior uncertainty, F −1

β|Dobs
(0.5) and

√
Var[β|Dobs], are

given in Table 1, the later in parentheses. According to the results, the mixture analysis
is, in general, able to identify the underlying clusters and their parameters. As expected,
its performance improves if the data present rather distinct clusters (as in the case of Type
2). The analysis well identifies the underlying number of clusters and their parameters
even for well mixed data (as in Type 4). Also, Figure 1 shows the true data generation
process and the DP mixture fit as well as a kernel estimation for the density. For clustering
purposes, the proposed DP circular mixture models are compared to the K-means and
spherical K-means [13] clustering algorithms for Type 1, Type 2 and Type 3 examples.
Here, the result of Type 4 example is not presented due to the uncertainty between true
and estimated clusters. The K-means and the spherical K-means clustering algorithms are
implemented in R software. The misclassification rates are obtained by using the confusion
matrix and these misclassification rates are presented in Table 2. The misclassification
rates of the proposed DP circular mixture models are also close to the results of K-means
and spherical K-means clustering and have competitive performances without requiring
the optimal cluster number. The posterior distributions of number of clusters based on
Type 1, Type 2 and Type 3 examples are presented in Figure 2. As shown, the DP mixture
circular methods also well identifies the true number of clusters. Accordingly, not only
does the DP circular mixture methods provides a satisfactory fit but also provides class
identification.
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Table 1. Posterior estimates (posterior uncertainty) for the four types of circular
datasets.

Type 1 Type 2
k p̂k µ̂k κ̂k p̂k µ̂k κ̂k

1 0.49(0.02) 1.06(0.03) 5.69(0.39) 0.24(0.02) 2.06(0.05) 5.52(1.11)
2 0.50(0.02) 4.20(0.01) 10.48(0.66) 0.26(0.02) 1.07(0.02) 26.51(3.04)
3 0.01(0.01) 0.18(0.40) 17.22(6.05) 0.50(0.02) 3.14(0.01) 36.92(2.61)
4 0.00(0.01) 0.06(0.39) 25.51(8.61) 0.00(0.00) 0.10(0.45) 44.05(6.65)
5 0.00(0.00) 0.03(0.39) 33.48(10.53) 0.00(0.00) 0.04(0.39) 51.96(9.04)
6 0.00(0.00) 0.03(0.38) 41.45(12.14) 0.00(0.00) 0.03(0.38) 60.14(10.91)
7 0.00(0.00) 0.02(0.38) 49.59(13.54) 0.00(0.00) 0.02(0.39) 68.11(12.54)
8 0.00(0.00) 0.00(0.38) 57.40(14.79) 0.00(0.00) 0.01(0.37) 76.08(13.92)
9 0.00(0.00) 0.02(0.38) 65.52(16.00) 0.00(0.00) 0.03(0.40) 85.04(15.18)
10 0.00(0.00) 0.02(0.38) 73.41(17.12) 0.00(0.00) 0.01(0.37) 92.98(16.38)

Type 3 Type 4
k p̂k µ̂k ρ̂k p̂k µ̂k ρ̂k

1 0.502(0.02) 3.14(0.01) 0.90(0.01) 0.50(0.08) 3.10(0.10) 0.42(0.06)
2 0.252(0.02) 1.05(0.01) 0.89(0.01) 0.39(0.10) 0.67(0.18) 0.31(0.06)
3 0.241(0.03) 1.58(0.03) 0.79(0.03) 0.06(0.07) 0.09(0.40) 0.15(0.10)
4 0.003(0.00) 0.00(0.37) 0.36(0.23) 0.03(0.04) 0.03(0.39) 0.07(0.07)
5 0.001(0.00) 0.04(0.40) 0.17(0.17) 0.01(0.02) 0.01(0.39) 0.04(0.04)
6 0.001(0.00) 6.26(0.37) 0.09(0.10) 0.01(0.02) 0.01(0.39) 0.02(0.03)
7 0.00(0.00) 6.27(0.39) 0.04(0.07) 0.00(0.01) 0.01(0.39) 0.01(0.02)
8 0.00(0.00) 0.01(0.40) 0.02(0.04) 0.00(0.01) 0.01(0.39) 0.00(0.01)
9 0.00(0.00) 0.01(0.38) 0.01(0.02) 0.00(0.01) 0.01(0.38) 0.00(0.01)
10 0.00(0.00) 0.01(0.39) 0.01(0.01) 0.00(0.01) 0.01(0.38) 0.00(0.00)

Table 2. A comparison of clustering performance.

DP mixture K-means Spherical K-means
Type 1 0.001 0.004 0.001
Type 2 0.052 0.071 0.071
Type 3 0.144 0.160 0.140

Figure 2. The posterior distribution of the number of clusters based on DP
mixture circular models for simulation study.
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4.2. A Monte Carlo simulation study
Aim of this section is to investigate important frequentist properties of estimators ob-

tained using DP circular mixture approaches. We considered scenarios where approxi-
mation to DP circular mixture is achieved with a reasonably small C. In this regard,
scenarios represented in panels (a) and (b) in Figure 3 are considered and following vM
and wC mixture distributions are used to generate the Monte Carlo datasets for these
scenarios respectively, for i = 1, 2, ..., n:

θi ∼ 0.75 vM(π/3, 5) + 0.25 vM(π, 8),
θi ∼ 0.20 wC(π/6, 0.90) + 0.80 wC(π, 0.70).

(a) Scenario 1 (b) Scenario 2

Figure 3. Circular histograms.

For the analysis of these multiply-moded datasets, models in (3.1) and (3.2) are em-
ployed for datasets simulated from vM mixtures and wC mixtures respectively. In the
application of model (3.1), priors µk ∼ vM(0.1, 0.1), κk ∼ Gamma(1, 0.01), k = 1, ..., C
and α ∼ Uniform(0.5, 10) are used while for the application of model (3.2), priors µk ∼
vM(0.1, 0.1), ρk ∼ Beta(1, 1), k = 1, ..., C and α ∼ Uniform(0.5, 10) are used. Each sce-
nario is repeated 250 times. Experiment is controlled for sample size (n is set at 100 for
moderately large and at 500 for large samples as in biological studies in which circular data
are most common). For each simulated dataset, first 10000 MCMC iterations are burnt in
and following 10000 iterations are employed for posterior inference. Monte Carlo estimate
of relative bias (MCRB), Monte Carlo standard error (MCSE), and average standard error
estimate (ASE) are used to assess the frequentist properties of the estimators. Their for-

mulas are given by MCRB = (
¯̂
β − β

β
) where β is the true value of the particular parameter

of interest, ¯̂
β =

∑B
i=1 β̂i/B, B is the number of Monte Carlo replications, and β̂i is the

Bayesian estimate of β for ith simulated dataset; MCSE =
√

[1/(B − 1)]
∑B

i=1(β̂i − ¯̂
β)2;

ASE =
∑B

i=1 SE(β̂i)/B where SE(β̂i) is posterior standard error. MCSE and ASE measure
the uncertainty in the estimators.

Tables 3 and 4 give the resulting estimators and their Monte Carlo properties for scenar-
ios presented in panels (a) and (b) respectively. The true parameter values are given in the
parentheses on the left hand sides of the tables and apply to right ones too. Accordingly,
flexible DP mixture analysis well identified the clusters present in the data. In general,
the estimators maintain good Monte Carlo properties with ignorable biases and relatively
small standard errors. Moderately large samples may be needed for improved concentra-
tion estimation. Modest and comparable MCSE and ASE quantities are associated with
lack of identifiability problems.



1168 M.B. Kılıç, Z. Kalaylioglu, A. SenGupta

Table 3. Bayesian estimates (Est.), relative biases (MCRB), Monte Carlo stan-
dard errors (MCSE) and average posterior standard error estimates (ASE) for
Scenario 1.

n = 100 Est. MCRB MCSE ASE n = 500 Est. MCRB MCSE ASE
µ̂1 (1.05) 1.05 0 0.06 0.06 µ̂1 1.05 0 0.02 0.03
µ̂2 (3.14) 3.14 0 0.08 0.08 µ̂2 3.14 0 0.04 0.04
κ̂1 (5) 5.07 0.01 0.80 0.83 κ̂1 5.01 0 0.38 0.38
κ̂2 (8) 9.33 0.17 2.20 2.61 κ̂2 8.35 0.04 1.21 1.18
p̂1 (0.75) 0.74 -0.01 0.04 0.05 p̂1 0.75 0 0.01 0.02
p̂2 (0.25) 0.26 0.04 0.04 0.05 p̂2 0.25 0 0.01 0.02

Table 4. Bayesian estimates (Est.), relative biases (MCRB), Monte Carlo stan-
dard errors (MCSE) and average posterior standard error estimates (ASE) for
Scenario 2.

n = 100 Est. MCRB MCSE ASE n=500 Est. MCRB MCSE ASE
µ̂1 (0.52) 0.52 0 0.04 0.05 µ̂1 0.52 0 0.02 0.02
µ̂2 (3.14) 3.14 0 0.06 0.06 µ̂2 3.14 0 0.03 0.03
ρ̂1 (0.90) 0.88 -0.02 0.04 0.05 ρ̂1 0.90 0 0.02 0.02
ρ̂2 (0.70) 0.70 0 0.04 0.04 ρ̂2 0.70 0 0.02 0.02
p̂1 (0.20) 0.20 0 0.03 0.05 p̂1 0.20 0 0.01 0.02
p̂2 (0.80) 0.80 0 0.03 0.05 p̂2 0.80 0 0.01 0.02

4.3. Turtle data
We consider Gould’s often studied turtle data that consists of the directions taken by

76 turtles after laying their eggs [29]. Earlier studies showed that the distribution of their
orientations is bimodal. [18] considered a two-component finite mixture model of vM with
different concentration parameters for its analysis and the results indicated that some
turtles move into the direction of µ̂2 = 241.2o while the majority (p̂ = 84%) move to the
direction of µ̂1 = 63.5o where these are directions clockwise from North. Here we reanalyze
the dataset to illustrate the use of doubly flexible DP mixture approach and to evaluate the
contribution of the method relative to the standard finite mixture application. Circular
histogram of the data that is given in Figure 4 in which some multi-modality strikes the
eye.

Figure 4. Circular histogram of turtle orientations.
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Infinite mixture DP model is approximated by setting C = 10 and this is used as a start
to identify the final number of clusters in the analysis. Baseline distribution for DP prior is
set as G0 = vM(0.01, 7)⊗Gamma(1, 0.01) for k = 1, 2, ..., C. Note that vague priors corre-
sponding to µk’s led to convergence problems due to the model complexity that increases
with C and slightly more informative priors are hence more useful. Unknown concentra-
tion about the baseline distribution is assigned a Gamma prior, i.e. α ∼ Gamma(2, 2).
First 5000 MCMC iterations are burnt in and following 75000 iterations thinned by 5 steps
are used for final posterior inference.

Posterior distribution of number of underlying directions (modes) is given in Figure 5.
Accordingly, posterior probability for number of clusters is 0.39 and 0.33 for 2 (bimodal)
and 3 (trimodal) respectively. The two probabilities are quite close suggesting the possi-
bility of either bi or tri-modal directional preference. DP mixture-based approaches are
particularly useful in such cases where it is hard to fix the number of clusters at a specific
value prior to the analyis. For clustering purposes, the identified clusters based on DP
mixture circular model are presented in Figure 6. Based on these results, it is seen that
the two clusters for DP mixture vM model have been active in the Bayes 2.5% quantile
and the Bayes 50% quantile for Gibbs sampler runs. Other clusters are active in the Bayes
97.5% quantile. Further to those, the DP mixture-based analysis has also given insight
that about a few of the turtles under investigation preferred moving to the direction of
other clusters based on the Bayes 97.5% quantile, a result that was not found before.
According to these results, it appears that further research should be done in that area to
better understand the phenomena in the general turtle population. The final result of the
number of clusters based on the Bayes 50% quantile is estimated to be two. The rest of the
posterior inference (parameter estimate and interquartile range (IQR)) by the DP circular
mixture with the estimated number of clusters using the priors of the previous subsection
as G0 is given in Table 5. Accordingly, the analysis results suggest that the majority of
the turtles move to mainly two different directions (about 83.5% of them to 63.426o and
16.5% to 241.273o). These results are consistent with the findings given in [18]. Hence,
the DP mixture vM model demonstrates the superiority aspects of both determining the
unknown number of mixture components and the identified clusters for turtle data.

Figure 5. The posterior distribution of the number of clusters based on DP
mixture vM model for turtle data.
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(a) Bayes 2.5% quantile (b) Bayes 50% quantile (c) Bayes 97.5% quantile

Figure 6. Bayesian quantiles and identified clusters for turtle data.

Table 5. Estimates and interquartile ranges of parameters for turtle data inference.

p µ1 µ2 κ1 κ2
Estimate 0.835 63.426o 241.273o 2.620 8.050
IQR 0.062 6.875o 8.766o 0.651 4.898

5. Concluding remarks
For the analysis of multi-modal circular data, the exact number of modes or number of

groups present in the data is generally unknown and also there is no need to assume ho-
mogeneity of group specific concentration parameters. The DP mixture based approaches
presented here along with use of stick breaking construction provided an insightful method-
ology for mixtures of the most common circular distributions. Our findings and comments
in simulation sections provide guidance for practitioners in their data analysis and inter-
pretation of the results. For large samples, initial C can be set at a larger value. Due to
simulation costs, our Monte Carlo study was conducted only for cases where approxima-
tion to DP circular mixture is achieved with a reasonably small C. On the other hand,
Section 4.1 presents empirical performance of the mixture method for a large C. Flexible
DP mixture application on real data set has provided further insight into the phenomenon
of animal orientations. This is particularly important in the age of increasing ecological
challenges as it provides a holistic view of the world we live in.

The approach and considerations presented herein can be extended to mixture of skew
circular distributions such as sine-skewed vM and wC as well as wide class of circular
regression problems such as circular-circular and circular-linear.
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Appendix
Posterior computation for DP mixture vM model

Let K∗
1 , ..., K∗

m be the current m unique values of KKK. Conditional distribution φφφ|KKK,θθθ
can be decomposed as µµµ|κ, K, θκ, K, θκ, K, θ and κκκ|µ, K, θµ, K, θµ, K, θ. Then, in each iteration of Gibbs sampler,
we draw samples from the full conditional densities listed below.

Conditional distribution for µµµ: for each j ∈ K∗
1 , ..., K∗

m, draw

µj |κ, K, θκ, K, θκ, K, θ ∝ exp(κ0cos(µj − µ0) +
∑

i:Ki=j

κjcos(θi − µj)).

In OpenBUGS, block-hybrid sampling algorithm is performed to obtain random samples
from µj |κ, K, θκ, K, θκ, K, θ. Also for each j ∈ KKK−K∗

1 , ..., K∗
m, independently simulate µj ∼ vM(µ0, κ0).

Conditional distribution for κκκ: for each j ∈ K∗
1 , ..., K∗

m, draw

κj |µ, K, θµ, K, θµ, K, θ ∝
κb0−1

j

I0(κj)nj
exp(

∑
i:Ki=j

κjcos(θi − µj) − a0κj),

where nj = #{i : Ki = j}. Slice sampling algorithm is used to obtain random samples from
the full conditional distribution of κj . Also for each j ∈ KKK − K∗

1 , ..., K∗
m, independently

simulate κj ∼ Gamma(a0, b0).
Conditional distribution for KKK:

(Ki|ppp,µµµ, κ, θθθ) ∼
C∑

k=1
pk,i Ik(.), i = 1, ..., n

where

(p1,i, ..., pC,i) ∝ p1
I0(κ1)

exp(κ1(cos(θi − µ1)), ...,
pC

I0(κC)
exp(κC(cos(θi − µC)).

Discrete slice sampling algorithm is used to obtain random samples from the full condi-
tional distribution of KKK

Conditional distribution for ppp:

p1 = q∗
1 and pk = (1 − q∗

1)(1 − q∗
2)...(1 − q∗

k−1)q∗
k, k = 2, ..., C − 1

where

q∗
k ∼ Beta(1 + nk, α +

C∑
l=k+1

nl), k = 1, ..., C − 1

where nk = #{i : Ki = k}, that is, nk saves the number of Ki values which set to k
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Conditional distribution for α:

α|ppp ∼ Gamma(C + v1 − 1, v2 −
C−1∑
k=1

log(1 − q∗
k),

where q∗
k are same values in the simulation of ppp.

Posterior computation for DP mixture wC model
Let K∗

1 , ..., K∗
m be the current m unique values of KKK. Conditional distribution φφφ|KKK,θθθ

can be decomposed as µµµ|ρ, K, θρ, K, θρ, K, θ and ρρρ|µ, K, θµ, K, θµ, K, θ. Then, in each iteration of Gibbs sampler,
we draw samples from the full conditional densities listed below.

Conditional for µµµ: for each j ∈ K∗
1 , ..., K∗

m, draw

µj |ρ, K, θρ, K, θρ, K, θ ∝ exp(κ0cos(µj − µ0) +
∑

i:Ki=j

log( 1
1 + ρ2

j − 2ρjcos(θi − µj)
)),

it can be used Taylor expansion of log(1/1+x)) with ignored high order terms, we repeat-
edly write the full conditional distributions for µµµ as follows

∝ exp(κ0cos(µj − µ0) +
∑

i:Ki=j

2ρjcos(θi − µj) − ρ2
j )),

and then, the block-hybrid sampling algorithm is performed to obtain random samples
from the full conditional distribution of µj . Also for each j ∈ KKK − K∗

1 , ..., K∗
m, indepen-

dently simulate µj ∼ vM(µ0, κ0).
Conditional distribution for ρρρ: for each j ∈ K∗

1 , ..., K∗
m, draw

ρj |µ, K, θµ, K, θµ, K, θ ∝ ρa0−1
j (1 − ρj)b0−1 ∏

i:Ki=j

1 − ρ2
j

1 + ρ2
j − 2ρjcos(θi − µj)

.

Slice sampling algorithm is performed to obtain random samples from ρj |µ, K, θµ, K, θµ, K, θ. Also for
each j ∈ KKK − K∗

1 , ..., K∗
m, independently simulate ρj ∼ Beta(a0, b0).

Conditional distribution for KKK:

(Ki|ppp,µµµ,κκκ,θθθ) ∼
C∑

k=1
pk,i Ik(.), i = 1, ..., n

where

(p1,i, ..., pC,i) ∝ p1
1 − ρ2

1
1 + ρ2

1 − 2ρ1cos(θi − µ1)
, ..., pC

1 − ρ2
C

1 + ρ2
1 − 2ρCcos(θi − µC)

.

The discrete slice sampling algorithm is used to obtain random samples from the full
conditional distribution of KKK. Other full conditional distributions are similar manner
with DP mixture vM model.


