ON 6- FIGURES IN MOUFANG PROJECTIVE PLANES

SÜLEYMAN ÇİFTÇI*

* Department of Mathematics, Uludağg University, Bursa/TURKEY.

ABSTRACT

In this paper, the concept of cross-ratio is extended to the whole Moufang plane and some properties of 6 -figures in the π Moufang plane is examined. Essentially the geometric properties of the π which is equivalent to the existence of a square root of an element of an alternative division ring R is determined.

INTRODUCTION

Let Π be a Moufang projective plane. It is well known that π determines a unique alternative ring R. One of the main problems in projective geometry is to find geometric properties of π which are equivalent to certain algebraic properties of the alternative ring R. For instance, Π is Desarguesian if and only if R is associative. In this paper, we extend some of the properties of the 6 -figures, which have been given by Cater [1] for Desarguesian planes, to the Moufang planes. Namely, we determined the geometric properties of Π equivalent to the existence of a square root of an element of R. And if (A,B:C,D) denotes the cross-ratio of distinct collinear points A, B, C, D in Π, we construct points J and N such that $(A, B: C, J)=(A, B: C, D)^{2}$ and $(A, B: C, N)=$ ($\mathrm{A}, \mathrm{B}: \mathrm{C}, \mathrm{D})^{3}$. In fact, these are investigated in [2]. But some mappings which is obtained by using the identity

$$
\begin{equation*}
x^{-1}(y(x z))=\left(x^{-1} y x\right) z \tag{1}
\end{equation*}
$$

asserted in [5] for Cayley-Dickson algebras are used. However [3] demonstrated here that (1) does not valid for Cayley-Dickson algebras. But also the existence of 4-point transitivity is shown by using of some new mappings. Essentially, in this paper, [2] is rearranged and modified under the light of [3].

Throughout the paper we use the terminology in [1] and [3]: A 6 -figure is a sequence of 6 distinct points $\left(A B C, A^{\prime} B^{\prime} C^{\prime}\right)$ such that $A B C$ is a triangle, and $A^{\prime} \varepsilon B C, B^{\prime} \varepsilon C A, C^{\prime} \varepsilon A B$. The points $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are called vertices of this 6-figure. A 6-figure ($\mathrm{ABC}, \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$) is said to be equivalent to any 6 -figure ($D E F, D^{\prime} E^{\prime} F^{\prime}$) if there exist a projective collineation of Π which maps $A, B, C, A^{\prime}, B^{\prime}, \mathrm{C}^{\prime}$ to $\mathrm{D}, \mathrm{E}, \mathrm{F}_{,}, \mathrm{D}^{\prime}, \mathrm{E}^{\prime}, \mathrm{F}^{\prime}$ respectively; in symbols $\mathrm{ABCA}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \pi \mathrm{DEFD}^{\prime} \mathrm{E}^{\prime} \mathrm{F}^{\prime}$.
($\mathrm{ABC}, \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$) is called a menelaus 6-figure if $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ are collinear; and $\left(A B C, A^{\prime} B^{\prime} C^{\prime}\right)$ is called a ceva 6 -figure if the lines $A A^{\prime}, B^{\prime}, C^{\prime}$ are concurrent.

Throughout the paper, we assume that R is an alternative division ring with center K of arbitrary characteristic and that Π is the Moufang plane coordinatized by R, [4].

It is easy to see that the mappings

$$
\begin{aligned}
& \mathrm{I}_{1}:(\mathrm{x}, \mathrm{y}) \rightarrow\left(\mathrm{x}^{-1}, \mathrm{yx}^{-1}\right), \mathrm{x} \neq 0,(0, \mathrm{y}) \leftrightarrow(\mathrm{y}),(\infty) \rightarrow(\infty) \\
& {[\mathrm{m}, \mathrm{k}] \rightarrow[\mathrm{k}, \mathrm{~m}],[\mathrm{k}] \rightarrow\left[\mathrm{k}^{-1}\right], \mathrm{k} \neq 0,[0] \leftrightarrow[\infty]}
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad \mathrm{I}_{2}:(\mathrm{x}, \mathrm{y}) \rightarrow\left(\mathrm{xy}^{-1}, \mathrm{y}^{-1}\right), \mathrm{y} \neq 0,(\mathrm{x}, 0) \leftrightarrow\left(\mathrm{x}^{-1}\right), \mathrm{x} \neq 0,(0,0) \leftrightarrow(\infty),(0) \rightarrow(0) \\
& {[\mathrm{m}, \mathrm{k}] \rightarrow\left[-\mathrm{k}^{-1} \mathrm{~m}, \mathrm{k}^{-1}\right], \mathrm{k} \neq 0,[\mathrm{~m}, 0] \leftrightarrow\left[\mathrm{m}^{-1}\right], \mathrm{m} \neq 0,[0,0] \leftrightarrow[\infty],[0] \rightarrow[0]} \\
& \text { are collineations of } \Pi \text {. }
\end{aligned}
$$

Let $\quad \mathrm{A}=(0), \quad \mathrm{B}=(\infty), \quad \mathrm{C}=(0,0), \quad \mathrm{A}^{\prime}=(0,1), \quad \mathrm{B}^{\prime}=(-1,0), \quad \mathrm{C}^{\prime}=(-\mathrm{m})$ for some $m \varepsilon$ R. Here, $(-1,0)(\infty)$. $(0,1)(0)=(-1,1)$ and

$$
\mathrm{I}_{2} \mathrm{I}_{1}:(0),(\infty),(0,0),(-1,1) \rightarrow(\infty),(0,0),(0),(1,-1) .
$$

According to the Theorem 1 in [3], the mapping g which maps (0), (∞), $(00),(1-1)$, to $(0),(\infty),(0,0),(-1, m)$ is a composition of the collineations F_{c} and S_{α}, β where $c \varepsilon R, \alpha, \beta \varepsilon K$. We already known that such a collineation, maps (x, y) to ($\mathrm{x}^{\prime}, \mathrm{yd}$). Now, since g maps $(1,-1)$ to $(-1, m)$ than $(-1) d=m$ and so $-\mathrm{m}^{-1}=\mathrm{d}^{-1}$.

Therefore $\left(0,-\mathbf{m}^{-1}\right)$ maps to $\left(0,-\mathbf{m}^{-1} \mathbf{d}\right)=(0,1)$. Thus
$\mathbf{f}=\mathrm{gl}_{2} 1_{1}:(0),(\infty),(0,0)(0,1),(-1,0),(-\mathrm{m}) \rightarrow(\infty),(0,0),(0),(-1,0),(-\mathbf{m}),(0,1)$.
Consequently
$\mathrm{ABCA}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \pi \mathrm{BCAB}^{\prime} \mathrm{C}^{\prime} \mathrm{A}^{\prime} \bar{\lambda} \mathrm{CABC}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime}$
is shown by using f and f^{2}.

Furthermore, any 6-figure ($\mathrm{DEF}, \mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{F}^{\prime}$) is equivalent to $((0)(\infty)(0,0),(0,1)(-1,0)(-m))$ for some $m \varepsilon R$; since there exist by Theorem 1 in [3], a collineation mapping $D, E, D^{\prime}, E^{\prime} 4$-point on $(0),(\infty),(0,1)$, $(-1,0)$. Thus ($\left.\mathrm{ABC}, \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}\right),\left(\mathrm{BCA}, \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{A}^{\prime}\right),\left(\mathrm{CAB}, \mathrm{C}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)$ will be regarded as the same 6 -figure μ, and likewise ($\mathrm{ACB}, \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}^{\prime}$), ($\mathrm{CBA}, \mathrm{C}^{\prime} \mathrm{B}^{\prime} \mathrm{A}^{\prime}$), ($\mathrm{BAC}, \mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{C}^{\prime}$) as the same 6-figure $\lambda . \mu$ and λ are called opposite 6 figures of each other; in symbols, $\lambda=\mu^{-1}$ and $\mu=\lambda^{-1}$.

Let Π be a Moufang plane satisfying the Fano's Axion. It follows, (see [7]) that there exist unique points $\mathrm{A}^{\prime \prime} \varepsilon \mathrm{BC}_{1} \mathrm{~B}^{\prime \prime} \varepsilon \mathrm{CA}, \mathrm{C}^{\prime \prime} \varepsilon \mathrm{AB}$ such that $H\left(A B, C^{\prime} C^{\prime \prime}\right), H\left(B C, A^{\prime} A^{\prime \prime}\right), H\left(C A, B^{\prime} B^{\prime \prime}\right)$. The 6-figure ($\left.A B C, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}\right)$ is called the conjugate of μ, in symbol $-\mu$. Likewise μ is the conjugate of $-\mu$.

Let $C^{d} \varepsilon A B$ be the point such that C, C^{d} and A^{\prime}. B^{\prime} are collinear. Let $A^{d} \varepsilon B C$ and $B^{d} C A$ be the points such that A, A^{d} and $B^{\prime} . C^{\prime}$ are collinear and B, B^{d} and A^{\prime}. $C C^{\prime}$ are collinear. The 6-figure ($A C B, A^{d}$ $C^{d} B^{d}$) is called the first descendant of μ, written $\mu^{d} . \mu$ is claled a first ancestor of μ^{d}.

Let $\mathbf{A}^{\mathbf{c}}=\mathbf{B C} . \mathbf{B}^{\prime} \mathbf{C}^{\prime}, \mathbf{B}^{\mathbf{c}}=\mathbf{C A} \cdot \mathbf{C}^{\prime} \mathbf{A}^{\prime}, \mathrm{C}^{\mathbf{c}}=\mathbf{A B} . \mathbf{A}^{\prime} \mathbf{B}^{\prime}$. The figure ($\mathrm{ACB}, \mathrm{A}^{\mathrm{c}} \mathrm{C}^{\mathrm{c}} \mathrm{B}^{\mathrm{c}}$) is called the first codescendant of μ, written $\mu^{c} \cdot \mu$ is called a first coancestor of μ^{c}.

Figure 1 represents the 6 -figure $\mu_{1}=((0)(\infty)(0,0),(0,1)(-1,0)$ $(-m))$ and $\mu_{1}{ }^{\text {c }}$ and construction of $B^{c c}$. In figure $2 \mu_{1}, \mu_{1}{ }^{d}$ are drawn and $B^{d c}$ is constructed. In figure 3 the points $\mathbf{A}^{\prime \prime} \mathbf{d}, B^{\prime \prime}{ }^{d}, C^{\prime \prime} d, B^{\prime \prime c}$ are drawn.

Figure 1

Figure 3

Figure 2

SOME PROPERTIES OF 6-FIGURES IN MOUFANG PLANES

The classical definition of the cross-ratio for Desarguesian planes is not available for the Moufang planes. Ferrar [5] gives the following algebraic definition of the cross-ratio for the points on the line $[0,0]$.

$$
(A, B: C, D)=(a, b: c, d)=\left\{\left((a-d)^{-1}(b-d)\right)\left((b--c)^{-1}(a-c)\right)\right\}
$$

where $A=(a, 0), B=(b, 0), C=(c, 0), D=(d, 0)$ and $\{x\}$ denotes the conjugancy class of x in the alternative ring R. We extend this definition to whole plane as follows:
(i) If $\mathbf{A}=\left(\mathbf{a}, \mathbf{a}_{1}\right), \mathrm{B}=\left(\mathrm{b}, \mathrm{b}_{1}\right), \mathrm{C}=\left(\mathrm{c}, \mathrm{c}_{1}\right), \mathrm{D}=\left(\mathrm{d}, \mathrm{d}_{1}\right)$ are on a line of type $[m, k]$ let $(A, B: C, D)=(a, b: c, d)$. For this case one of A, B, C, D is the ideal point (m), use $\infty \notin R$ instead of the corresponding component in (a,b:c,d). (Notice the perspectivity from $[\mathrm{m}, \mathrm{k}]$ to $[0,0]$ with center (∞)).
(ii) If A, B, C, D are on a line of type $[k]$ that is, $A=(k, a), B=$ $(k, b), C=(k, c), D=(k, d)$ let $(A, B: C, D)=(a, b: c, d)$. In the case one of A, B, C, D is (∞) use again ∞ in ($a, b: c, d$). (Notice that the perspectivity from [k] to $[0,0]$ with center (-1) maps $(k, x) \rightarrow(k+x, 0)$; and taking $k+x$ instead of x does not change the cross ratio.).
(iii) If the points are on $[\infty]$, that is $A=(a), B=(b), C=(c)$, $\mathbf{D}=(\mathrm{d})$, let $(\mathrm{A}, \mathrm{B}: \mathrm{C}, \mathrm{D})=(\mathrm{a}, \mathrm{b}: \mathrm{c}, \mathrm{d})$. (Notice that the perspectivity from $[\infty]$ to $[0,0]$ with center $(0,-1)$ maps $(m) \rightarrow\left(\mathbf{m}^{-1}, 0\right),(0) \rightarrow(0),(\infty) \rightarrow$ $(0,0)$, and $\left.(a, b: c, d)=\left(a^{-1}, b^{-1}: c^{-1}, d^{-1}\right).\right)$.

LEMMA 1. In a Moufang plane a perspectivity preserve the cross ratio.

Proof: Let $A: B, C, D \varepsilon l, \varnothing_{M}$ and \varnothing_{N} be perpectivities from any line 1 to $[0,0]$ which have center M and N, respectively. Where $\not \nabla_{M}$ is the perpectivity in defination of generalized cross - ratio, and $N \neq M$, $\mathrm{N} \varepsilon 1, \mathrm{~N} \varepsilon[0,0]$. In addition let $\varnothing_{\mathrm{M}}: \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \rightarrow \mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}$ and $\circlearrowleft_{\mathrm{N}}:$ $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \rightarrow \mathrm{A}_{0}, \mathrm{~B}_{0}, \mathrm{C}_{0}, \mathrm{D}_{0}$.

To prove, it is sufficient to show that \varnothing_{N} preserves the cross-ratio. According to the definition $(A, B: C, D)=\left(A_{1} B_{1}: C_{1} D_{1}\right)$. Thus

$$
\varnothing=\varnothing_{\mathrm{M}} \varnothing_{N^{-1}}: \mathbf{A}_{0}, \mathbf{B}_{0}, \mathrm{C}_{0}, \mathbf{D}_{0} \rightarrow \mathbf{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}, \mathbf{D}_{1}
$$

Therefore \varnothing is a projectivity of $[0,0]$.
Since \varnothing is a projectivity of $[0,0]$ which preserves the cross-ratio (See [5], Theorem 3,7) $\left(A_{1}, B_{1}: C_{1}, D_{1}\right)$ is equal to ($\left.A_{0}, B_{0}: C_{0}, D_{0}\right)$. Consequently $(A, B: C, D)=\left(A_{0}, B_{0}: C_{0}, D_{0}\right)$, that is, \varnothing_{N} preserves the crossratio.

In what follows we use the fact that distinct collinear poinst A B, C, D in Π are in harmonic position if and only if $(A, B: C, D)=-1$.

LEMMA 2. If $\mu_{1}=\left(\mathbf{A B C}, \mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}\right)=((0)(\infty)(0,0),(0,1)(-1,0)$ (-mp) then

$$
\left(\mathrm{A}, \mathrm{~B}: \mathrm{C}^{\prime}, \mathrm{C}^{\mathrm{c}}\right)=\left(\mathrm{B}, \mathrm{C}: \mathrm{A}^{\prime}, \mathrm{A}^{\mathrm{c}}\right)=\left(\mathrm{C}, \mathrm{~A}: \mathrm{B}^{\prime}, \mathrm{B}^{\mathrm{c}}\right)=\{-\mathrm{m}\}
$$

Proof is trivial.

Conjugacy class of $-\left(A, B: C^{\prime}, C^{c}\right)=-\left(C, A: B^{\prime}, B^{c}\right)$ is called the ratio of the 6-figure $\mu=\left(A B C, A^{\prime} B^{\prime} C^{\prime}\right)$, denoted by $r(\mu)$.

THEOREM 1:

(i) μ is a menelaus 6-figure if and only if $r(\mu)=-1$
(ii) μ is a ceva 6-figure if and only if $\mathbf{r}(\mu)=1$

Proof: (i) It suffices to assume that μ is μ_{1} because cross-ratio is preserved by projective collineations. Thus $\mu_{1}=((0)(\infty)(0,0),(0,1)$ $(-1,0)(1))$ and $r\left(\mu_{1}\right)=-1$.

Conversely, if $r\left(\mu_{1}\right)=-1$; than $\mu_{1}=((0)(\infty)(0,0),(0,1)(-1,0)$ (1)) and the points of $(0,1),(-1,0),(1)$ are collinear.
(ii) If μ_{1} is a ceva 6 -figure, than $\mu_{1}=((0)(\infty)(0,0),(0,1)(-1,0)$ $(-1))$ and $\mathrm{r}\left(\mu_{1}\right)=1$.

Conversely, if $r\left(\mu_{1}\right)=-1, \mu_{1}$ as above thus, the lines of $(0)(0,1)$, $(\infty)(-1,0),(0,0)(-1)$ is concurent.

THEOREM 2: For any 6-figure μ we have
(i) $\mathbf{r}\left(\mu^{-1}\right)=(\mathbf{r}(\mu))^{-1}$
(ii) $\mathbf{r}(-\mu)=-r(\mu)$
(iii) $\mathbf{r}\left(\mu^{\mathrm{d}}\right)=(\mathbf{r}(\mu))^{2}$
(iv) $\mathbf{r}\left(\mu^{\mathrm{c}}\right)=-(\mathbf{r}(\mu))^{2}$

Proof: It is sufficient to assume that μ is μ_{1} in figures $1,2,3$ since cross ratio is preserved by projective collineations. With a simple calculation we have
(i) $\mathbf{r}\left(\mu_{1}^{-1}\right)=-\left(\infty, 0:-1, \mathrm{~m}^{-1}\right)=\left\{\mathrm{m}^{-1}\right\}=\left(\mathbf{r}\left(\mu_{1}\right)\right)^{-1}$;
(ii) $\mathrm{r}\left(-\mu_{1}\right)=-\left(0, \infty: 1, \mathrm{~m}^{-1}\right)=\{-\mathrm{m}\}=-\left(\mathbf{r}\left(\mu_{1}\right)\right)$;
(iii) $\mathbf{r}\left(\mu_{1}{ }^{d}\right)=-\left(\infty, 0:-\mathbf{m}^{-1}, \mathbf{m}\right)=\left\{\mathbf{m}^{2}\right\}=\left(\mathbf{r}\left(\mu_{1}\right)\right)^{2}$
(iv) $\mathbf{r}\left(\mu_{1}^{\mathrm{c}}\right)=-\left(\infty, 0: \mathrm{m}^{-1}, \mathrm{~m}\right)=\left\{-\mathrm{m}^{2}\right\}=-\left(\mathbf{r}\left(\mu_{1}\right)\right)^{2} ;$

It follows immediately, from theorem 1 and 2 that conjugate of a menelaus 6 -figure is ceva 6 -figure and vice versa. In fact this has been shown in [6].

THEOREM 3. Let $m \varepsilon R, m \neq 0$. Then the equation $x^{2}=m$ (or $x^{2}=-m$) has a solution in R if and only if any 6 -figure μ with ratio $\{\mathrm{m}\}$ has a first ancestor (coancestor) in Π.

Proof: Without loss of generality we take $\mu=\mu_{1}$. Let $\lambda=((0)$ $(0,0)(\infty), \mathrm{DEF}$) be a first ancestor of μ_{1}. Then we have $\left\{\boldsymbol{q}^{2}\right\}=\{\mathbf{m}\}$ by Theorem 1, and there exists an $x \varepsilon R$ satisfying $\mathbf{x}^{2}=\mathbf{m}$.

Conversely suppose that there exist $q \in R$ such that $q^{2}=m$. In this case it is easily computed that $\lambda_{1}=\left((0)(0,0)(\infty),(0,-q)(q)\left(q^{-1}, 0\right)\right)$ is a first ancestor of μ_{3}.

Now consider the equation $\mathbf{x}^{2}=-\mathbf{m}$. Let $\lambda_{\mathbf{1}}=((0)(0,0)(\infty)$, STU $)$ be a first coancestor of μ_{1} and let $\mathbf{r}\left(\lambda_{1}\right)=\{q\}$. Then we have $\{\mathbf{m}\}=$ $-\left\{q^{2}\right\}$ by Theorem 1 , and there exists an $\mathrm{x} \varepsilon \mathrm{R}$ satisfying $\mathrm{x}^{2}=-\mathrm{m}$.

Suppose $q \varepsilon R$ and $q^{2}=-m$. Then one can easily show that $\lambda_{1}=$ $\left((0)(0,0)(\infty),(0, q)(q)\left(-\mathbf{q}^{-1}, 0\right)\right)$ is a first coancestor of μ_{1}.

Clearly one can easily observe from the figures that first descandant of μ and - μ are same, and that first codescandant of μ and $-\mu$ are same. Namely $\mu^{d}=(-\mu)^{d}$ and $\mu^{c}=(-\mu)^{c}$.

Finally, it is worth to note that the construction which gives an algorithm for "squaring" a cross-ratio of points in a Desarguesian plane ($[1]$) can be also extended to a Moufang plane as follows:

Let A, B, C, D be any collinear points in Π. Choose any point E not on $A B$, and choose points $F \varepsilon A E, G \varepsilon B E$ such that $F ; G$ and C are collinear points.

Let $I=A E . D G, H=B E . D F$ and $J=A B . H I$. For this project $\mathrm{A}, \mathrm{B}, \mathrm{F}, \mathrm{G}$ to $(0),(0,0),(-1),(0,1)$ respectively. Thus $(\mathrm{A}, \mathrm{B}: \mathrm{C}, \mathrm{D})=$ $\{\mathrm{m}\}$ and $(\mathrm{A}, \mathrm{B}: \mathrm{C}, \mathrm{J})=\left\{\mathrm{m}^{2}\right\}$ by Lemma 1 , and consequently $(\mathrm{A}, \mathrm{B}: \mathrm{C}, \mathrm{J})=$ $(\mathrm{A}, \mathrm{B}: \mathrm{C}, \mathrm{D})^{2}$.

Furthermore, if $K=A E . C H, M=A B . K G$ and $G^{\prime}=B E$. $\mathrm{MF}, \mathrm{I}^{\prime}=\mathrm{AE} . \mathrm{G}^{\prime} \mathrm{D}, \mathrm{N}=\mathrm{AB} . \mathrm{HI}^{\prime}$ then $(\mathrm{A}, \mathrm{B}: \mathrm{C}, \mathrm{N})=(\mathrm{A}, \mathrm{B},: \mathrm{C}, \mathrm{D})^{3}$.

REFERENGES

I. CATER, F.S.: On Desarguesian projective planes, Geom. Ded. 7(1978) 433-441.
2. ÇIFTÇI, S.: Moufang düzlemleri üzerine, Doktora Tezi, F.U̇. Fen Bilimleri Enstitüsï 1984, Elaziğ.
3. ÇIFTÇI, S., KAYA, R. and FERRAR, J.C.: On 4-Transtivity in the Moufang Plane, Journal of Geometry Vol. 31(1988) 65-68.
4. FAULKNER, J.R. and FERRAR, J.C.: Homomorphisms of Moufang planes and alternative places, Geom. Ded. 14(1983) 215-223.
5. FERRAR, J.C.: Cross-ratios in Projective and Affine Planes, in Geometry: Von Staudt's Point of View, Dordrecht (1980) 101-125.
6. KAYA, R. AND ÇIFTÇI, S.: On Menelaus and Ceva 6-Figures in Moufang Projective Planes, Geom. Ded. 19(1985) 295-296.
7. STEVENSON, F.W.: Projective Planes, by W.H. Freeman and Company, San Francisco, U.S.A., 271-402, 1972.

