Commun. Fac. Sci. Univ. Ank. Series A₁ V. 38, pp. 21-28 (1989)

ON 6- FIGURES IN MOUFANG PROJECTIVE PLANES

SÜLEYMAN ÇİFTÇİ*

* Department of Mathematics, Uludağ University, Bursa/TURKEY.

ABSTRACT

In this paper, the concept of cross-ratio is extended to the whole Moufang plane and some properties of 6-figures in the π Moufang plane is examined. Essentially the geometric properties of the π which is equivalent to the existence of a square root of an element of an alternative division ring R is determined.

INTRODUCTION

Let Π be a Moufang projective plane. It is well known that π determines a unique alternative ring R. One of the main problems in projective geometry is to find geometric properties of π which are equivalent to certain algebraic properties of the alternative ring R. For instance, Π is Desarguesian if and only if R is associative. In this paper, we extend some of the properties of the 6-figures, which have been given by Cater [1] for Desarguesian planes, to the Moufang planes. Namely, we determined the geometric properties of Π equivalent to the existence of a square root of an element of R. And if (A,B:C,D) denotes the cross-ratio of distinct collinear points A,B,C,D in Π , we construct points J and N such that (A,B:C,J) = (A,B:C,D)² and (A,B:C,N) = (A,B:C,D)³. In fact, these are investigated in [2]. But some mappings which is obtained by using the identity

(1)
$$x^{-1}(y(xz)) = (x^{-1} yx)z$$

asserted in [5] for Cayley-Dickson algebras are used. However [3] demonstrated here that (1) does not valid for Cayley-Dickson algebras. But also the existence of 4-point transitivity is shown by using of some new mappings. Essentially, in this paper, [2] is rearranged and modified under the light of [3].

ISNN. A.Ü. Basımevi

Throughout the paper we use the terminology in [1] and [3]: A 6-figure is a sequence of 6 distinct points (ABC, A'B'C') such that ABC is a triangle, and A' ε BC, B' ε CA, C' ε AB. The points A,B,C,A',B',C' are called vertices of this 6-figure. A 6-figure (ABC, A'B'C') is said to be equivalent to any 6-figure (DEF,D'E'F') if there exist a projective collineation of Π which maps A,B,C,A',B',C' to D,E,F,D',E',F' respectively; in symbols ABCA'B'C' $\overline{\sim}$ DEFD'E'F'.

(ABC, A'B'C') is called a menelaus 6-figure if A',B',C' are collinear; and (ABC,A'B'C') is called a ceva 6-figure if the lines AA',BB',CC' are concurrent.

Throughout the paper, we assume that R is an alternative division ring with center K of arbitrary characteristic and that Π is the Moufang plane coordinatized by R, [4].

It is easy to see that the mappings

$$\begin{split} \mathbf{I}_1:&(\mathbf{x},\mathbf{y}) \rightarrow (\mathbf{x}^{-1}, \ \mathbf{y}\mathbf{x}^{-1}), \ \mathbf{x} \neq 0, \ (0,\mathbf{y}) \leftrightarrow (\mathbf{y}), \ (\infty) \rightarrow (\infty) \\ &[\mathbf{m},\mathbf{k}] \rightarrow [\mathbf{k},\mathbf{m}], \ [\mathbf{k}] \rightarrow [\mathbf{k}^{-1}], \ \mathbf{k} \neq 0, \ [0] \leftrightarrow \ [\infty] \end{split}$$

and

$$\begin{split} \mathbf{I}_2:&(\mathbf{x},\mathbf{y}) \rightarrow (\mathbf{x}\mathbf{y}^{-1},\mathbf{y}^{-1}), \, \mathbf{y} \neq 0, \, (\mathbf{x},0) \leftrightarrow (\mathbf{x}^{-1}), \, \mathbf{x} \neq 0, \, (0,0) \leftrightarrow (\infty), \, (0) \rightarrow (0) \\ & \lfloor \mathbf{m},\mathbf{k} \rfloor \rightarrow [-\mathbf{k}^{-1}\mathbf{m},\mathbf{k}^{-1}], \, \mathbf{k} \neq 0, \, [\mathbf{m},0] \leftrightarrow [\mathbf{m}^{-1}], \mathbf{m} \neq 0, \, [0,0] \leftrightarrow [\infty], [0] \rightarrow [0] \\ & \text{are collineations of } \Pi. \end{split}$$

Let A=(0), $B=(\infty)$, C=(0,0), A'=(0,1), B'=(-1,0), C'=(-m) for some meR. Here, (-1,0) (∞). (0,1) (0) = (-1,1) and

 $I_2I_1:(0),(\infty),(0,0),(-1,1) \rightarrow (\infty), (0,0), (0), (1,-1).$

According to the Theorem 1 in [3], the mapping g which maps $(0),(\infty)$, $(0\ 0),(1\ -1)$, to $(0),(\infty),(0,0),(-1,m)$ is a composition of the collineations F_c and $S\alpha,\beta$ where cER, $\alpha,\beta \in K$. We already known that such a collineation, maps (x,y) to (x',yd). Now, since g maps (1,-1) to (-1,m) than $(-1)\ d = m$ and so $-m^{-1} = d^{-1}$.

Therefore $(0,-m^{-1})$ maps to $(0,-m^{-1} d) = (0,1)$. Thus $f = gl_2l_1:(0),(\infty),(0,0)(0,1),(-1,0),(-m) \rightarrow (\infty),(0,0),(0),(-1,0),(-m),(0,1).$ Consequently

$$ABCA'B'C' \overline{\frown} BCAB'C'A' \overline{\frown} CABC'A'B'$$

is shown by using f and f^2 .

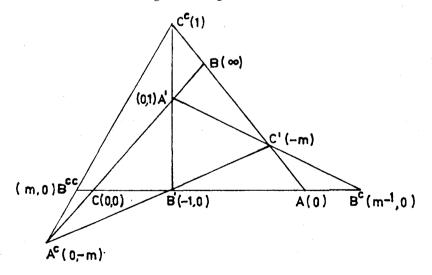
Furthermore, any 6-figure (DEF,D'E'F') is equivalent to $((0)(\infty)(0,0),(0,1)(-1,0)(-m))$ for some mER; since there exist by Theorem 1 in [3], a collineation mapping D,E,D',E' 4-point on (0), (∞) , (0,1), (-1,0). Thus (ABC,A'B'C'), (BCA, B'C'A'), (CAB,C'A'B') will be regarded as the same 6-figure μ , and likewise (ACB,A'C'B'),(CBA,C'B'A'), (BAC,B'A'C') as the same 6-figure λ . μ and λ are called opposite 6-figures of each other; in symbols, $\lambda = \mu^{-1}$ and $\mu = \lambda^{-1}$.

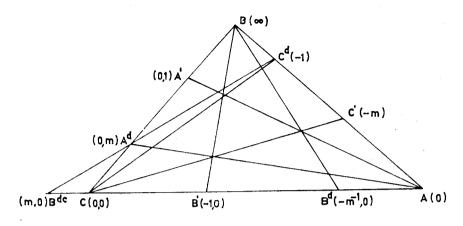
Let Π be a Moufang plane satisfying the Fano's Axion. It follows, (see [7]) that there exist unique points $A'' \varepsilon BC, B'' \varepsilon CA, C'' \varepsilon AB$ such that H(AB,C'C''), H(BC,A'A''), H(CA,B'B''). The 6-figure (ABC,A''B''C'') is called the conjugate of μ , in symbol - μ . Likewise μ is the conjugate of - μ .

Let $C^d \in AB$ be the point such that C, C^d and AA'. BB' are collinear. Let $A^d \in BC$ and $B^d \in CA$ be the points such that A, A^d and BB'.CC' are collinear and B, B^d and AA'.CC' are collinear. The 6-figure (ACB, $A^d C^d B^d$) is called the first descendant of μ , written μ^d . μ is claled a first ancestor of μ^d .

Let $A^c = BC$. B'C', $B^c = CA \cdot C'A'$, $C^c = AB \cdot A'B'$. The figure (ACB,A^cC^cB^c) is called the first codescendant of μ , written $\mu^c \cdot \mu$ is called a first coancestor of μ^c .

Figure 1 represents the 6-figure $\mu_1 = ((0) \ (\infty) \ (0,0), \ (0,1) \ (-1,0) \ (-m))$ and μ_1^{c} and construction of B^{cc}. In figure 2 μ_1 , μ_1^{d} are drawn and B^{dc} is constructed. In figure 3 the points A''^d, B''^d, C''^d, B''^c are drawn.





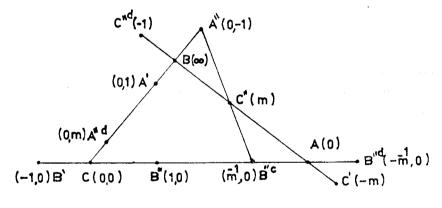


Figure 2

SOME PROPERTIES OF 6-FIGURES IN MOUFANG PLANES

The classical definition of the cross-ratio for Desarguesian planes is not available for the Moufang planes. Ferrar [5] gives the following algebraic definition of the cross-ratio for the points on the line [0,0].

$$(A,B:C,D) = (a,b:c,d) = \{((a-d)^{-1}(b-d))((b-c)^{-1}(a-c))\}$$

where A = (a,0), B = (b,0), C = (c,0), D = (d,0) and $\{x\}$ denotes the conjugancy class of x in the alternative ring R. We extend this definition to whole plane as follows:

(i) If $A = (a,a_1)$, $B = (b,b_1)$, $C = (c,c_1)$, $D = (d,d_1)$ are on a line of type [m,k] let (A,B:C,D) = (a,b:c,d). For this case one of A,B,C,D is the ideal point (m), use $\infty \notin R$ instead of the corresponding component in (a,b:c,d). (Notice the perspectivity from [m,k] to [0,0] with center (∞)).

(ii) If A,B,C,D are on a line of type [k] that is, A = (k,a), B = (k,b), C = (k,c), D = (k,d) let (A,B:C,D) = (a,b:c,d). In the case one of A,B,C,D is (∞) use again ∞ in (a,b:c,d). (Notice that the perspectivity from [k] to [0,0] with center (-1) maps (k,x) \rightarrow (k+x,0); and taking k+x instead of x does not change the cross ratio.).

(iii) If the points are on $[\infty]$, that is A = (a), B = (b), C = (c), D = (d), let (A,B:C,D) = (a,b:c,d). (Notice that the perspectivity from $[\infty]$ to [0,0] with center (0,-1) maps (m) \rightarrow (m⁻¹,0), (0) \rightarrow (0), (∞) \rightarrow (0,0), and (a,b:c,d) = (a⁻¹, b⁻¹: c⁻¹, d⁻¹).).

LEMMA 1. In a Moufang plane a perspectivity preserve the cross ratio.

Proof: Let A,B,C,Del, \varnothing_M and \varnothing_N be perpectivities from any line 1 to [0,0] which have center M and N, respectively. Where \varnothing_M is the perpectivity in defination of generalized cross - ratio, and N \neq M, Nel, Ne[0,0]. In addition let \varnothing_M : A,B,C,D \rightarrow A₁,B₁,C₁,D₁ and \varnothing_N : A,B,C,D \rightarrow A₀,B₀,C₀,D₀.

To prove, it is sufficient to show that \emptyset_N preserves the cross-ratio. According to the definition (A,B:C,D) = (A₁B₁:C₁D₁). Thus

$$\emptyset = \emptyset_{\mathrm{M}} \emptyset_{\mathrm{N}}^{-1} : \mathrm{A}_{0}, \mathrm{B}_{0}, \mathrm{C}_{0}, \mathrm{D}_{0} \rightarrow \mathrm{A}_{1}, \mathrm{B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}$$

Therefore \emptyset is a projectivity of [0,0].

Since \emptyset is a projectivity of [0,0] which preserves the cross-ratio (See [5], Theorem 3,7) $(A_1,B_1:C_1,D_1)$ is equal to $(A_0,B_0:C_0,D_0)$. Consequently $(A,B:C,D) = (A_0,B_0:C_0,D_0)$, that is, \emptyset_N preserves the cross-ratio.

In what follows we use the fact that distinct collinear poinst A B,C, D in Π are in harmonic position if and only if (A,B:C,D) = -1.

LEMMA 2. If $\mu_1 = (ABC, A'B'C') = ((0) (\infty) (0,0), (0,1) (-1,0) (-m))$ then

$$(A,B:C',C^c) = (B,C:A',A^c) = (C,A:B',B^c) = \{-m\}.$$

Proof is trivial.

SÜLEYMAN ÇİFTÇİ

Conjugacy class of $-(A,B:C',C^c) = -(C,A:B',B^c)$ is called the ratio of the 6-figure $\mu = (ABC,A'B'C')$, denoted by $r(\mu)$.

THEOREM 1:

- (i) μ is a menelaus 6-figure if and only if $r(\mu) = -1$
- (ii) μ is a ceva 6-figure if and only if $r(\mu) = 1$

Proof: (i) It suffices to assume that μ is μ_1 because cross-ratio is preserved by projective collineations. Thus $\mu_1 = ((0) \ (\infty) \ (0,0), \ (0,1) \ (-1,0) \ (1))$ and $r(\mu_1) = -1$.

Conversely, if $r(\mu_1) = -1$; than $\mu_1 = ((0) (\infty) (0,0), (0,1) (-1,0)$ (1)) and the points of (0,1), (-1,0), (1) are collinear.

(ii) If μ_1 is a ceva 6-figure, than $\mu_1 = ((0) (\infty) (0,0), (0,1) (-1,0) (-1))$ and $r(\mu_1) = 1$.

Conversely, if $r(\mu_1) = -1$, μ_1 as above thus, the lines of (0) (0,1), (∞) (-1,0), (0,0) (-1) is concurrent.

THEOREM 2: For any 6-figure μ we have

- (i) $r(\mu^{-1}) = (r(\mu))^{-1}$
- (ii) $r(-\mu) = -r(\mu)$
- (iii) $r(\mu^d) = (r(\mu))^2$
- (iv) $r(\mu^c) = -(r(\mu))^2$

Proof: It is sufficient to assume that μ is μ_1 in figures 1,2,3 since cross ratio is preserved by projective collineations. With a simple calculation we have

- (i) $\mathbf{r}(\mu_1^{-1}) = -(\infty, 0; -1, \mathbf{m}^{-1}) = \{\mathbf{m}^{-1}\} = (\mathbf{r}(\mu_1))^{-1};$ (ii) $\mathbf{r}(-\mu_1) = -(0, \infty; 1, \mathbf{m}^{-1}) = \{-\mathbf{m}\} = -(\mathbf{r}(\mu_1));$ (iii) $\mathbf{r}(\mu_1^{-d}) = -(\infty, 0; -\mathbf{m}^{-1}, \mathbf{m}) = \{\mathbf{m}^2\} = (\mathbf{r}(\mu_1))^2$
- (iv) $r(\mu_1^c) = -(\infty, 0; m^{-1}, m) = \{-m^2\} = -(r(\mu_1))^2;$

It follows immediately, from theorem 1 and 2 that conjugate of a menelaus 6-figure is ceva 6-figure and vice versa. In fact this has been shown in [6].

THEOREM 3. Let $m \in \mathbb{R}$, $m \neq 0$. Then the equation $x^2 = m$ (or $x^2 = -m$) has a solution in R if and only if any 6-figure μ with ratio $\{m\}$ has a first ancestor (coancestor) in Π .

Proof: Without loss of generality we take $\mu = \mu_1$. Let $\lambda = ((0)$ (0,0) (∞) , DEF) be a first ancestor of μ_1 . Then we have $\{q^2\} = \{m\}$ by Theorem 1, and there exists an x ϵ R satisfying $x^2 = m$.

Conversely suppose that there exist $q \in \mathbb{R}$ such that $q^2 = m$. In this case it is easily computed that $\lambda_1 = ((0) \ (0,0)(\infty),(0,-q)(q)(q^{-1},0))$ is a first ancestor of μ_1 .

Now consider the equation $x^2 = -m$. Let $\lambda_1 = ((0)(0,0)(\infty), STU)$ be a first coancestor of μ_1 and let $r(\lambda_1) = \{q\}$. Then we have $\{m\} = -\{q^2\}$ by Theorem 1, and there exists an $x \in \mathbb{R}$ satisfying $x^2 = -m$.

Suppose $q \in \mathbb{R}$ and $q^2 = -m$. Then one can easily show that $\lambda_1 = ((0)(0,0)(\infty), (0,q)(q)(-q^{-1}, 0))$ is a first coancestor of μ_1 .

Clearly one can easily observe from the figures that first descandant of μ and $-\mu$ are same, and that first codescandant of μ and $-\mu$ are same. Namely $\mu^d = (-\mu)^d$ and $\mu^c = (-\mu)^c$.

Finally, it is worth to note that the construction which gives an algorithm for "squaring" a cross-ratio of points in a Desarguesian plane ([1]) can be also extended to a Moufang plane as follows:

Let A,B,C,D be any collinear points in Π . Choose any point E not on AB, and choose points F ϵ AE, G ϵ BE such that F,G and C are collinear points.

Let $I = AE \cdot DG$, $H = BE \cdot DF$ and $J = AB \cdot HI \cdot For$ this project A,B,F,G to (0),(0,0),(-1),(0,1) respectively. Thus (A,B:C,D) = {m} and (A,B:C,J) = {m²} by Lemma 1, and consequently (A,B:C,J) = (A,B:C,D)².

Furthermore, if K = AE. CH, M = AB. KG and G' = BE. MF, I' = AE. G'D, N = AB. HI' then $(A,B:C,N) = (A,B,:C,D)^3$.

REFERENCES

- 1. CATER, F.S.: On Desarguesian projective planes, Geom. Ded. 7(1978) 433-441.
- ÇİFTÇİ, S.: Moufang düzlemleri üzerine, Doktora Tezi, F.Ü. Fen Bilimleri Enstitüsü 1984, Elazığ.
- ÇİFTÇİ, S., KAYA, R. and FERRAR, J.C.: On 4-Transtivity in the Moufang Plane, Journal of Geometry Vol. 31(1988) 65-68.
- FAULKNER, J.R. and FERRAR, J.C.: Homomorphisms of Moufang planes and alternative places, Geom. Ded. 14(1983) 215-223.
- 5. FERRAR, J.C.: Cross-ratios in Projective and Affine Planes, in Geometry: Von Staudt's Point of View, Dordrecht (1980) 101-125.
- KAYA, R. AND ÇİFTÇİ, S.: On Menelaus and Ceva 6-Figures in Moufang Projective Planes, Geom. Ded. 19(1985) 295-296.
- 7. STEVENSON, F.W.: Projective Planes, by W.H. Freeman and Company, San Francisco, U.S.A., 271-402, 1972.