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ABSTRACT

In this paper we introduce a general sequence space A (X) = {x = (%) (VK — Vi1
X)) € X}, where X is any sequence space. We establish some inclusion relations, topological
resulis, in general case and we characterize the continuous, a-, B- and - duals of AX) for various
sequence spaces X. The results of this paper, in a particular case, include the corresponding
results of KIZMAZ,

1. INTRODUCTION

Let v = (vi) be any fixed sequence of nonzero complex numbers
satisfying
lim inf |vi|l/E =1 (0 < r < ). (1.1)
k

Define a function A: C - C, where C denotes the set of complex
numbers, by

A s = 1.2)

z) = . .

W= 3= (

(Throughout this paper, X will mean summation from k = 1 to
k

k = ).

Obviously A is an analytic function in the disc Er = {z : |z| < r}

because of (1.1).

Now let X be any sequence space of complex numbers. Then we
define

AMX) = {f: f(z) = kZ xxzk such that Ay(x) € X}, (1.3)

where Ay(x) = (Av(xk)) = (Vixg — Viy1Xk,1)-
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We can always get a sequence space
Av(X) = {x = (xx) : Ay(x) € X} (1.4)
It is easy to show that there exists an algebraic isomorphism bet-

ween A*(X) and A (X) in the sense that f > x = (xi) is an algebraic
isomorphism. Therefore Ay(X) also can be regarded as a set of functions.

Let t,, ¢ and ¢, be the linear spaces of bounded, convergent and
null sequences x = (xx), respectively, normed by

Ilo = sup [xx| (k= 1,2,...).
k

Now we define A%(i,), A% (c) and A%(co) as follows:
A%(1,) = {f: f(z) = X xyzk such that sup | Ay(xx)| < oo}
k k

AMe) = {f: f(z) = X xyz¥ such that Ay(xx) — t, for some t,
k

as k - oo}

AMco) = {f: f(z) = X xyz¥ such that Ay(xx) > 0ask - oo},
: k

All these classes contain those aralytic functions which are analytic
in the disc Eg = {z: {z]| < R, where R >r}.

If f, f(z) = X xyzX, belongs to A%(1,) then the coefficients xj
k
(k = 1,2,...) satisfy the following conditions:

(D) sup k1 |vixi | < oo,
k
(i1) s;:p viexg — k(k+1)"1 v Xk, 1| < oo,

And conversely if (i) and (ii) hold, then f € A* (i,) (see Lemma 2).
Suppose that f(z) = X xxzK and f € A* (1,) so that, from (i),
k

we have

Ki/k ki/k

1/k _
,Xk I = lvk lllk

for some K > 0 and for every k = 1,2,.... Hence, by (1.1), we obtain

) 1
I—— 8 ]/k 1 i -
" llmk up |xy | = Lm inf |vy |l/E T
k
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which implies that R > r. Again if f € A* (1), then condition (ii) holds
which implies that

k—2 !Vka l < K,
for some K; > 0 and for every k = 1,2,.... A similar line of reasoning

will lead to R >>r. So the class A* (1) contains those analytic functions
which are analytic in the disc Eg.

In a similar way, it can be shown that the classes A* (¢) and A* (co)
contain those analytic functions which are analytic in the disc Eg.

Taking into account the algebraic isomorphism, we view A* (i,),
A*(c) and A% (co) as sequence spaces Ay (1,), Ay (c) and Ay (co), res-
pectively, which are defined as follows:

Avlie) = {x = (x) 2 sup | Avlxi) | < o0},

Av(e) = {x = (xx): Ay(xx) > t, for some ¢, as k - o0},
Ayleo) = {x = (xx): Ay(xx) - 0 as k - oo},

If we comsider (vi) = (1,1,...) in (1.4), then Ay(X) becomes
A(X), where

AX) = fx = () t (x — %) € X}

which was studied by KIZMAZ [2] for X = 1,, ¢ and ¢;. The
results of this paper, in a particular case, include the corresponding
results of his.

2. SOME PROPERTIES OF Ay(X)

In this section, we give some relations between Ay(X) and X, and
we discuss some tpological properties of Ay(X).

Theorem 1: If X is a Banach space normed by | |, then Ay(X) is
also a Banach space normed by

Ixfa = Ivixd| + [ Av(x) ] 2.1)

Proof : Since (0) € Ay(X), AWX) # @. Clearly, Ay(X) is a linear
space. It is easy to show that Ay(X) is a normed space with norm defi-
ned in (2.1).
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Now we show that Ay(X) is complete. Let (x") be a Cauchy sequen-
ce in Ay(X), where x® = (x1, x21,...)€ Ay(X). Then

m — s > 0 as ma > o,
that is,
J(xx™ — xx®) o — 0 as m,n > oo
Hence,
i@ —xp® | + J( Ay(x™) — Ay(xD)) | > 0 as m,n > co.

Therefore (xi1, x:%,...) and ( Ay(x’), Ay(x2),...) are Cauchy sequen-
ces in C and X respectively. Since C and X are complete, they are con-
vergent. Suppose that x;® - x; in C and ( Ay(x1)) - (z) in X, as n — co.

k
Let zx = Ay(xx) so that xx = —vix 1 X z;_;. Then ( Ay(xD))
i=1

= (( Av(xx!)), ( Ay(xk2)),...) converges to ( Ay(xy)) in X. Hence,
[xr — x|ao > 0 as n - oo.

Therefore, Ay(X) is complete. Consequently it is a Banach space.

Lemma 1: If X < Y, then Ay(X) © Ay(Y).

Proof : It is trivial.

Theorem 2: Let X be a Banach space and A, a closed subset of
X. Then Ay(A) is also closed in Ay(X).

Proof: Since A < X, Ay(A) © Ay(X) by Lemma 1. Now let x e
Ay(A), the closure of Ay(A). Then there exists a sequence (x2) in Ay(A)
such that

[x2 — x|a > 0 asn - oo
in  Ay(A). Hence,
[Gxi®) — (i) o > 0 as 0 > oo
in Ay(A) so that
[x® —x1] + | (Av(x®) — (Av(xi)) [ >0 asn—> oo

in A. Thus Ay(z) € A which implies that x € A(A). Conversely, if x €
Ay(A), then x € Ay(A). Therefore, Ay(A) = Ay(A) and since A is clo-
sed, Ay(A) = Ay(A). Consequently, Ay(A) is a closed subset of Ay(X).
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Theorem 3: If X is a separable space, then Ay(X) is also a sepa-
rable space.

Proof: Let X be a separable space. Then there exists a countable
subset A of X such that A = X. Since A = X, then Ay(A) = Ay(A) =
Ay(X) which can be easilty shown by similar arguments as in the proof
of Theorem 2. If we define f: Ay(A) - A by f(x) = Ay(x) for x € Ay(A),
then it is clear that f is bijective. Therefore Ay(A) is countable, since A
is countable. Hence Ay(A) is a countable subset of Ay(X) such that
AvA) = Ay(X). Consequently, Ay(X) is separable.

Theorem 4: In general, Ay(X) need not be a sequence algebra.

Proof: To prove this, we give a counter example. It is well-known
that ¢, is sequence algebra. Let x = y = (4/k). Uearly, x,y € Av(co),
if we choose (vi) = (L,1,...); but z ¢ Ay(co), since Ay(z) = (Xxyx —
Xi41Yke1) = (-1,-1,...), where z = (xxyk). This completes the proof.

Corollary 1: (i) Ay(t,) is a BK-space with norm defined by
=17 = [vexi| + sup | Av(xi) . (2.2)
A k
(ii) Ay(c) and Ay(cy) are separable BK-spaces with the noerm as
in (2.2).

Proof : Since ., ¢ and ¢, are Banach spaces, then Ay(i,), Av(c)
and Ay(co) are also Banach spaces by Theorem 1. Since ¢ and ¢, are
separable spaces, then Ay(c) and Ay(c,) are separable spaces by The-
orem 3.

Since [x2 — x”z —~ 0, as n - o0 in Ay(t,), implies that | xx® —
Xk | = 0, for each k = 1,2,..., as n - oo, it follows that Ay(i,) is also
a BK-space, since it is a Banach space with continuous coordinates.
It is easy to show that Ay(c) and Ay(co) are BK-spaces.

Assuming (vi) = (1,1,...) in Corollary 1, we obtain the following
results.

Corollary 2: (i) A(:,) is a BK-space with norm
I = Txil 4 sup |xic — xipa . 2.3)

(ii) A(c) and A(eo) are separable BK-spaces with the same norm
as in (2.3).



40 RIFAT COLAK
Remark : It may be found in [2] that A(y,), A(c) and A(e,) are
BK-spaces. ‘
Now let us define
D : AfX) - AuX)

by D(x) = y = (0, x,, x,,....), where X stands for ¢, ¢ or ¢o. Then D
is a bounded linear operator on Ay(X) and |D | = 1. Further,

D [AvX)] = A¥X) = {x = (xk) : x € Ay(X),x1 =0} = Ay(X)
is a subspace of Ay(X) and

Ixly = 1) |

in A'y(X). A'W(X) and X are equivalent as topological spaces [3],

since
T : AWX) » X, defined by, Tx = y = (Ay(xx)) (2.4)

is a linear homeomorphism. Also T and T-! are norm preserving and

T = [T} = 1.

Now let ( A’y(x))* and X* denote the continuous duals of A’y(X)
and X respectively. Then

S (Ay(X)* - X*,
defined by
fT - f = fT OT_I,

is a linear iscmetry, where X stands for i, ¢ or ¢o. Thus, ( A'y(X))* is
equivalent to X*. Therefore,

(A%(10))* = W%,

and

12

(A%(e)* =~ (Av(co))* = 11

since ¢* ~ ¢o* ~ 11, where 1 = {x = (x¢) 12 |xx| < oo} [1].
k

3. KOTHE-TOEPLITZ DUALS OF AyX)

In this section, we characterize the a-, B~ and y- duals of Ay(t,)

and Ay(c).
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Definition ([1]): Let X be a sequence space and define

(i) X* = {a = (ag) : ¥ |axxx| < oo for all xeX},
v k

(i) XP = {a = (ay) : E aygxg converges for all xeX},

. n
(i) XY = {a = (ax) : sup | X agxx| < oo for all xeX}.
n k=1

Then X%, X8 and XY are, respectively, called the -, - and y-dual
spaces of X. X% is also called Kéthe-Toeplitz dual space and XP is also
called generalised Kothe-Toeplitz dual space. It is easy to show that
g < X*<c XBcX".IfX <Y, then Y2 < X forn = o, B or v.

Lemma 2. The following conditions (1) and (2) are equivalent.

1. s:p | Av(xg)| << o0,
2. (i) sup k1 |vgxx| <
k
(1) sup Viexg — k(k+1)71 v 1 x| < o0
Proof: Suppose that Condition 1 holds. Then
k k
Vixs — Vi i X1 | = | 2 Aulxp) | < 2 ] Au(xi) | = 0(k)
i=1 i=)

which implies that 2(i) holds. Since
Vi — k(k+1)71 vie 1 xpeq1 | = [k(k+1)7T Av(xi) +
(D™ vixk | < JAu(xi) | + (1)1 viexk|,
we obtain 2(ii).
Now suppose that Condition 2 holds. Then from the inequality

[viexe — k(k+-1)71 vie, 1 x| 2> k(k4-1)1 | Ay(xx) | —
(k+1)_1 leXk [9

we obtain Condition 1.

In the following lemmas, (py) will denote a sequence of positive
numbers increasing monotonically to infinity.
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n
Lemma 3 ([2]) : (i) If sup | X Pxax | < oo, then
n k=1

sup | pn % ag| < oo.
n

k=n+1

o0

(i) If X prax is convergent, then lim py z ax = 0.
k

n k=n+1
n
Lemma 4: (i) If sup | X prvilag| < oo, then
n k=1
sup |pn 2 vilag| < oo
n k=n+1

(ii) Z kvytag is convergent, if and only if X by is convergent
k n

a0
with lim nb, = 0, where b, = Y vi—iag.
n k=n+1

Proof : (i) If we put vi~lay instead of ay in Lemma 3(i), the result
is immediate.

(ii) If we put pp = n and choose vilay instead of ay, the result
follows from Lemma 3(ii), since

n
> ka_lak =
k=1

b
| Me

n
k(bx_1 — bx) = = bx_1 — nby.
1 k=1

Now we give the main theorem which characterizes the «-, B-
and y- duals of Ay(X), where X stands for ¢, or c.

Theorem 5: Let X stand for 1, or ¢. Then,

@) (AdX)* = fa = (a) : B kv tax| < oo,

(i) (AvX))® = {a = (ax) : & kvylax converges and
X

% | bx| < oo},
k
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(i) (AAX))Y = {a = (ag): sgp] kél kvi~lay | < oo and
Z b | < ooy

o]
where by = 2 vila;.
i=k-+1

In order to prove Theorem 5, we need the following lemmas.

Lemma 5: (i) (A'v(1,))* = Gi, where
G = {a = (ag) : E kv lag| < oo},

(ll) (A,V'(Luo))s = G2, where
G2 = {a = (ax) : X kvylag is convergent and
k
2 bx| < o}
k
(i) (A'v(r,))Y = G,, where
G, = la = (a): sup| = kvilag| < oo and = [by| < oo}
n k=1 k
Proof: (i) Let a € G; and x € A'y(1,). Then

% Jagxk | = X kv lag k71| vixk| < oo,
K K

by Lemma 2. Hence, a € ( A'y(1,,))* Now let a € ( A’y(1,,))* which leads
to X |agxg| < oo for each x € A’y(t,). Therefore, if we choose
k

0 ifk =1
Xk = (31)
kvi—1 ifk > 2
then
[vila;| + X |axk ] = X kjvglag| < o
k k

which implies that a € G.

(ii) Suppose that a € G,. If x € A’y(1,), then by (2.4), there exists
one and only one y = (yx) € 1, such that

k
Xg = — Vil El yi_1 (Yo = 0),
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and hence

n n k
2 agXy — — > akvk—l p Yi-1
k=1 k=1 i=1

n k
= — 3 (b1 — by) X yi (3.2)
k=1 i=t

n_1 n.-1
= — 2 byyk + bn 2 yk
k=1 k=1

Since, by Lemma 4 (ii), & byyx is absolutely convergent and
k

n-1
by X yk > 0 as n - oo, the series X axxy is convergent for each
k=1 k

x € A'y(t,), hence a € ( A%y(1,,))8.

Now let a & (A'y(1,,))?, then T apxy is convergent for each x &
k

A’y(r,). If we consider the sequence x = (xi) defined in (3.1), then

the series 2 kvylay converges. This implies that nby, - 0 as n —+ o
k

(by Lemma 4(ii)). Again using (3.2) it can be shown that X ayxy =
k

— 2 bgyk is convergent for all y € 1. So we have & |bx| < o0
k k

and hence a € G..

(iii) It can be proved by the same way as above that { A'y(1,))Y =
G,, using Lemma 4(i).

Lemma 6: For , = «, B or v, we have
(A{(t))1 = (A'v(c))n.

Proof: We prove for v = « only. For vy = B and v, the proofs are
similar.

Since ¢ < 1, then A'y(c) = A’y (i) and hence ( A'y(z,))* <
(A%v(e))™.

Let a € (A'y(c))*. Then ¥ |axxx| < oo for every x € A'y(c).
k

If we consider the sequence x = (xi) defined in (3.1), then (xx) € A'y(c)
and hence X k|vilax| < oo so that a e A'y(r,))* (by Lemma 5(i)).
k
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This completes the proof.
Lemma 7: For X = 1, or ¢, we have
(AVXM = (Ad(X))"
where 1y = o, B or y.

Proof: We prove for v = « and X = 1, only. Since A'y(i,) <
Ay (1), it is clear that

(Av(ta))* = (AS()™

Let a € (Av(1, )%, so that 2 kv lay| < oo, If x & Aylty),
K
then sup k=1 [vixg | < o (by Lemma 2). Hence,
k
2 jagxk | = X kv lag| k71 |viexg | < o0,
k K

which implies a € (A, (1 ))*.
The proofs for the other cases are similar.

Now, the proof of Theorem 5 is immediate by Lemma 5,6 and 7.

Assuming v = (k) in Theorem 5, we obtain the following results
that give us the a-, B- and y- duals of the sequence spaces Ayt,) and
Ay (¢) in terms of some well-known sequence spaces.

Corollary 3: For X = 1, or ¢ we have
(1) (A@X)* = u,

(i) (AGWX))E = v n Alk),

(i) (A@YX))Y = mg n A(k),

where v = {a = (ay) : £ ax converges}, mg == {a = (ay):
Kk
n 0
sup | ¥ ap| < w}and A(k) = {fa=(ay): X | I jlaj| < o0},
n k=1 k j=k+1

Putting v = (1,1,...) in Theorem 5, we obtain the following re-
sults.

Corollary 4([2]): For X = 1, or ¢ we have
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(@) (AX)* = fa = (a) : Tklax| < oo},

(i) (AX))E = {a = (ax) : %kak converges andf b'x] < w0},

n
(i) (AX))Y = {a = (ax) : sup| T kag | < oo and X |[b'x| < 0}
n k=1 k

[eu]
where b’y = > aj.
i=k+1
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