Commun. Fac. Sci. Univ. Ank. Series A_1 V. 38, pp 35-46 (1989)

ON SOME GENERALIZED SEQUENCE SPACES

RIFAT ÇOLAK

Firat University, Dept. of Math. 23119 Elazig, TURKEY.

ABSTRACT

In this paper we introduce a general sequence space $\triangle_v(X) = \{x = (x_k): (v_k x_k - v_{k+1}) \in X\}$, where X is any sequence space. We establish some inclusion relations, topological results, in general case and we characterize the continuous, α -, β - and γ - duals of $\triangle_v(X)$ for various sequence spaces X. The results of this paper, in a particular case, include the corresponding results of KIZMAZ.

1. INTRODUCTION

Let $v = (v_k)$ be any fixed sequence of nonzero complex numbers satisfying

$$\lim_{k} \inf_{k} |v_{k}|^{1/k} = r \quad (0 < r \le \infty).$$
 (1.1)

Define a function $\Lambda: \mathbb{C} \to \mathbb{C}$, where \mathbb{C} denotes the set of complex numbers, by

$$\Lambda(z) = \sum_{k} \frac{z^{k}}{v_{k}} . \qquad (1.2)$$

(Throughout this paper, \sum_{k} will mean summation from k = 1 to $k = \infty$).

Obviously A is an analytic function in the disc $E_r = \{z : |z| \le r\}$ because of (1.1).

Now let X be any sequence space of complex numbers. Then we define

$$\Delta^{\Lambda}(\mathbf{X}) = \{ \mathbf{f} : \mathbf{f}(\mathbf{z}) = \sum_{k} \mathbf{x}_{k} \mathbf{z}^{k} \text{ such that } \Delta_{\mathbf{v}}(\mathbf{x}) \in \mathbf{X} \}, \quad (1.3)$$

where $\Delta_{v}(x) = (\Delta_{v}(x_{k})) = (v_{k}x_{k} - v_{k+1}x_{k+1}).$

ISSN 02571-081 A.Ü. Basımevi

We can always get a sequence space

$$\Delta_{\mathbf{v}}(\mathbf{X}) = \{ \mathbf{x} = (\mathbf{x}_k) : \Delta_{\mathbf{v}}(\mathbf{x}) \in \mathbf{X} \}.$$
 (1.4)

It is easy to show that there exists an algebraic isomorphism between $\Delta^{\Delta}(X)$ and $\Delta_{v}(X)$ in the sense that $f \to x = (x_{k})$ is an algebraic isomorphism. Therefore $\Delta_{v}(X)$ also can be regarded as a set of functions.

Let ι_{∞} , c and e_0 be the linear spaces of bounded, convergent and null sequences $x = (x_k)$, respectively, normed by

$$\|\mathbf{x}\|_{\infty} = \sup_{\mathbf{k}} |\mathbf{x}_{\mathbf{k}}| \qquad (\mathbf{k} = 1, 2, \ldots).$$

Now we define $\Delta^{\Lambda}(\iota_{\infty})$, $\Delta^{\Lambda}(c)$ and $\Delta^{\Lambda}(c_0)$ as follows:

$$\Delta^{\Delta}(\mathbf{c}_0) = \{ \mathbf{f} \colon \mathbf{f}(\mathbf{z}) = \sum_{k} \mathbf{x}_k \mathbf{z}^k \text{ such that } \Delta_{\mathbf{v}}(\mathbf{x}_k) \to 0 \text{ as } k \to \infty \}.$$

All these classes contain those analytic functions which are analytic in the disc $E_R = \{z: |z| \le R, \text{ where } R \ge r\}.$

If f, $f(z) = \sum_{k} x_k z^k$, belongs to $\Delta^{\Lambda}(\iota_{\infty})$ then the coefficients x_k (k = 1,2,...) satisfy the following conditions:

(i) $\sup_{k} |k^{-1}| |v_k x_k| < \infty$, (ii) $\sup_{k} |v_k x_k - k(k+1)^{-1} |v_{k+1} x_{k+1}| < \infty$.

And conversely if (i) and (ii) hold, then $f \in \Delta^{\Lambda}(\iota_{\infty})$ (see Lemma 2).

Suppose that $f(z) = \sum_k x_k z^k$ and $f \in \Delta^{\Lambda}(\iota_{\infty})$ so that, from (i), we have

$$|x_k|^{1/k} \le \frac{K^{1/k} \ k^{1/k}}{|v_k|^{1/k}}$$

for some K > 0 and for every k = 1, 2, ... Hence, by (1.1), we obtain

$$\frac{1}{R} = \limsup_k |x_k|^{1/k} \le \frac{1}{\lim_k \inf_k |v_k|^{1/k}} = \frac{1}{r}$$

which implies that $R \ge r$. Again if $f \in \Delta^{\Lambda}(\iota_{\infty})$, then condition (ii) holds which implies that

$$|\mathbf{k}^{-2}| |\mathbf{v}_k \mathbf{x}_k| \leq K_1$$

for some $K_1 > 0$ and for every k = 1, 2, ... A similar line of reasoning will lead to $R \ge r$. So the class $\Delta^{\Lambda}(\iota_{\infty})$ contains those analytic functions which are analytic in the disc E_R .

In a similar way, it can be shown that the classes Δ^{Λ} (c) and Δ^{Λ} (c₀) contain those analytic functions which are analytic in the disc E_{R} .

Taking into account the algebraic isomorphism, we view $\Delta^{\Lambda}(t_{\infty})$, $\Delta^{\Lambda}(c)$ and $\Delta^{\Lambda}(c_0)$ as sequence spaces $\Delta_{v}(t_{\infty})$, $\Delta_{v}(c)$ and $\Delta_{v}(c_0)$, respectively, which are defined as follows:

 $\Delta_v(\iota_\infty) \ = \ \{x \ = \ (x_k): \ \sup_k \ \mid \Delta_v(x_k) \mid \ < \ \infty\},$

If we consider $(v_k)=(1,1,\ldots)$ in (1.4), then $\Delta_v(X)$ becomes $\Delta(X),$ where

$$\Delta(X) = \{x = (x_k) : (x_k - x_{k+1}) \in X\}$$

which was studied by KIZMAZ [2] for $X = \iota_{\infty}$, c and c₀. The results of this paper, in a particular case, include the corresponding results of his.

2. SOME PROPERTIES OF $\Delta_v(X)$

In this section, we give some relations between $\Delta_v(X)$ and X, and we discuss some tpological properties of $\Delta_v(X)$.

Theorem 1: If X is a Banach space normed by $\| \|$, then $\Delta_{v}(X)$ is also a Banach space normed by

$$\|\mathbf{x}\|_{\Lambda} = \|\mathbf{v}_1\mathbf{x}_1\| + \|\Delta_{\mathbf{v}}(\mathbf{x})\|.$$

$$(2.1)$$

Proof: Since $(0) \in \Delta_v(X)$, $\Delta_v(X) \neq \emptyset$. Clearly, $\Delta_v(X)$ is a linear space. It is easy to show that $\Delta_v(X)$ is a normed space with norm defined in (2.1).

Now we show that $\Delta_v(X)$ is complete. Let (x^n) be a Cauchy sequence in $\Delta_v(X)$, where $x^n = (x_1^n, x_2^n, \ldots) \in \Delta_v(X)$. Then

$$\mathbf{x}^{\mathbf{m}}$$
 — $\mathbf{x}^{\mathbf{n}} |_{\Delta} \rightarrow 0$ as $\mathbf{m}, \mathbf{n} \rightarrow \infty$,

that is,

$$\|(x_k{}^m-x_k{}^n)\|_{\!\Delta}\to 0 \text{ as } m,n\to\infty.$$

Hence,

$$|\mathbf{x}_1^{\mathbf{m}} - \mathbf{x}_1^{\mathbf{n}}| + \|(\Delta_{\mathbf{v}}(\mathbf{x}^{\mathbf{m}}) - \Delta_{\mathbf{v}}(\mathbf{x}^{\mathbf{n}}))\| \to 0 \text{ as } \mathbf{m}, \mathbf{n} \to \infty.$$

Therefore (x_1^1, x_1^2, \ldots) and $(\Delta_v(x^1), \Delta_v(x^2), \ldots)$ are Cauchy sequences in C and X respectively. Since C and X are complete, they are convergent. Suppose that $x_1^n \to x_1$ in C and $(\Delta_v(x^n)) \to (z_k)$ in X, as $n \to \infty$.

Let
$$z_k = \Delta_v(x_k)$$
 so that $x_k = -v_k^{-1} \sum_{i=1}^n z_{i-1}$. Then $(\Delta_v(x^n))$
= $((\Delta_v(x_k^1)), (\Delta_v(x_k^2)), \ldots)$ converges to $(\Delta_v(x_k))$ in X. Hence,
 $\|x^n - x\|_{\Delta} \to 0$ as $n \to \infty$.

Therefore, $\Delta_{v}(X)$ is complete. Consequently it is a Banach space.

Lemma 1: If
$$X \subset Y$$
, then $\Delta_v(X) \subset \Delta_v(Y)$.

Proof: It is trivial.

Theorem 2: Let X be a Banach space and A, a closed subset of X. Then $\Delta_{v}(A)$ is also closed in $\Delta_{v}(X)$.

Proof: Since $A \subset X$, $\Delta_v(A) \subset \Delta_v(X)$ by Lemma 1. Now let $x \in \overline{\Delta_v(A)}$, the closure of $\Delta_v(A)$. Then there exists a sequence (x^n) in $\Delta_v(A)$ such that

 $\|\mathbf{x}^{\mathbf{n}} - \mathbf{x}\|_{\Delta} \to 0 \text{ as } \mathbf{n} \to \infty$

in $\Delta_v(A)$. Hence,

 $\|(\mathbf{x}_k^n) - (\mathbf{x}_k)\|_{\Delta} \to 0 \text{ as } n \to \infty$

in $\Delta_v(A)$ so that

$$|\mathbf{x}_1^{\mathbf{n}} - \mathbf{x}_1| + \| \left(\Delta_v(\mathbf{x}_k^{\mathbf{n}}) \right) - \left(\Delta_v(\mathbf{x}_k) \right) \| \to 0 \text{ as } \mathbf{n} \to \infty$$

in A. Thus $\Delta_{v}(x) \in \overline{A}$ which implies that $x \in \Delta_{v}(\overline{A})$. Conversely, if $x \in \Delta_{v}(\overline{A})$, then $x \in \overline{\Delta_{v}(A)}$. Therefore, $\overline{\Delta_{v}(A)} = \Delta_{v}(\overline{A})$ and since A is closed, $\overline{\Delta_{v}(A)} = \Delta_{v}(A)$. Consequently, $\Delta_{v}(A)$ is a closed subset of $\Delta_{v}(X)$.

38

Theorem 3: If X is a separable space, then $\Delta_v(X)$ is also a separable space.

Proof: Let X be a separable space. Then there exists a countable subset A of X such that $\overline{A} = X$. Since $\overline{A} = X$, then $\overline{\Delta_v(A)} = \Delta_v(\overline{A}) = \Delta_v(\overline{A}) = \Delta_v(X)$ which can be easilty shown by similar arguments as in the proof of Theorem 2. If we define f: $\Delta_v(A) \to A$ by $f(x) = \Delta_v(x)$ for $x \in \Delta_v(A)$, then it is clear that f is bijective. Therefore $\Delta_v(A)$ is countable, since A is countable. Hence $\Delta_v(A)$ is a countable subset of $\Delta_v(X)$ such that $\overline{\Delta_v(A)} = \Delta_v(X)$. Consequently, $\Delta_v(X)$ is separable.

Theorem 4: In general, $\Delta_{v}(X)$ need not be a sequence algebra.

Proof: To prove this, we give a counter example. It is well-known that c_0 is sequence algebra. Let $x = y = (\sqrt{k})$. (learly, $x, y \in \Delta_v(c_0)$, if we choose $(v_k) = (1,1,\ldots)$; but $z \notin \Delta_v(c_0)$, since $\Delta_v(z) = (x_k y_k - x_{k+1} y_{k+1}) = (-1,-1,\ldots)$, where $z = (x_k y_k)$. This completes the proof.

Corollary 1: (i) $\Delta_v(\iota_{\infty})$ is a BK-space with norm defined by

$$\|\mathbf{x}\|_{\Delta}^{\infty} = |\mathbf{v}_1\mathbf{x}_1| + \sup_{\mathbf{k}} |\Delta_{\mathbf{v}}(\mathbf{x}_{\mathbf{k}})|. \qquad (2.2)$$

(ii) $\Delta_v(c)$ and $\Delta_v(c_0)$ are separable BK-spaces with the norm as in (2.2).

Proof: Since ι_{∞} , c and c_0 are Banach spaces, then $\Delta_v(\iota_{\infty})$, $\Delta_v(c)$ and $\Delta_v(c_0)$ are also Banach spaces by Theorem 1. Since c and c_0 are separable spaces, then $\Delta_v(c)$ and $\Delta_v(c_0)$ are separable spaces by Theorem 3.

 $x_k | \to 0$, for each $k = 1, 2, ..., as n \to \infty$, it follows that $\Delta_v(\iota_{\infty})$ is also a BK-space, since it is a Banach space with continuous coordinates.

It is easy to show that $\Delta_{v}(c)$ and $\Delta_{v}(c_{o})$ are BK-spaces.

Assuming $(v_k) = (1,1,\ldots)$ in Corollary 1, we obtain the following results.

Corollary 2: (i) $\Delta(\iota_{\infty})$ is a BK-space with norm

$$\|\mathbf{x}\| = |\mathbf{x}_1| + \sup_{\mathbf{k}} |\mathbf{x}_{\mathbf{k}} - \mathbf{x}_{\mathbf{k}+1}|.$$
 (2.3)

(ii) $\Delta(c)$ and $\Delta(c_0)$ are separable BK-spaces with the same norm as in (2.3).

Remark: It may be found in [2] that $\Delta(\iota_{\infty})$, $\Delta(c)$ and $\Delta(c_{0})$ are BK-spaces.

Now let us define

 $D : \Delta_v(X) \rightarrow \Delta_v(X)$

by $D(x) = y = (0, x_2, x_3, ...)$, where X stands for ι_{∞} , c or c_0 . Then D is a bounded linear operator on $\Delta_v(X)$ and ||D|| = 1. Further,

 $\begin{array}{l} D \ [\ \Delta_v(X) \] = \ \Delta'_v(X) = \ \{x = (x_k) : x \in \ \Delta_v(X), x_1 = 0\} \subset \ \Delta_v(X) \\ \text{is a subspace of} \ \Delta_v(X) \ \text{and} \end{array}$

$$\|\mathbf{x}\|_{\Delta} = \|\Delta_{\mathbf{v}}(\mathbf{x})\|_{\infty}$$

in $\Delta'_v(X)$. $\Delta'_v(X)$ and X are equivalent as topological spaces [3], since

T :
$$\Delta'_{v}(X) \rightarrow X$$
, defined by, $Tx = y = (\Delta_{v}(x_{k}))$ (2.4)

is a linear homeomorphism. Also T and T^{-1} are norm preserving and $||T|| = ||T^{-1}|| = 1$.

Now let $(\Delta'_v(x))^*$ and X^* denote the continuous duals of $\Delta'_v(X)$ and X respectively. Then

S:
$$(\Delta'_v(X))^* \rightarrow X^*$$
,

defined by

 $f_T \rightarrow f = f_T \ oT^{-1}$,

is a linear isometry, where X stands for ι_{∞} , c or c_0 . Thus, $(\Delta'_v(X))^*$ is equivalent to X^{*}. Therefore,

$$(\Delta'_{v}(\iota_{\infty}))^{*} \simeq \iota^{*}_{\infty}$$

and

$$(\Delta'_{v}(c))^{*} \simeq (\Delta'_{v}(c_{o}))^{*} \simeq \iota_{1},$$

since $c^* \simeq c_0^* \simeq \iota_1$, where $\iota_1 = \{x = (x_k) : \sum_k |x_k| < \infty\}$ [1].

3. KÖTHE–TOEPLITZ DUALS OF $\Delta_v(X)$

In this section, we characterize the α -, β - and γ - duals of $\Delta_v(\iota_{\infty})$ and $\Delta_v(c)$. Definition ([1]): Let X be a sequence space and define

$$\text{(iii)} \ \mathrm{X}^{\gamma} \ = \ \{ a \ = \ (a_k) \ : \ \sup_n \ \mid \ \sum_{k=1}^n a_k \mathrm{x}_k \mid \ < \ \infty \ \text{for all} \ \mathrm{x} \in \mathrm{X} \}.$$

Then X^{α} , X^{β} and X^{γ} are, respectively, called the α -, β - and γ -dual spaces of X. X^{α} is also called Köthe-Toeplitz dual space and X^{β} is also called generalised Köthe-Toeplitz dual space. It is easy to show that $\emptyset \subset X^{\alpha} \subset X^{\beta} \subset X^{\gamma}$. If $X \subset Y$, then $Y^{\eta} \subset X^{\eta}$ for $\eta = \alpha$, β or γ .

Lemma 2. The following conditions (1) and (2) are equivalent.

Proof: Suppose that Condition 1 holds. Then

$$|v_1x_1 - v_{k+1} x_{k+1}| = |\sum_{i=1}^k \Delta_v(x_i)| \le \sum_{i=1}^k |\Delta_v(x_i)| = 0(k)$$

which implies that 2(i) holds. Since

$$egin{array}{rll} |\mathbf{v}_k \mathbf{x}_k - \mathbf{k}(\mathbf{k}\!+\!\mathbf{l})^{-1} \,\, \mathbf{v}_{k+1} \,\,\, \mathbf{x}_{k+1} \,\,\, | = \,\, |\mathbf{k}(\mathbf{k}\!+\!\mathbf{l})^{-1} \,\,\, \Delta_{\mathbf{v}}(\mathbf{x}_k) \,\,+ \ (\mathbf{k}\!+\!\mathbf{l})^{-1} \,\,\, \mathbf{v}_k \mathbf{x}_k \,| \,\,\, \in \,\,\, |\Delta_{\mathbf{v}}(\mathbf{x}_k) \,\,| \,\,\, + \,\,\, (\mathbf{k}\!+\!\mathbf{l})^{-1} \,| \,\,\, \mathbf{v}_k \mathbf{x}_k \,| \,, \end{array}$$

we obtain 2(ii).

Now suppose that Condition 2 holds. Then from the inequality
$$\begin{split} |v_k x_k - k(k+1)^{-1} \ v_{k+1} \ x_{k+1} \ | \geqslant k(k+1)^{-1} \ | \Delta_v(x_k) | - \\ (k+1)^{-1} \ | v_k x_k |, \end{split}$$

we obtain Condition 1.

In the following lemmas, (p_n) will denote a sequence of positive numbers increasing monotonically to infinity.

Lemma 3 ([2]): (i) If $\sup_{n} |\sum_{k=1}^{n} p_{k}a_{k}| < \infty$, then

$$\sup_{\mathbf{n}} | p_{\mathbf{n}} \sum_{\mathbf{k}=\mathbf{n}+1}^{\infty} \mathbf{a}_{\mathbf{k}} | < \infty.$$

(ii) If $\sum_{k} p_{k}a_{k}$ is convergent, then $\lim_{n} p_{n} \sum_{k=n+1}^{\infty} a_{k} = 0$.

Lemma 4: (i) If $\sup_{n} |\sum_{k=1}^{n} p_k v_k^{-1} a_k| < \infty$, then

$$\sup_n |p_n \quad \sum_{k=n+1}^\infty v_k^{-1}a_k| < \infty.$$

(ii) $\sum_{k} kv_{k}^{-1}a_{k}$ is convergent, if and only if $\sum_{n} b_{n}$ is convergent

with $\lim_{n} nb_{n} = 0$, where $b_{n} = \sum_{k=n+1}^{\infty} v_{k}^{-1}a_{k}$.

Proof: (i) If we put $v_k^{-1}a_k$ instead of a_k in Lemma 3(i), the result is immediate.

(ii) If we put $p_n = n$ and choose $v_k^{-1}a_k$ instead of a_k , the result follows from Lemma 3(ii), since

$$\sum_{k=1}^{n} k v_{k}^{-1} a_{k} = \sum_{k=1}^{n} k(b_{k-1} - b_{k}) = \sum_{k=1}^{n} b_{k-1} - nb_{n}.$$

Now we give the main theorem which characterizes the α -, β and γ - duals of $\Delta_v(X)$, where X stands for ι_{∞} or c.

Theorem 5: Let X stand for ι_∞ or c. Then,

- $(i) \ (\ \Delta_v(X))^{\alpha} \ = \ \{a \ = \ (a_k) \ : \ \sum_k \ k \ |v_k^{-1}a_k \ | \ < \ \infty\},$
- (ii) $(\,\Delta_v(X))^\beta\,=\,\,\{a\,=\,\,(a_k)\,:\,\sum\limits_k\,kv_k{}^{-1}a_k\,\,converges\,\,and$

$$\sum_{\mathbf{k}} |\mathbf{b}_{\mathbf{k}}| < \infty\},$$

where $\mathbf{b}_k = \sum_{i=k+1}^{\infty} \mathbf{v}_i^{-1} \mathbf{a}_i$.

In order to prove Theorem 5, we need the following lemmas.

Lemma 5: (i)
$$(\Delta'_{v}(\iota_{\infty}))^{\alpha} = G_{1}$$
, where
 $G_{1} = \{a = (a_{k}) : \sum_{k} k |v_{k}^{-1}a_{k}| < \infty\},\$

(ii)
$$(\Delta'_v(\iota_{\infty}))^{\beta} = G_2$$
, where
 $G_2 = \langle a = (a_k) : \sum_k kv_k^{-1}a_k \text{ is convergent and}$
 $\sum_k |b_k| < \infty \}$;

(iii)
$$(\Delta'_v(\iota_{\omega}))^{\gamma} = G_3$$
, where

$$G_3 = \{a = (a_k): \sup_n | \sum_{k=1}^n kv_k^{-1}a_k| < \infty \text{ and } \sum_k |b_k| < \infty\}.$$

Proof: (i) Let $\mathbf{a} \in G_1$ and $\mathbf{x} \in \Delta'_v(\iota_{\infty})$. Then $\sum_{i=1}^{n} |\mathbf{b}_i| = 1$

$$\begin{array}{ccc} \Sigma & |a_k x_k| = \sum\limits_k k |v_k^{-1} a_k| |k^{-1}| |v_k x_k| < \infty, \\ \end{array}$$

by Lemma 2. Hence, $a \in (\Delta'_v(\iota_{\infty}))^{\alpha}$. Now let $a \in (\Delta'_v(\iota_{\infty}))^{\alpha}$ which leads to $\sum_k |a_k x_k| < \infty$ for each $x \in \Delta'_v(\iota_{\infty})$. Therefore, if we choose

$$x_k = \begin{cases} 0 & \text{ if } k = 1 \\ \\ kv_k^{-1} & \text{ if } k \geqslant 2 \end{cases} \tag{3.1}$$

then

$$|\mathbf{v}_1^{-1}\mathbf{a}_1| + \sum_k |\mathbf{a}_k \mathbf{x}_k| = \sum_k k |\mathbf{v}_k^{-1}\mathbf{a}_k| < \infty$$

which implies that $a \in G_1$.

(ii) Suppose that $a \in G_2$. If $x \in \Delta'_v(\iota_{\infty})$, then by (2.4), there exists one and only one $y = (y_k) \in \iota_{\infty}$ such that

$$x_k = -v_k^{-1} \sum_{i=1}^k y_{i-1} (y_0 = 0),$$

and hence

$$\sum_{k=1}^{n} \mathbf{a}_{k} \mathbf{x}_{k} = -\sum_{k=1}^{n} \mathbf{a}_{k} \mathbf{v}_{k}^{-1} \sum_{i=1}^{k} \mathbf{y}_{i-1}$$

$$= -\sum_{k=1}^{n} (\mathbf{b}_{k-1} - \mathbf{b}_{k}) \sum_{i=1}^{k} \mathbf{y}_{i-1} \qquad (3.2)$$

$$= -\sum_{k=1}^{n-1} \mathbf{b}_{k} \mathbf{y}_{k} + \mathbf{b}_{n} \sum_{k=1}^{n-1} \mathbf{y}_{k}.$$

Since, by Lemma 4 (ii), $\sum_{k} b_{k}y_{k}$ is absolutely convergent and

(iii) It can be proved by the same way as above that $(\Delta'_v(\iota_{\infty}))^{\gamma} = G_3$, using Lemma 4(i).

Lemma 6: For $\eta = \alpha$, β or γ , we have

 $(\Delta'_{\mathbf{v}}(\iota_{\infty}))^{\eta} = (\Delta'_{\mathbf{v}}(\mathbf{c}))^{\eta}.$

Proof: We prove for $\eta = \alpha$ only. For $\eta = \beta$ and γ , the proofs are similar.

Since $\mathbf{c} \subset \mathfrak{l}_{\infty}$, then $\Delta'_{\mathbf{v}}(\mathbf{c}) \subset \Delta'_{\mathbf{v}}(\mathfrak{l}_{\infty})$ and hence $(\Delta'_{\mathbf{v}}(\mathfrak{l}_{\infty}))^{\alpha} \subset (\Delta'_{\mathbf{v}}(\mathbf{c}))^{\alpha}$.

Let $a \in (\Delta'_v(c))^{\alpha}$. Then $\sum_k |a_k x_k| < \infty$ for every $x \in \Delta'_v(c)$.

If we consider the sequence $\mathbf{x} = (\mathbf{x}_k)$ defined in (3.1), then $(\mathbf{x}_k) \in \Delta'_{\mathbf{v}}(\mathbf{c})$ and hence $\sum_k k |\mathbf{v}_k^{-1}\mathbf{a}_k| < \infty$ so that $\mathbf{a} \in (\Delta'_{\mathbf{v}}(\iota_{\infty}))^{\alpha}$ (by Lemma 5(i)).

44

This completes the proof.

Lemma 7: For $X = \iota_{\infty}$ or c, we have

$$(\Delta'_{v}(X))^{\eta} = (\Delta_{v}(X))^{\eta}$$

where $\eta = \alpha, \beta$ or γ .

Proof: We prove for $\eta = \alpha$ and $X = \iota_{\infty}$ only. Since $\Delta'_{v}(\iota_{\infty}) \subset \Delta_{v}(\iota_{\infty})$, it is clear that

 $(\Delta_{\mathbf{v}}(\iota_{\infty}))^{\alpha} \subset (\Delta'_{\mathbf{v}}(\iota_{\infty}))^{\alpha}.$

Let $a \in (\Delta'_v(\iota_\infty))^{\alpha}$, so that $\sum\limits_k k |v_k^{-1}a_k| < \infty$. If $x \in \Delta_v(\iota_\infty)$,

then $\sup_{k} k^{-1} |v_k x_k| < \infty$ (by Lemma 2). Hence,

$$\label{eq:rescaled} \begin{array}{ccc} \sum\limits_{k} \; |a_k x_k | \; = \; \sum\limits_{k} \; k \; |v_k^{-1} a_k | \; k^{-1} \; \; |v_k x_k | \; < \; \infty, \end{array}$$

which implies $a \in (\Delta_v (\iota_{\infty}))^{\alpha}$.

The proofs for the other cases are similar.

Now, the proof of Theorem 5 is immediate by Lemma 5,6 and 7.

Assuming v = (k) in Theorem 5, we obtain the following results that give us the α -, β - and γ - duals of the sequence spaces $\Delta_v(\iota_{\infty})$ and $\Delta_v(c)$ in terms of some well-known sequence spaces.

Corollary 3: For $X = \iota_{\infty}$ or c we have

(i)
$$(\Delta(k)(X))^{\alpha} = \iota_1,$$

(ii)
$$(\Delta(k)(X))^{\beta} = \gamma \cap A(k),$$

(iii)
$$(\Delta(_k)(X))^{\gamma} = m_s \cap A(k),$$

where $\gamma = \{a = (a_k) : \sum_k a_k \text{ converges}\}, m_s = \{a = (a_k):$

$$\sup_n \ \mid \sum_{k=1}^n a_k \mid < \infty \} \text{ and } A(k) = \ \{a = (a_k) \colon \sum_k \ \mid \ \sum_{j=k+1}^\infty j^{-1}a_j \mid < \infty \},$$

Putting v = (1,1,...) in Theorem 5, we obtain the following results.

Corollary 4([2]): For $X = \iota_{\infty}$ or c we have

(i)
$$(\Delta(X))^{\alpha} = \{a = (a_k) : \sum_k k |a_k| < \infty\},\$$

(ii) $(\Delta(X))^{\beta} = \{a = (a_k) : \sum_k k a_k \text{ converges and } \sum_k |b'_k| < \infty\},\$

(iii)
$$(\Delta(X))^{\gamma} = \{a = (a_k) : \sup_n | \sum_{k=1}^n ka_k | < \infty \text{ and } \sum_k |b'_k| < \infty \}$$

where $\mathbf{b'}_k = \sum_{i=k+1}^{\infty} \mathbf{a}_i$.

Acknowledgement: I thank Prof. P.D. Srivastava, Department of Mathematics, Indian Institute of Technology, Kharagpur, for his help during this investigation.

REFERENCES

- P.K. KAMTHAN and M. GUPTA, 'Sequence Spaces and Series', Marcel Dekker Inc. New York (1981).
- [2] H. KIZMAZ, On Certain Sequence Spaces, Canad. Math. Bull. Vol. 24(2), (1981), 169-176.
- [3] I.J. MADDOX, 'Elements of Functional Analysis', Cambridge Univ. Press (1970).