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ABSTRACT

In this paper we introduce a general seguence space Av(X) = .[s = (xjj): (vj^X|^ — k+ı

X|j4.,) e X}, wlıere X is any sequence space. We establish some inclusion relations, topological 
results, in general case and we characterize the continuons, a-, p- andy- duals of Av(X) for varions 
seguence spaces X. The results of this paper, in a particular case, incinde the corresponding 
results of KIZMAZ.

1. INTRODUCTIONLet V = (vjj) be any fixed sequence of nonzero complex numbers satisfying lim inf |vij |l/k = k (0 r < oo). (1-1)r
Define a function A: C numbers, by C, where C denotes the set of complex

A(z) =
Vk

(1-2)S k(Throughout this paper, 2 will mean summation from k = 1 to kk = oo).Obviously A is an analytic function in the dişe Ej = {z : |z | < r} because of (1.1).Now let X be any seguence space of complex numbers. Then we defineA^(X) = {f: f(z) = 2 Xkz’^ such that Av(x) e X}, k (1-3)
ıvlıcrc Av(x) = ( Av(x]j)) = (vkXj£ — V]£+ıXk_|.ı).
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36 RIFAT ÇOLAKWe can always get a segnence spaceAv(X) = {x = (xk) : Av(x) e X}. (1-4)It is easy to show that therc cxistsween A''(X) and Ay(X) in the sense that f -> xan algebraic isomorphism bet­= (x]i) is an algebraicisomorphism. Therefore Av(X) also can be regarded as a set of functions.Let ı,’oo’null sequences xc and Jo be the linear spaces of bounded, convergent and= (xij), rcspectivciy, normed by
hlloo = sup |xk| kNow vre define A^(ı.„), (c) and ^\co) es follows:= S X]iz’^ sucb tbat snp | Av(x]j) j oo)A'^(c) = .Jf; f(z) = S Xkz’^ such that Av(xk) -> ı, for some ı, k as k oo}A-^(co) = {f: f(z) = L Xkz'^ such that Av(xk) k 0 as k -> oo}.AU these classes contain those analytic fnnctions wlıich are analyticin the d’sc Ej{^ = {z: |Z 1 < R, tvhere R r}-

(k = 1,2,...).
k k

If f, f(z) = S Xkz’^, belongs to A^(ı^) then the coefficients Xk k(k = 1,2,,..) satisfy the following conditions: (i) sup k-ı |vkXk I k 00,(ii) sup |vkXk — k(k+l)-l Vk+ıXk+ı | 
k

00.

And conversely if (i) and (ü) bold, tben f e (ı^o) (see Lemma 2).Suppose that f(z) = S Xkz'^ and f e A^ (ı^o) k so that, from (i).we have
Kl/k kl/k 

|Vkfor somc K o and for every k = 1,2,.... Hence, by (1.1), we obtain—= lim snp |xk|l/k lim inf |Vk p/k 
k

J. r1 1R k
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which implies that R r. Again if f e A''^ (^oo), tken condition (ii) holds which implies thatk-2 |vjıX]î 1 < Ki for some Ki ; will lead to R 0 and for every k = 1,2,.... A similar line of reasoning > r. So the class A"^ (^o,) contains those analytic functioııs which are analytic in the disc Ej^.In a similar way, it can be shown that the classes A^ (c) and A^ (co)contain those analytic functions which are analytic in the disc Ejj,.Taking into account the algebraic isomorphism, we vie^v (^oo).A'^(c) and A^ (co) as sequence spaces Ay (to)), Ay (c) and Ay (co), res-pectively, which are defined as foUows:△v(too) = {x = (x,ı) : sup I Ay(xij) | k oo},

Av(c) = = (X]j) : Av(xk) ı, for some ı, as k oo},Av(co) = {x = (xk) : Av(xk) 0 as k oo}.If we consider (vt) = (1,1,...) in (1.4), then Av(X) becomes A(X), where△(X) = {x = (xi) : (xk Xk+ı) e X}which was studied by KIZMAZ [2] for X = ı, c and Cg. The'009results of this paper, in a particular case, incinde the corresponding results of his.
2. SOME PROPERTIES OF Av(X)In this section, ve give some relations hetween Av(X) and X, and we discuss some tpological properties of Av(X).
Theorem 1: If X is a Ranach space normed by || ||, then Av(X) is also a Ranach space normed by

hlİA = |V1X1 I + II Av(x) j|. (2-1)
Proof: Since (0) e Av(X), Av(X) 0» Clearly, Ay(X^} is a linear space. It is easy to show that Av(X) is a normed space with norm defi- ned in (2.1).



38 RIFAT ÇOLAKNow we show that Av(X) is complete. Let (x”) be a Cauchy sequen- ce in Av(X), where x“ = (xı“, X2®,.. .)g Av(X). Then— IİA -* 0 as m,n -> oo,that is, ||(x]jm — xt”) IIA 0 as m,n co.Hence, |xım — X1A I + ||( Av(x“) — Av(xn)) II o as m,n 00.Therefore (xıi, xı^,...) and ( Av(xi), Av(x2),...) are Cauchy sequen-ces in C and X respectively. Since C and X are complete, they are con­vergent. Suppose that xı° -> Xı in C and ( Av(x“)) -> (zk) in X, as n -> oo.Let Z]£ = Av(xk) so that xı< = ---- Vk 1
kS Zi_ı. Then ( Av(x’i)) 

1=1= (( Av(xkl))5 ( Av(xk2)),...) converges to ( Av(xk)) in X. Hence,||xn — X11^ o as n -> 00.Therefore, Av(X) is complete. Consequently it is a Banach space.Lemzreo 1: If X <= Y, then Av(X) 
Proof: It is trivial. Av(Y).
Theorem 2: Let X be a Banach space and A, a closed subset of X. Then Av(A) is also closed in Av(X).

c

Proof: Since A c. X, Av(A) c; Av(X) by Lemma 1. Now let x eAv(A), the closure of Av(A). Then there exists a sequence (x°) in Av(A) such that X !!△ -> 0 as n— 00in
in

Av(A). Hence,||(xk“) — (Xk) IİA 0 as n -> ooAv(A) so that|xı’i — xı I 4- II ( Av(xk'^)) — ( Av(xk)) H 0 as n -> co in A. Thus Av(x) e Â which implies that x e Conversely, if x e e Av(A). Therefore, Av(A) — Av(Â) and since A is clo-Av(Â), then xsed, Av(A) = Av(A). Consequently, is a closed subset of Av(X).
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Theorem 3: If X is a separable space, then Av(X) is also a sepa­rable space.
Proof: Let X be a separable space. Then there exists a countable subset A of X such that Â = X. Since Â = X, then Av(A) = Av(Â) = Av(X) which can be easilty shown by similar arguments as in the proofof Theorem 2. If we define f: A by f(x) = Av(x) for x e Av(A),then it is clear that f is bijective. Therefore Av(A) is countable, since A is countable. Hence Av(A) is a countable subset of Av(X) such that Av(A) = Av(X). Consequently, Av(X) is separable.
Theorem 4: In general, Av(X) need not bea sequence algebra.
Proof: To prove this, we give a counter example. It is well-knownthat Co is sequence algebra. Let x = y = (vM- < learly, x,y e Av(co),if we choose (vk) = (1,1,...); but z Av(co), since Av(z) = (xjjyk —

Xk+ıyk+ı) = (-1,-1,...), where z = (xkyk). This completes the proof.
Corollary 1: (i) Av(tyJ is a BK-space with norm defined by

hli' = I V1X1 I + sup I Av(xk) |. 
k

(2.2)(ii) A.y(c) and Av(co)in (2.2).
Proof: Since

are separable BK-spaces with the norm as
c and Co are Banach spaces, then Av(ioo), Av(c)and Av(co) are also Banach spaces by Theorem 1. Since c and Co areseparable spaces, then Av(c) and Av(co) orem 3. are separable spaces by The-

c»Â
^00’

Since ||x“ — x ||“ -> 0, as n -> oo in Av(ioo)» implies that | Xk’‘ — 
A

Xk I 0, for each k = 1,2,..., as n -> oo, it foUows that is also a BK-space, since it is a Banach space with continuous coordinates.It is easy to show that Av(c) and Av(co) are BK-spaces,Assuming (vk) = (1,1,...) in Corollary 1, we obtain the following results.
Corollary 2: (i) A(ı^) is a BK-space with norm

II X IJ = I Xı 1 + sup |xk — Xk+ı 1. (2.3)(ii) and A(co) as in (2.3).
kare separable BK-spaces with the same norm
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Bemark: It may be found in [2] that A{!.,j,J, ^{c) and ^(cg) are BK-spaces.Now let us defineD : Av(X) Av(X)by D(x) = y = (0, X. X3,.is a bounded linear operatör on.Vihere X stands for ı,'00’ c or Co* Then DAv(X) and ||D || = 1- Further,D [ Av(X)] = A'v(X) = {x = (xk) : x is a subspace of Av(X) andhll^ = l|Av(x)||^
e Av(X),xı = 0} c: Av(X)

in A'v(X). A'v(X) and X are since equivalent as topological spaces [3],
T : A'v(X) X, defined by, Tx = y == ( Av(x]i)) (2.4)is a linear homeomorphism. Also T and T“1 are norm preserving and lîTlI = liT-ı!) = 1.Now let ( A'v(x))* and X* denote the continuous duals of A'v(X) and X respectively. ThenS : ( A'v(X))* defined by X*,

fT f = fi oT-1,is a linear isometry, where X stands for equivalent to X*. Therefore,
(A'v(too)) I,

* *
' 00

c or Co- Thus, ( A'y(X))* is^005

and (A'v(c))* ~ u,since c* Co 11, where ti = {x = (xk) : L |xk I k [1].*

3. KÖTHE-TOEPLITZ DUALS OF Av(X)In this section, ^ve characterize the a-, p- and y- duals of Av(ı.oo) and Av(c).
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Definition ([!]): Let X be a segueuce space and define(i) X“ = {a = (ak) : S !akXk [ k 00 for ali x6X},
(ii) X® = (a = (ak) : S akXk converges for ali xeX}, k

n(üi) X^ = (a = (ak) : sup [ S akXk | 00 for ali xeX}.
k=lnThen X“, X^ and X''^ are, respectively, caUed the a-, Ş- and y-dual spaces of X. X“ is also called Köthe-Toeplitz dnal space and X^ is also called generalised Köthe-Toeplitz dnal space. It is easy to show that 

0 c X“ c X3 CZ XY. If X c Y, then Y’l c X->1 for 7) = a, Ş or y.
Lemma 2. The following conditions (1) and (2) are eqnivalent.1. sup I Av(xk) I 

k
00,

2. (i) sup k^ı lVkXkl 
k

00

(ii) sup |vkXk — k(k+l)-l Vk+ı Xk+ı | £ 00.

Proof: Snppose that Condition 1 holds. Then
|vıXı — Vk+ı Xk+ı 1=1 s Av(xi) I < S I Av(xi) [ = 0(k)

1=1 1=)which implies that 2(i) holds. Since
|vkXk k(k-l-l)“l Vk+ı Xk+ı I = |k(k4-l)“' Av(xk)(k+l)-ı VkXki 1 Av(xk) I (k-)-l) 1 VkXk|,we obtain 2(ii).Now suppose that Condition 2 holds. Then from the inequality |vkXk — k(k+l)-ı Vk+ı Xk+ı ! > k(k+l)-l | Av(xk) | —(k+l)-ı |vkXk|we obtain Condition 1.In the following lemmas, (pn) wiU denote a numbers increasing monotonically to infinity. sequence of positive

k k

9
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nLezrazna 3 ([2 ]) : (i) If sup | S
k-J

Pk^k I 00, then
sup I Pn 
n

00
2 akl

k=n+l
CO.

(ü) If S pkHk is convergcnt, then Km pn 002 
k=n+l

Hk == 0.
Lezrema 4: (i) If sup I n n2 

k=l
PkVk“iak1 00, then

sup Jpn n 00
2 

k=n+l
Vk ’iii; I <30.

(İİ) s kvk 'Hk is eonvergent, if and only if S bn is convergent
with lim nbn = 0, where hn n 002 

k=n+l
Vk ^ak.

Proof: (i) If -vve put Vk^^ak instead of ak in Lemma 3(i), the result is immediate.(ii) If we put Pn = n and choose Vk^^ak instead of ak, the result foUows from Lemma 3(ü), since
nS kvk“lak = 

k=ı
s k(bk_ı — hk) = S bk_ı — nbn.

k=l k=lNow -vve give the main theorem ■vvhieh charaeterizes the a-, Ş-and y- duals of Av(X), where X stands for t 00 or e.
Theorem 5: Let X stand for ı,’oo or o. Then,

k

n

k n

n

n n

(i) (Av(X))« = {a = (ak) : S k |vk-lak i k oo}.

(İİ) ( Av(X))^ = (a = (ak) : 2 kvk“iak converges and 
k

S 1 bki 
k

co},
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(İÜ) ( Av(X))'>' = {a = (ak): sup | S kv^^bik [ 00 and
k=l

S I bk 1 k
co},

where = 00S 
i=k+]

-1vr-^aı.In order to prove Theorem 5, we need the foUowing lemmas.Leznma 5: (i) { = Gı, whereGı = {a = (ak) : S k 'vk ‘a^ | k oo},

(ü) ( △'v(^®))® = G2, whereG2 = {a = (ak) : S kvk“iak is convergent and 
k S Ibkl 

k
oo};

n

(İÜ) ( A'v(tccO)'’^ = ■«'hereG-3 = (a = (ak): sup ( n n2 kvk~lakI 
k=ı

00 and S |bk | k oo}.

Proof: (i) Let a e Gı and x e ThenS |aicXij I = S k İVR-Iak (k-ı | VkXk | 00,

k kby Lemma 2. Hence, a e ( A'v(;oo))“. Now let a
to L |akXk I 

k
00 for each x e { A’v(ioo))°' which leads

e Therefore, if we chooseO if k = 1
Xk kvk~l if k 2 (3.1)then |vı-Iaı I 4- S |akXkl = S k Ivk^lak | 00

kwhich imphes that a 6 Gı. k

(İi) Suppose that a e G2. If x e A'v(ioo)5 then by (2.4), there existsOne and only one y = (yk) e ı,’oo such that
Xk — Vk“l

k2 yı-ı (yo = 0), 
1=1



44 RIFAT ÇOLAKand hence
n
S akXk = 

k=l

nS akVk~l 
k=ı

k S 
i=l

yi-ı

s (bk_ı — bk) 
k=l

kS yu 
i=l

1 (3.2)n-i2 bkyk + b„ 
k=l

n-1
2 yk- 

k=lSince, by Lemma 4 (ii), S bkyk is absolutely convergent and 
k

bn n—1S yk -> O as n 
k=l

00, the series S akXk is convergent for each 
k

X e A'v(ı.co), hence a e ( A'v(ı„))l^.Now let a e ( A'v(ı.oo))^5 then S akXk is convergent for each x e
kIf "^6 consider the sequence x = (k^) defined in (3.1), thenthe series S kvk ^ak converges. This implies that nbn -> O as n oo 

k(by Lemma 4(ii)). Again using (3.2) it can be shown that S akXk =— S bkyk is convergent for ali y e 
k

t,

k. So we have S Jbk [ k coand hence a e G?.(İÜ) It can be proved by the sameGj, using Lemma 4(i).
Lemma 6: For t] = a, p or y, we have (A'v(ico))^ = (A'v(c))’l.

way as above that ( A'v(!.oo))^ =
Proof: prove for =similar. a only. For Ş and y, the proofs areSince c c; (A'v(c))“. '•ooî then A'v(c) c A'v (loo) and hence ( A'v(i-))“ c

Let a e ( Then S |akXij | 00 for every x eIf we consider the sequence and hence S k [vL^lak | < 
k

kX = (Xk) defined in (3.1), then (xk) e 00 so that a e( A'v(ioo))’' (by Lemma 5(i)).
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Lemma T‘. For X = ı, or c, wc have'00( A'v(X))vı = ( Av(X))^ where yj = a, Ş or y.
Proof: prove for t] = a and X = ı,Av (loo), it is clear that ■oo onIy. Since A'v(too) ez

( Av(t„))« cz ( A'v(t J)“.Let a e ( A'v(ı^))“, so that 2 k A'ıC'a^ | 
k

00. If X e Av(ı„),

then sup k“l |vkXk [ 
k

00 (by Lemma 2). Hence,
2 JaiîKki = 2 k|vk-lakl k-1 |vkXk ] 00,
k kwhich implies a e ( A^The proofs for the other cases are similar.Now, the proof of Theorem 5 is immediate by Lemma 5,6 and 7.Assuming v = (k) in Theorem 5, we obtain the following results that give us the a-, p- and y- duals of the seguence spaces Av('.j) and Av (c) in terms of some weU-known sequence spaces.Coro/Zory 3; For X = or e we have(i) ( A(k)(X))“ U,(ii) { A(k)(X))3 = y n A(k),(İÜ) ( A(k)(X))V = m, n A(k),where y = (a = (ak) : 2 ak converges}, m^ k {a = (aif):

nsup I 2 ak 1
k=l

00} and A(k) = (a = (at): 2 1 
k

002
]=k+ln

1 00 },

Putting V sults. = (1,1,...) in Theorem 5, we obtain the foUowing re-
Corollary 4([2]): For X = ^co or c we have



46 RIFAT ÇOLAK(i) ( A(X))“ = (a = (at) : S k |at 1
k

oo},

(ii) ( A(X))^ = {a = (at) : S kat eonverges and S ih't ] 
k k

oo},

n(İÜ) ( A(X))‘<' = (a = (ajj) : sup | S ka^ |
k=l

OO and S jb't j
k

00}

where b'^ S 
l=k+l

aı.
n
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