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ABSTRACT

in this paper, we give a formulae for L -th mean curvature of parallel submanifold to a 
given submanifold in E™ in the terms of principal curvatures of the given submanifold. In ad- 
dition we give a formulae for ı - th mean curvatures of paralel submanifold in E™ in the terms 
of ı - th mean curvatures of the given submanifold.

Finally, we examine these formulaes for parallel surfaces in E’ and parallel hypersurfa- 
ces in E”'.

INTRODUCTION

We will remind some basic properties of submanifolds and paral­
lel submanifolds.

Let N and M be m and n-dimensional Riemannian manifolds, res­
pectively, on the condition that N is an immersed submanifold into 
M. Let us denote the immersion by f. If there is no confusion we iden- 
tify the manifolds M and f{M) and the points x and f(x). Thus, the tan- 
gent space TxM of M at the point x is a vector subspace of TxN of the 
submanifold N at the point x. We denote the normal bundle of M by
1

T (M) and the covariant derivative on T (M) by D. If we denote by
and Riemannian connections on M and N, respectively, and the 
second fundamental form of M by a. Then, ve have

+ «(X,Y) 
.A. A.

and
= - Aç {X) + D î:
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foı any two vector field X,Y tangent to M and any vector field Ç nor­
mal to M, where Aç denotes the Weingarteu map with respect to 
(Kobayashi and Nomizu, 1969).

Definition 1.1. M be an n-dimensional immersed submanifold 
of a Riemannian manifold N and ?) a unit normal vector to M at a point
p. Let kp k 
we put

'-2» • .. ,kn be Principal curvatures of M vith respect to yj.

n
1 M L (^) = S

1 <b b< n
ki ki ... ki Mo(7]) = 1,

1 1

where (“) = n!/(n—l)!₺!. Wc cali Mj(7]) the t-th mcan curvature wth 
respect to 7j (Chen, 1973).

Definition 1.2. Let MbeaC® n-d.imensional regular submanifold 
of E“ such that M is regular and arcwise connected Let be a unit nor­
mal section of M and r be a real number such that 1 /r is not equal to 
fcny Principal curvatures of M at any point of M in the sense that 1 /r 
is not an eigen value of A^, the shape operatör of M with respect to Ç. 
Define a function

f : M -> Em
P f(P) = P + r^p

Then f(M) is called parallel submanifold of M with respect to Z ’f it is 
endowed with the C®* structure induced by f from M. If f(M) is a parallel
submanifold of M with respect to Z then we will write Mç,r as f(M) and
we wiU understand M / foı Mç,r is parallel submanifold of M (Gör­
gülü and Özdamar, 1989).

Theorem 1.1. Let M / /Mç,r. Then
f*(vp) = Vp + r(—Aç (vp) + Dvpi:)

for every Vp £ TpM (Görgülü and Özdamar, 1989).

Theorem 1.2. If M / /Mç,r then is a unit normal section of Mç,r 
by identifying (p) with ^p, that is, (^p is translated to f(p) by Euclidean 
parallelism in E™ (Görgülü and Özdamar, 1989).

Theorem 1.3. Let M / /Mç,r. Let and ç be unit normal paraUel 
secticns on M and Mç,r, respectively, and J^(p) = ç (f(p)). Then

Aç,r (f*(Vp)) = Aç (vp)
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for every Vp sTpM, where Aç and Aç,r denote tbe shape operators of 
M and Mç,r with respect to respectively (Görgülü and Özdamar, 
1989).

RELATİONS BETWEEN THE MEAN CURVATURES OF PARAL- 
LEL SURMANIFOLDS

Theorem 2.1. Let M / Let be a unit normal parallel sec­
tion on M Tben f preserves principal directions with respect to 

a principal direction with respect to Ç and denoteProof: Let Vp be
tbe Principal curvature by k corresponding to vp, Tben wc have

Aç(vp) = kvp.

Since is paraUel in tbe normal bundle we can write tbe following 

Aç,r(f*(vp)) = Aç(vp)

Thus

f*(vp) = Vp —rAç(vp)

= (1-rk) 'P

or

Vp = (l/(l-rk)) fjvp)

Hence

Aî:,r(f,(vp)) = Aç(vp)

= k Vp

k
“ 1—rk

f»(vp)

vhich completes tbe proof.

Corollary 2.1. Let MI Let X, be a paraUel normal section 
of M. If tbe snbmanifold M is umbilical with respect to tben Mç,r is
also umbilical with respect to Ç = >!•

Proof: One can easly show that since it is similar to tbe proof of 
tbe theorem 2.1.
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Theorem 2.2. Let "C, be a paraUel unit normal vector field. De- 
note (î^r), 0 < ı. 
to Çj.. Then

< n, for ı-th mean curvatures of .Mç,r with respect

= -tİt 2
(Î) 1<İ,

t n 
S=1 1—rkı

S

where kj, 1 < i 
to "C,.

; n, denote principal curvatures of M with respect

Proof; Let Ep. .. ,En be tbe principal directions of tbe normal
section "C, with tbe principal curvatures. So

Aç(Eı) = kiEı ,

Since is paraUel in tbe normal bundle tben we have

Aç,r(fJEi)) = Aç(Eı)

= kiEı

On tbe other hand, since

fJEi) = (1-rk,) El

or

1
1—rkı fJEı)

•. • <b < n

1 i n

El =

We have tbe foUowing

Aç,r(fJEi)) = ki 
1—rkı fJEı)

Thus, we get

ki■11

\ ı } <... <iz<u 1—rkii 1—rkı^

(■) İSİ, • • . <b<n

L n 
S=1

ki■ig

S

1—’’^İS

as desired.
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Theorem 2.i. Let M j I Mç,r. Let Ç be a unit normal parallel vec­
tor field. Then

n
2

S=!.

n,

(D s (-1)X (S) Mt((:)
k=o

where M|,(C) and Mtr(Çr) denote ı-th mean curvatures of M and Mç,r 
with respect to

Proof: One can easily show that

l<h
I n 

S=1

kîİs
1—rkî■’s

n
s (-l)8-l(slû’-®-^
s=ı, 1 <

S ki,...kig
• • .<is<n

nn
1=1

(1-rki)

and

n n
n (1—rkj) =1+2 (—1)8 ı®

1=1 s=l ı<h
2
<• • • <’8<n

kiı...kig

Since

Mo(Q = 1 and (“) Ms(Q l<i kil -. -kig
1

2
:• • • <is<n

so we have that the following formulaes

MJ(?:r) = TİT 2 

( <■ )
n

S=1

ki
1—rkig7

n
2 (-1)8-1 r8-ı (^) (,8_,) Ms(î:) 
s=ı

n
(n) 2 (-l)k(î) r>ı:

k=o
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SPECIAL CASES:

1. In the special case of n = 2 and m 3, M and Mç,r become
2-dinıensional parallel submanifolds of E™. In that case there exist just 
1-th mean curvature and 2-th nıean curvature Mi’2(Çr) of Mç,r. 
Thus

».(Ji) =
2 M/Q - 2 rM,(Q 

2(1-2 rM,(Ç) + r^M,(Q)

and

1-2 rMj(Q +

2. In the case of 
surfaces of E’. Since

n = 2 and m = 3, M and Mç,r become paraUel

and

4 “
= (k, + k,) ,

K

= k^k^

M» (î^r) = Hp

J.
1—rkj +

^^2
1—rkj

Mr^(Çr)= Kr

ki
1—rkj ■

^2
1—^rkj

Notice that we have in that case the following formulaes

H — 2r K
1—rH + K
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K-r —
K

1—rl l + r" K

which are the same as in (Hacısalihoğlu, 1983), The Theorem 4, 7, 3.

3. In the case of n = n and m = n -|- 1, we get ali the relations bet- 
ween the higher curvatures of the parallel hypersurfaces in (Görgülü, 
1985).
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