RELATIONS BETWEEN THE MEAN CURVATURES OF THE PARALLEL SUBMANIFOLDS

GÖRGÜLÜ, A.
Arts and Sci. Fac. of Anadolu Univ., Eskişehir.

ABSTRACT
In this paper, we give a formulae for t-th mean curvature of parallel submanifold to a given submanifold in E^{m} in the terms of principal curvatures of the given submanifold. In addition we give a formulae for t - th mean curvatures of paralel submanifold in $E^{\mathbf{m}}$ in the terms of $\iota-$ th mean curvatures of the given submanifold.

Finally, we examine these formulaes for parallel surfaces in \mathbf{E}^{3} and parallel hypersurfaces in \mathbf{E}^{m}.

INTRODUCTION

We will remind some basic properties of submanifolds and parallel submanifolds.

Let \mathbf{N} and \mathbf{M} be m and n-dimensional Riemannian manifolds, respectively, on the condition that N is an immersed submanifold into M. Let us denote the immersion by f. If there is no confusion we identify the manifolds M and $f(M)$ and the points x and $f(x)$. Thus, the tangent space $T_{x} M$ of M at the point x is a vector subspace of $T_{x} N$ of the submanifold N at the point x. We denote the normal bundle of M by $\mathbf{T}^{\perp}(M)$ and the covariant derivative on $T^{\perp}(M)$ by D. If we denote by ∇ and ∇^{\prime} Riemannian connections on M and N, respectively, and the second fundamental form of M by α. Then, we have

$$
\nabla_{\mathbf{X}}^{\prime} \mathbf{Y}=\nabla_{\mathbf{X}} \mathbf{Y}+\alpha(\mathbf{X}, \mathbf{Y})
$$

and

$$
\nabla_{\mathrm{x}}^{\prime} \zeta=-\mathbf{A}_{\zeta}(\mathbf{X})+\mathbf{D}_{\mathbf{x}} \zeta
$$

for any two vector field X, Y tangent to M and any vector field ζ normal to M, where A_{ζ} denotes the Weingarten map with respect to ζ (Kobayashi and Nomizu, 1969).

Definition 1.1. M be an n-dimensional immersed submanifold of a Riemannian manifold N and η a unit normal vector to M at a point p. Let $k_{1}, k_{2}, \ldots, k_{n}$ be principal curvatures of M with respect to η. we put
where $\binom{\mathrm{n}}{l}=n!/(\mathbf{n}-\mathrm{l})!\iota!$. We call $\mathrm{M}_{l}(\eta)$ the ι-th mean curvature with respect to η (Chen, 1973).

Definition 1.2. Let M be a $C^{c o} n$-dimensional regular submanifold of Em^{m} such that M is regular and arcwise connected Let ζ be a unit normal section of M and r be a real number such that l / r is not equal to any principal curvatures of M at any point of M in the sense that $1 / r$ is not an eigen value of $A \zeta$, the shape operator of M with respect to ζ. Define a function

$$
\begin{aligned}
& \mathbf{f}: \mathbf{M} \rightarrow \mathbf{E m} \\
& \mathbf{P} \rightarrow \mathbf{f}(\mathbf{P})=\mathbf{P}+\mathbf{r} \zeta_{p}
\end{aligned}
$$

Then $f(M)$ is called parallel submanifold of M with respect to ζ if it is endowed with the C^{∞} structure induced by f from M. If $f(M)$ is a parallel submanifold of M with respect to ζ then we will write $M \zeta$,r as $f(M)$ and we will understand $M / / M_{\zeta, r}$ for $M_{\zeta, r}$ is parallel submanifold of M (Görgülü and Özdamar, 1989).

Theorem 1.I. Let $M / / M_{\zeta, r}$. Then

$$
f_{*}\left(v_{p}\right)=v_{p}+r\left(-A_{\zeta}\left(v_{p}\right)+D_{v p} \zeta\right)
$$

for every $v_{p} \in T_{p} M$ (Görgülü and $\ddot{O}_{z d a m a r, ~ 1989) . ~}^{\text {(G) }}$
Theorem 1.2. If $M / / M_{\zeta, r}$ then ζ is a unit normal section of $M_{\zeta, r}$ by identifying $\zeta_{f}(p)$ with ζ_{p}, that is, ζ_{p} is translated to $f(p)$ by Euclidean parallelism in Em (Görgülü and Özdamar, 1989).

Theorem 1.3. Let $M / / M_{\zeta, r}$. Let ζ and $\bar{\zeta}$ be unit normal parallel sections on M and $M_{\zeta, r}$, respectively, and $\zeta(p)=\bar{\zeta}(f(p))$. Then

$$
\mathrm{A}_{\zeta, \mathrm{r}}\left(\mathbf{f}_{*}\left(\mathrm{v}_{\mathrm{p}}\right)\right)=\mathrm{A}_{\zeta}\left(\mathrm{v}_{\mathrm{p}}\right)
$$

for every $v_{p} \varepsilon T_{p} M$, where A_{ζ} and $A_{\zeta \text {,r }}$ denote the shape operators of M and $M_{\zeta, r}$ with respect to ζ, respectively (Görgülü and Özdamar, 1989).

RELATIONS BETWEEN THE MEAN CURVATURES OF PARALLEL SUBMANIFOLDS

Theorem 2.1. Let $M / / M_{\zeta, r}$. Let ζ be a unit normal parallel section on M Then f preserves principal directions with respect to ζ.

Proof: Let v_{p} be a principal direction with respect to ζ and denote the principal curvature by k corresponding to v_{p}, Then we have

$$
A_{\zeta}\left(v_{p}\right)=k v_{p}
$$

Since ζ is parallel in the normal bundle we can write the following

$$
\mathbf{A}_{\zeta, r}\left(f_{*}\left(\mathbf{v}_{\mathrm{p}}\right)\right)=\mathrm{A}_{\zeta}\left(\mathbf{v}_{\mathrm{p}}\right)
$$

Thus

$$
\begin{aligned}
\mathbf{f}_{*}\left(\mathrm{v}_{\mathrm{p}}\right) & =\mathrm{v}_{\mathrm{p}}-\mathrm{r} \mathrm{~A}_{\zeta}\left(\mathrm{v}_{\mathrm{p}}\right) \\
& =(\mathbf{l}-\mathrm{rk}) \mathrm{v}_{\mathrm{p}}
\end{aligned}
$$

or

$$
\mathbf{v}_{\mathrm{p}}=(\mathbf{l} /(\mathbf{l}-\mathrm{rk})) \mathrm{f}_{*}\left(\mathrm{v}_{\mathrm{p}}\right)
$$

Hence

$$
\begin{aligned}
\mathbf{A}_{\zeta, r}\left(f_{*}\left(\mathbf{v}_{\mathrm{p}}\right)\right) & =\mathbf{A}_{\zeta}\left(\mathrm{v}_{\mathrm{p}}\right) \\
& =\mathbf{k} \mathbf{v}_{\mathrm{p}} \\
& =\frac{\mathbf{k}}{1-\mathbf{r k}} \mathbf{f}_{*}\left(\mathrm{v}_{\mathrm{p}}\right)
\end{aligned}
$$

which completes the proof.
Corollary 2.1. Let $M / / M_{\zeta, r}$. Let ζ be a parallel normal section of M. If the submanifold M is umbilical with respect to $\zeta_{\text {, then }} M_{\zeta, r}$ is also umbilical with respect to $\bar{\zeta}=\zeta_{\mathrm{r}}$.

Proof: One can easly show that since it is similar to the proof of the theorem 2.1.

Theorem 2.2. Let ζ be a parallel unit normal vector field. Denote $\mathbf{M}_{l}{ }^{r}\left(\zeta_{\mathrm{r}}\right), 0 \leq i \leq \mathbf{n}$, for t -th mean curvatures of $\mathbf{M}_{\zeta}, \mathrm{r}$ with respect . to ζ_{r}. Then

$$
\mathrm{M}_{l}^{\mathrm{r}}\left(\zeta_{\mathrm{r}}\right)=\frac{1}{\binom{\mathrm{n}}{l}} \underset{\mathrm{l}}{\mathrm{~L} \leq \mathrm{i}_{1}<\ldots<\mathrm{i}_{l} \leq \mathrm{n}} \quad \prod_{\mathrm{s}=1}^{i} \quad \frac{\mathrm{k}_{\mathrm{i}_{\mathrm{s}}}}{1-\mathrm{r} \mathrm{k}_{\mathrm{i}_{\mathrm{s}}}}
$$

where $\mathrm{k}_{\mathrm{i}}, \mathrm{l} \leq \mathrm{i} \leq \mathrm{n}$, denote principal curvatures of M with respect to ζ.

Proof: Let $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}$ be the principal directions of the normal section ζ with the principal curvatures. So

$$
A_{\zeta}\left(\mathrm{E}_{\mathrm{i}}\right)=\mathrm{k}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}, \mathrm{l} \leq \mathrm{i} \leq \mathbf{n}
$$

Since ζ is parallel in the normal bundle then we have

$$
\begin{aligned}
\mathbf{A}_{\zeta}, \mathbf{r}\left(\mathbf{f}_{*}\left(\mathbf{E}_{\mathbf{i}}\right)\right) & =\mathbf{A}_{\zeta}\left(\mathbf{E}_{\mathbf{i}}\right) \\
& =\mathbf{k}_{\mathbf{i}} \mathrm{E}_{\mathbf{i}}
\end{aligned}
$$

On the other hand, since

$$
\mathrm{f}_{*}\left(\mathrm{E}_{\mathrm{i}}\right)=\left(1-\mathrm{rk}_{\mathbf{i}}\right) \mathrm{E}_{\mathrm{i}}
$$

or

$$
\mathrm{E}_{\mathrm{i}}=\frac{1}{1-\mathrm{rk}_{\mathrm{i}}} \mathrm{f}_{*}\left(\mathrm{E}_{\mathrm{i}}\right)
$$

We have the following

$$
\mathrm{A}_{\zeta}, r\left(f_{*}\left(E_{i}\right)\right)=\frac{k_{i}}{1-r k_{i}} f_{*}\left(E_{i}\right)
$$

Thus, we get

$$
\begin{aligned}
& \mathbf{M}_{l}^{\mathrm{r}}\left(\zeta_{\mathrm{r}}\right)=\frac{\mathbf{1}}{\binom{\mathrm{n}}{l}} \sum_{\mathbf{l} \leq \mathbf{i}_{1}}^{\Sigma}<\ldots<\mathrm{i}_{l} \leq \mathbf{n} \quad \stackrel{\prod_{\mathrm{s}=1}^{\mathrm{l}}}{ } \frac{\mathbf{k}_{\mathrm{i}_{\mathrm{s}}}}{1-\mathrm{rk}_{\mathrm{i}_{\mathrm{s}}}}
\end{aligned}
$$

as desired.

Theorem 2.3. Let $\mathbf{M} / / M_{\zeta, r}$. Let ζ be a unit normal parallel vector field. Then

$$
M_{l} r\left(\zeta_{r}\right)=\frac{\sum_{s=t}^{n}(-1)^{s-t r^{s-t}\binom{n}{s}\binom{s}{s, l} M_{s}(\zeta)}}{\binom{n}{\imath} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \mathbf{r}^{k} M_{k}(\zeta)}, 1 \leq \iota \leq \mathbf{n}
$$

where $M_{l}(\zeta)$ and $M_{t}{ }^{r}\left(\zeta_{r}\right)$ denote t-th mean curvatures of M and $M_{\zeta, r}$ with respect to ζ.

Proof: One can easily show that

and

Since

$$
M_{0}(\zeta)=1 \text { and }\binom{n}{s} M_{s}(\zeta) \quad \underset{1 \leq i_{1}<\ldots<i_{s} \leq n}{\Sigma} \quad k_{i_{1}} \ldots k_{i_{s}}
$$

so we have that the following formulaes

$$
\begin{aligned}
& \mathbf{M}_{\iota}{ }^{r}\left(\zeta_{r}\right)=\frac{1}{\binom{n}{\imath}} \quad \sum_{1 \leq i_{1}<\ldots<i_{l} \leq n} \quad \prod_{\mathrm{s}=1}^{i} \quad \frac{\mathbf{k}_{\mathrm{i}_{\mathrm{s}}}}{1-\mathbf{r k}_{\mathrm{i}_{\mathrm{s}}}} \\
& =\frac{\sum_{s=\imath}^{n}(-1)^{s-t} r^{s-t}\binom{n}{s}\left(\begin{array}{l}
s_{-l}^{s}
\end{array}\right) M_{s}(\zeta)}{\binom{n}{\imath} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} r^{k} M_{k}(\zeta)}
\end{aligned}
$$

SPECIAL CASES:

1. In the special case of $n=2$ and $m<3, M$ and $M_{\zeta, r}$ become 2-dimensional parallel submanifolds of Em^{m}. In that case there exist just 1-th mean curvature $\mathbf{M r}_{1}{ }_{1}\left(\zeta_{r}\right)$ and 2-th mean curvature $\mathbf{M r}_{2}\left(\zeta_{r}\right)$ of $\mathbf{M}_{\zeta, r}$. Thus

$$
\mathbf{M}_{1}{ }_{1}\left(\zeta_{\mathrm{r}}\right)=\frac{2 \mathbf{M}_{1}(\zeta)-2 \mathbf{r} \mathbf{M}_{2}(\zeta)}{2\left(1-2 \mathbf{r} \mathbf{M}_{1}(\zeta)+\mathbf{r}^{2} \mathbf{M}_{2}(\zeta)\right)}
$$

and

$$
\mathbf{M r}_{2}\left(\zeta_{1}\right)=\frac{\mathbf{M}_{2}(\zeta)}{1-2 \mathbf{r} \mathbf{M}_{1}(\zeta)+\mathbf{r}^{2} \mathbf{M}_{2}(\zeta)}
$$

2. In the case of $n=2$ and $m=3, M$ and $M_{\zeta, r}$ become parallel surfaces of E^{3}. Since

$$
\begin{aligned}
\mathbf{M}_{1}(\zeta) & =\frac{1}{2} \mathbf{H} \\
& =\frac{1}{2}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \\
\mathbf{M}_{2}(\zeta) & =\mathbf{K} \\
& =\mathbf{k}_{1} \mathbf{k}_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{M r}_{1}\left(\zeta_{r}\right) & =\frac{1}{2} \mathbf{H}_{\mathbf{r}} \\
& =\frac{1}{2}\left(\frac{\mathbf{k}_{1}}{1-r k_{1}}+\frac{\mathrm{k}_{2}}{1-\mathrm{rk}_{2}}\right) \\
\mathrm{Mr}_{2}\left(\zeta_{\mathrm{r}}\right) & =\mathrm{K}_{\mathbf{r}} \\
& =\frac{\mathrm{k}_{1}}{1-\mathrm{rk}_{1}} \cdot \frac{\mathbf{k}_{2}}{1-\mathbf{r k} k_{2}}
\end{aligned}
$$

Notice that we have in that case the following formulaes

$$
H_{r}=\frac{H-2 \mathbf{r} K}{1-\mathbf{r} \mathbf{H}+\mathbf{r}^{2} \mathbf{K}}
$$

$$
\mathrm{K}_{\mathrm{r}}=\frac{\mathrm{K}}{1-\mathrm{rH}+\mathrm{r}^{2} \mathrm{~K}}
$$

which are the same as in (Hacsalihoğlu, 1983), The Theorem 4, 7, 3.
3. In the case of $n=n$ and $m=n+1$, we get all the relations between the higher curvatures of the parallel hypersurfaces in (Görgülü, 1985).

REFERENCES

CHEN, B.Y., (1973) Geometry of Submanifolds, Marcel Dekker Inc. New York.
GÖRGÜLÜ, A., (1985) Relations Between The Higher Curvatures of the Parallel Hypersurfaces, Journal of Karadeniz Univ. Fac. of Arts and Sci., series of Maths. -Physics Vol: VIII.

GÖRGÜLUU, A. and OZDAMAR, E., (1989) Parallel Submanifolds, To be appear.
HACISALİHOĞLU, H.H., (1983) Diferensiyel Geometri, Inönü Üniversitesi Yaymlar.
KOBAYASHI, S. and NOMIZU, K., (1969), Foundations of Differential Geometry. Vol. 2 Interscience pub. New York.

