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ABSTRACT

In this paper, we give a formulae for 1 -th mean curvature of parallel submanifold to a
given submanifold in E™ in the terms of principal curvatures of the given submanifold. In ad-
dition we give a formulae for t - th mean curvatures of paralel submanifold in E™ in the terms
of | - th mean curvatures of the given submanifold.

Finally, we examine these formulaes for parallel surfaces in E* and parallel hypersurfa-
ces in E™,

INTRODUCTION

We will remind some basic properties of submanifolds and paral-
lel submanifolds.

Let N and M be m and n-dimensional Riemannian manifolds, res-
pectively, on the condition that N is an immersed submanifold into
M. Let us denote the immersion by f. If there is no confusion we iden-
tify the manifolds M and f(M) and the points x and f(x). Thus, the tan-
gent space TxM of M at the point x is a vector subspace of TxN of the
submanifold N at the point x. We denote the normal bundle of M by

L

T (M) and the covariant derivative on TL(M) by D. If we denote by ¥/
and 7’ Riemannian connections on M and N, respectively, and the
second fundamental form of M by «. Then, we have

VY = v Y + «XY)

and

Vgt = — Ay (X) + DL
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for any two vector field X,Y tangent to M and any vector field { nor-
mal to M, where Ay denotes the Weingarten map with respect to
(Kobayashi and Nomizu, 1969).

Definition 1.1. M be an n-dimensional immersed submanifold
of a Riemannian manifold N and % a unit normal vector to M at a point
p. Let k, k,,... %k, be principal curvatures of M with respect to 7.
we put

n
(l)ML('y}): > ki ki ... ki, Mo(y) = 1,
<< s < i< ! 2 !

where (7) = n!/(n—u)l!. We call M,(4) the i-th mean curvature with
respect to v (Chen, 1973).

Definition 1.2. Let M be a C* n-dimensional regular submanifold
of EM such that M is regular and arcwise connected Let { be a unit nor-
mal section of M and r be a real number such that 1/r is not equal to
any principal curvatures of M at any point of M in the sense that 1/r
is not an eigen value of Ay, the shape operator of M with respect to {.
Define a function

f:M > En
P f(P) = P 4 15
Then f(M) is called parallel submanifold of M with respect to { if it is
endowed with the C* structure induced by f from M. If f(M) is a parallel
submanifold of M with respect to { then we will write Mg,y as f(M) and

we will understand M [ /Mg,, for My,; is parallel submanifold of M (Gor-
gilit and Ozdamar, 1989).

Theorem 1.1. Let M/ /Mg,,. Then
£4(vp) = vo + r(—Az (vp) + Dwp)
for every vp ¢ TyM (Gorgiilii and Ozdamar, 1989).

Theorem 1.2. If M//Mg, then ¥ is a unit normal section of My,
by identifying ;) with p, that is, { is translated to f(p) by Euclidean
parallelism in E® (Gorgili and Ozdamar, 1989).

Theorem 1.3. Let M/ /Mg, Let { and T be unit normal parallel
sections on M and My,y, respectively, and {(p) = T (f(p)). Then

Azr (£,(vp)) = Az (vp)
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for every vy €TyM, where Ay and Ag,r denote the shape operators of

M and My,r with respect to {, respectively (Gorgiilli and Ozdemar,
1989).

RELATIONS BETWEEN THE MEAN CURVATURES OF PARAL-
LEI. SUBMANIFOLDS

Theorem 2.1. Let M[/My,;. Let { be a unit normal parallel sec-
tion on M Then f preserves principal directions with respect to .

Proof : Let vy be a principal direction with respect to { and denote
the principal curvature by k corresponding to vy, Then we have

Aglvp) = kv
Since { is parallel in the normal bundle we can write the following

A€, (V) = Az(vp)

Thus
f.(vp) = vp —xAg(vp)
= (I—=k) vp
vp = (1/(1—k)) £, (vp)
Hence

Aalf,(vp)) = Ag(vp)
=k v
k
= L0
which completes the proof.

Corollary 2.1. Let M//Mg,;. Let { be a parallel normal section
of M. If the submanifold M is umbilical with respect to g, then My, is
also umbilical with respect to 7 = ;.

Proof: One can easly show that since it is similar to the proof of
the theorem 2.1.
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Theorem 2.2. Let { be a parallel unit normal vector field. De-
note M;* (&), 0 < v < n, for +-th mean curvatures of My,r with respect |
to ;. Then

ki
].——Iki
8

1 .
MH(G) = b2 11

() 1<i, < ...<ip<n s

where ki, 1 < i < n, denote principal curvatures of M with 1espect
to C.

Proof: Let E,...,Ey be the principal directions of the normal
section { with the principal curvatures. So

AgEs) = kE;, 1 <i<n
Since ¢ is parallel in the normal bundle then we have
Agr(f,(Ep) = Ay(E;)
= kT,
On the other hand, since

f*(Ei) = (lﬁrki) E;

or
1 .
Es 1—rk; E(E)
We have the following
ki
Aga(fy(Ep)) = gy —— £, (Es)
Thus, we get
1 k; klb
M%) = — z L
(7) 1<, <. <ij<n 1—rk;, 1—rky,
1 L ki
Mi(G) = e 3 R
(1) 1<i, <...<ij<n s rkig

as desired.
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Theorem 2.3. Let M|/ My,:. Let { be a unit normal parallel vec-
tor field. Then

I eed) (1) M
M (%) = , , 1 < < n,
(B 3 (DF (B) © Mu()

k=0

where M({) and M,"(¢;) denote i-th mean curvatures of M and My,
~ with respect to T,

Proof: One can easily show that

n
(S E Ky Ky,
s i . 1<i <...<is<n

1<, <. .. <i<n s=t li_rkis fl[ (1—xky)
i=t ’

and

n n

M l—ak) =14+ Z (—1)s P ki, kis

i=1 8=l 1<, <. .. <ig<n
Since

M) = 1 and (;‘) M (%) 3 ki, - . 'kis

1£i1< “ae <is£n
so we have that the following formulaes

M.X(%) 5 Lo
T T —
L (8) 1 < <...<i<n &= 1—rk;

f—

-]

S (1w (D) (80 M(Z)

8=

() 2 (DF () = M)
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SPECIAL CASES:

1. In the special case of n = 2 and m < 3, M and My, become
2—dimensional parallel submanifolds of E™. In that case there exist just

1-th mean curvature M’ ({;) and 2-th mean curvature MT({;) of My,
Thus .

rr) = 2 M — 2 M
Mr (%) = 2(1-2 TM(T) + °M,(Q)

and

o M)
Mr(&G) = 1-2 tM () 4 M Q)

2. In the case of n = 2 and m = 3, M and My,; become parallel
surfaces of E2. Since

M) = 5 H
1
= 5= k, + k),
M%) K
= kk,

and

1
Mr (%) = 5 H;

— 1 kl k2
=3 ( Tk, T 1k, )
Mrz‘(t-l') = K

k, k,
1—rk, ) 1—rk,

Notice that we have in that case the following formulaes

H—2r K

Hy = 1—H + K
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K

Ky = 1—H | K

which are the same as in (Hacisalihoglu, 1983), The Theorem 4, 7, 3.

3. In the case of n == nand m = n -+ 1, we get all the relations bet-
ween the higher curvatures of the parallel hypersurfaces in (Gorgiili,

1985).
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