ON THE LINE CLASSES IN SOME FINITE hyperbolic planes

E. OZZAN* - Ş. OLGUN** - R. KAYA**
Faculty of Eng., Hacettepe Univ., Zonguldak.
Faculty of Science and Arts, Anadolu Univ., Eskiģchir

ABSTRACT

Determination of the line classes (and the number of lines in each class) in some hyperbolic planes of type π_{m} occurs as an open problem. In this paper we give a partial answer to the problem for the special hyperbolic planes $\pi_{3}, \pi_{4} \pi_{5}, \pi_{6}, \pi_{7}$ and $\pi_{n-2}^{0}, \pi_{n-1}^{0}$.

INTRODUCTION

It is well known that if a line is deleted from a projective plane then the remaining substructure forms an affine plane. Graves [1962], Ostrom [1962] and Bumcrot [1971] have given examples of hyperbolic planes obtained by deletion from projective planes. Graves [1962] also asked for additional constructions of such planes. Sandler [1963] has shown that if three non-concurrent lines are deleted from a projective plane then the remaining incidence structure forms a hyperbolic plane in the sense of Graves [1962]. Kaya-Özcan [1984] has extended the Sandler's construction as follows: Let π be a finite projective plane of order n and. m a positive integer provided that $m \leq n+2$. Let $\iota_{1}, \iota_{2}, \ldots$, ι_{m} denote distinct m lines of π such that no three are concurrent. Let π_{m} be the substructure obtained by deleting from π all of the lines i_{i}, $i=1,2, \ldots, m$, and all points on these m lines. A point of π is called corner point if it is intersection of any two lines in the set $\left\{\iota_{1}, \iota_{2}, \ldots, l_{m}\right\}$. Let r denote the minimum number of corner points on a line of π_{m} as a line of π. In [Kaya, R.-Özcan, E., (1984)] it has been shown that if $3 \leq \mathrm{m} \leq \mathrm{n}+\mathrm{r}+\frac{1}{2}(1-\sqrt{4 \mathrm{n}+5})$ then π_{m} is a hyperbolic plane.

The lines of π_{m} are classified according to the number of points which are contained in each line of a class. Let C_{s} denote the set of all

[^0]lines of π_{m} such that each line in it contains exactly s corner points in π. Each line in C_{s} contains exactly $\mathrm{n}+1$-($m-s$) points. There exist $\frac{1}{2} m-r+1$ or $\frac{1}{2}(m+1)-r$ classes of lines in π_{m} according as m is an even or an odd positive integer, respectively. The line rlasses are C_{r}, $\mathrm{C}_{\mathrm{r}_{+1}}, \ldots, \mathrm{C}_{\mathrm{m} / 2}$ or $\mathrm{C}_{\mathrm{r}}, \mathrm{C}_{\mathrm{r}_{+1}}, \ldots, \mathrm{C}_{\left(\mathrm{m}_{-1}\right) / 2}$ according as m is even or odd, respectively. It follows that if m is even then there exist exactly $\frac{1}{2} \mathrm{~m}-\mathrm{r}+1$ classes of lines in π_{m} and $\pi_{\mathrm{m}+1}$ obtained from a projective plane, namely $\mathrm{C}_{\mathrm{r}}, \mathrm{C}_{\mathrm{r}_{+1}} \ldots, \mathrm{C}_{\mathrm{m} / 2}$. Furthermore, if q_{s} denote the number of all lines in C_{s} then one has the following:
\[

$$
\begin{aligned}
& \text { (I) } \quad \sum_{s=r}^{t} q_{s}=n^{2}+n+1-m \\
& \text { (II) } \quad \sum_{s=r}^{t} s q_{s}=(n-1)\binom{m}{2} \\
& \text { (III) } \sum_{s=r}^{t} s^{2} q_{s}=\left[n-1+\binom{m-2}{2}\right]\binom{m}{2}
\end{aligned}
$$
\]

Where t is $\frac{m}{2}$ or $\frac{1}{2}(m-1)$ according as m is even or odd, respectively. (In what follows t will be used in that sense). One of the unsolved problems related to these hyperbolic planes is to determine the number of lines in each class C_{S} of π_{m}. A partial answer to the problem is given in [Olgun, (1986)]. In the first part of this paper, we formulate the answer to the question for any finite planes of type $\pi_{3}, \pi_{4}, \pi_{5}$, and determine the required numbers for a π_{6} and π_{7} in terms of the number of lines in C_{3}. In the second part, the problem is solved for some special hyperbolic planes of type $\pi_{n_{-1}}$ and $\pi_{n_{-2}}$. It would be very interesting to find the full answer to the above problem for any m and n.

THE LINE CLASSES IN $\pi_{3}, \pi_{4} \pi_{5}, \pi_{6}$, AND π_{7}.
PROPOSITION 1. For any hyperbolic plane π_{m}
(i) $\quad \mathrm{q}_{2}=\frac{1}{2}\binom{\mathrm{~m}}{2}\binom{\mathrm{~m}-2}{2}-\sum_{\mathrm{s}=3}^{\mathrm{t}}\binom{\mathrm{s}}{2} \mathrm{q}_{\mathrm{s}}$
(ii) $\mathbf{q}_{1}=\binom{\mathrm{m}}{2}\left[\mathrm{n}-1-\binom{\mathrm{m}-2}{2}\right]+\sum_{\mathrm{s}=3}^{\mathbf{t}} \mathrm{s}(\mathrm{s}-2) \mathrm{q}_{\mathrm{s}}$
(iii) $\mathrm{q}_{0}=\mathbf{n}^{2}+\mathbf{n}\left[1-\binom{\mathbf{m}}{2}\right]+\binom{\mathbf{m}-1}{2}+\frac{1}{2}\binom{\mathbf{m}}{2} \cdot\binom{\mathbf{m}-2}{2}$

$$
-\sum_{s=3}^{\mathrm{t}}\binom{\mathrm{~s}-1}{2} \mathrm{q}_{\mathrm{s}}
$$

PROOF: Equality (i) can be obtained substructing the equalities II and III side by side. Similarly, (ii) can be obtained from II using (i), and (iii) from I using (i) and (ii).

COROLLARY 1. For any hyperbolic plane π_{m} with $\mathrm{m} \in\{3,4,5\}$
(i) $\quad \mathrm{q}_{2}=\frac{1}{2}\binom{\mathrm{~m}}{2}\binom{\mathrm{~m}--2}{2}$
(ii) $\mathrm{q}_{1}=\binom{\mathrm{m}}{2}\left[\mathrm{n}-\mathrm{l}-\binom{\mathrm{m}-2}{2}\right]$
(iii) $\mathrm{q}_{0}=\mathbf{n}^{2}+\mathbf{n}\left[1-\binom{\mathrm{m}}{2}\right]+\binom{\mathbf{m}-1}{2}+\frac{1}{2}\binom{\mathrm{~m}}{2}\binom{\mathrm{~m}-2}{2}$.

Proof follows from proposition 1 since $q_{i}=0, i \geq 3$, for $m=4$ or 5 and, also $q_{i}=0 \quad i \geq 2$ for $m=3$.

Notice that, if $m=3$ then $q_{1}=3(n-1), q_{0}=(n-1)^{2}$. Similarly if $m=4$ then $q_{2}=3, q_{1}=6(n-2), q_{0}=n^{2}-5 n+6$, and if $m=5$ then $q_{2}=15$, $\mathrm{q}_{\mathrm{I}}=10(\mathrm{n}-4), \quad \mathrm{q}_{\mathrm{o}}=\mathrm{n}^{2}-9 \mathrm{n}+21$.

The following corollaries are immediate:
COROLLARY 2. Number of lines in $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$ of any hyperbolic plane of type π_{6} and π_{7} can be determined in terms of the number of lines in C_{3} as follows:

$$
\begin{array}{ll}
\mathrm{q}_{2}=45-3 \mathrm{q}_{3} & \mathrm{q}_{2}=105-3 \mathrm{q}_{3} \\
\mathrm{q}_{1}=15(\mathrm{n}-7)+3 \mathrm{q}_{3} & \text { and } \\
\mathrm{q}_{0}=\mathrm{n}^{2}-14 \mathrm{n}+55-\mathrm{q}_{3} & \\
\left.\mathrm{q}_{0}=\mathrm{n}^{2}-20 \mathrm{n}+11\right)+3 \mathrm{q}_{3} \\
\end{array}
$$

respectively.
COROLLARY 3. Total number of lines of C_{1} and C_{2} in any hyperbolic plane π_{m} can be determined independently from the number of lines of C_{0} and C_{3}, and vice versa. That is,

$$
\begin{aligned}
\mathrm{q}_{1}+\mathrm{q}_{2}= & \binom{\mathbf{m}}{2}\left[\mathbf{n}-1-\frac{1}{2}\binom{\mathbf{m}-2}{2}\right]+\frac{1}{2}\left(\begin{array}{c}
\sum_{\mathrm{s}=3}^{t} \mathrm{~s}(\mathrm{~s}-3) \mathrm{q}_{\mathrm{s}}
\end{array}\right) \\
\mathrm{q}_{\mathrm{o}}+\mathrm{q}_{3}=\mathbf{n}^{2}+\mathbf{n}\left[1-\binom{\mathbf{m}}{2}+\binom{m-1}{2}\right]+ & \frac{1}{2}\binom{\mathrm{~m}}{2}\binom{\mathbf{m}-2}{2} \\
& -\sum_{\mathrm{s}=4}^{\mathrm{t}}\binom{\mathrm{~s}-1}{2} \mathrm{q}_{\mathrm{s}}
\end{aligned}
$$

THE LINE CLASSES IN $\pi^{0}{ }_{n_{-1}}$ AND $\pi^{0}{ }_{n--2}$
Let π be a projective plane of order n. A set of \mathcal{O} of $n+1$ points in π is called an oval if no three points of \mathcal{O} are collinear. A line of π which contains exactly one point, two points and no points of θ is called tangent line, secant line and exterior line, respectively. A point of π is called an exterior point and interior point if it lies on exactly two tangent lines and on no tangent lines, respectively. A secant line contains $\frac{1}{2}(n-1)$ exterior points and an exterior line contains $\frac{1}{2}(n+1)$ exterior points. Total number of the exterior points and interior points of π is $\frac{1}{2} n(n+1)$ and $\frac{1}{2} n(n-1)$, respectively. There are $n+1$ tangent lines of θ and a tangent line contains n exterior points. Let π be a projective plans of odd order $n, n \geqslant 9$ and θ an oval in π. Let β be the set of interior points of \mathcal{O}, and consider the restricions of the secant and exterior lines of π to the interior points of \mathcal{O}. Hence the restrictions of these lines are the set theorical intersections of the secant and exterior lines of π with β. It has been shown by Ostrom [1962] that the geometric structure so obtained is a hyperbolic plane. Clearly the above model of the hyperbolic plane can be considered as a special hyperbolic plaue of type π_{m} provided that $\iota_{1}, \iota_{2}, \ldots, \iota_{n+1}$ are the tangent lines of an oval (0. Therefore it will be convenient to use the notation $\pi^{0}{ }_{n+1}$ for the Octrom's hyperbolic plane. Furthermore, in what follows we use $\pi^{0} \mathrm{~m}$ instead of π_{m} provided that the set of deleted lines, $\left\{\iota_{1}, \iota_{2}, \ldots, \iota_{m}\right\}$, with $3 \leq \mathbf{m} \leq \mathbf{n}$, is a subset of the set of all tangent lines of \mathcal{O}. It can easily be shown that each of $\pi^{0}{ }_{3}, \pi^{\mathrm{o}}, \ldots, \pi^{\mathrm{o}}{ }_{\mathrm{n}-2}, \pi^{\mathrm{o}}{ }_{\mathrm{n}-1}$ is a hyperbolic plane but not $\pi^{\circ}{ }_{n}$ since the non-deleted tangent line in $\pi^{0}{ }_{n}$ contains only one point. It is clear from the definitions of corner and exterior points that a corner point for $\pi^{0} \mathrm{~m}, 3 \leq \mathrm{m} \leq \mathrm{n}+1$, is also n exterior point which is deleted from π. It is known that the line classes of $\pi^{0}{ }_{n+1}$ are $C_{\frac{1}{2}\left(n_{+1}\right)}$ and $C_{\frac{1}{2}\left(n_{-1}\right)}$
and $q_{\frac{1}{2}(n+1)}=\frac{1}{2} n(n-1)$ and $q_{\frac{1}{2}\left(n_{-1}\right)}=\frac{1}{2} n(n+1)$. We give
line classes of $\pi^{0}{ }_{n-1}$ and $\pi^{0}{ }_{n-2}$ in the following propositions:
PROPOSTTION 2. There exist four line classes in $\pi^{0}{ }_{n_{-1}}$, namely C_{0}, $\mathrm{C}_{\frac{1}{2}(\mathrm{n}-\mathrm{s})}, \mathrm{C}_{\frac{1}{2}\left(\mathrm{n}_{-3}\right)} \mathrm{C}_{\frac{1}{2}\left(\mathrm{n}_{-1}\right)}$, and the number of lines in these classes are
$q_{0}=2, q_{\frac{1}{2}\left(n_{-5}\right)}=\frac{1}{2}(\mathrm{n}-3)(\mathrm{n}-1), q_{\frac{1}{2}(\mathrm{n}-3)}=\frac{1}{2}(\mathrm{n}-1)(\mathrm{n}+4)$, $\mathrm{q}_{\frac{1}{2}(\mathrm{n}-1)}=\frac{1}{2}(\mathrm{n}+1)$, respectively.

PROOF. Let t_{1}, t_{2} be tangent lines of $\pi^{0}{ }_{n \cdot 1}$ and $P=t_{1} \cap t_{2}, Q_{i}=\mathcal{O} \cap t_{i}$. And let Q be any point of \mathcal{O} with $Q \neq Q_{i} i=1,2$. Clearly none of the two lines $t_{1}=P Q_{1}$ and $t_{2}=P Q_{2}$ contains a corner point. Therefore t_{1} and t_{2} belong to C_{0}. Let \imath be a secant line which passes through none of $P_{2} Q_{1}$ and Q_{2}. All exterior points on ι except $\iota \cap t_{1}$ and $\iota \cap t_{2}$ are corner points. 4 contains exactly $\frac{1}{2}(n-1)-2=\frac{1}{2}(n-5)$ corner points since there exist $\frac{1}{2}(\mathrm{n}-1)$ exterior points on t . Thus t belongs to $\mathrm{C}_{\frac{1}{2}\left(n_{-5}\right)}$. The secant line $P Q$ contains exactly $\frac{1}{2}(n-1)-1=\frac{1}{2}(n-3)$ corner points since all exterior points on $P Q$ except P are corner points. Similarly all exterior points on $Q_{1} Q$ (or $Q_{2} Q$), except $Q_{1} Q \cap t_{2}$ (or $Q_{2} Q \cap t_{1}$), are corner points. Hence each of the lines $Q_{i} Q$ contains $\frac{1}{2}(n-1)-1=\frac{1}{2}(n-3)$ corner points. Thus $P Q, Q_{1} Q$ and $Q_{2} Q$ belong to $\mathrm{C}_{\frac{1}{2}\left(n_{-3}\right)}$. Now let a be any line not passing through P. All exterior points on t except $\iota \cap t_{1}$ and $\bullet \cap t_{2}$ are corner points. ι contains $\frac{1}{2}(\mathbf{n}+1)-2=\frac{1}{2}(\mathbf{n}-3)$ corner points since there exist exactly $\frac{1}{2}(n+1)$ exterior points on ι in π. Thus \imath belongs to $\mathrm{C}_{\frac{1}{2}(n-3)}$. The secant line $Q_{1} Q_{2}$ belongs to $C_{\frac{1}{2}\left(n_{-1}\right)}$ since all exterior points on $Q_{1} Q_{2}$ are
corner points. Finally, on exterior line passing through the point \mathbf{P} contains exactly $\frac{1}{2}(n+1)-1=\frac{1}{2}(n-1)$ corner points since all exterior points on such a line except P are corner points. Thus, these lines belong to $\mathrm{C}_{\frac{1}{2}(\mathrm{n}-1)}$. Consequently, the line classes in $\pi^{0}{ }_{\mathrm{n}_{-1}}$ are

$$
\begin{aligned}
& \mathrm{C}_{0}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\} \\
& \mathrm{C}_{\frac{1}{2}\left(\mathrm{n}_{-5}\right)}=\left\{\iota: \iota \text { is a secant line passing through none of } \mathrm{P}, \mathrm{Q}_{1}, \mathrm{Q}_{2}\right\} \\
& \mathrm{C}_{\frac{1}{2}(\mathrm{n}-3)}=\left\{\iota: \iota=\mathrm{Q}_{\mathrm{i}} \mathrm{Q}, \mathrm{i}=1,2 \text {, or } \mathrm{t} \text { is a secant line on } \mathrm{P}\right. \text { or an exterior }
\end{aligned}
$$ line not on $P\}$

$$
\mathrm{C}_{\frac{1}{2}(\mathrm{n}-1)}=\left\{\iota: \iota=\mathrm{Q}_{1} \mathrm{Q}_{2} \text { or } \iota \text { is an exterior line } \mathfrak{} \mathrm{n} P\right\}
$$

Hence, it is clear that $q_{0}=2 . q_{\frac{1}{2}(n-5)}=\frac{1}{2}(n-3)(n-1)$ since the number of secant lines on P is $\frac{1}{2}(n-1)$, the number of secant lines on Q_{1} or Q_{2} is $2(n-1)+1$, and the total number of secant lines of $\pi^{0} n_{-1}$ is $\frac{1}{2} \mathbf{n}(\mathbf{n}+1) .{ }^{\frac{1}{2}(n-3)}=\frac{1}{2}(\mathbf{n}-1)(\mathbf{n}+4)$ since the number of secant lines on P is $\frac{1}{2}(n-1)$, the number of secant lines on Q_{1} or Q_{2} except $Q_{1} Q_{2}$ is $2(n-1)$, and the total number of exterior lines not on P is $\frac{1}{2}(n-1)^{2} \cdot q_{\frac{1}{2}\left(n_{-1}\right)}=\frac{1}{2}(n+1)$ since the number of exterior lines on P is $\frac{1}{2}(n-1)$, and $Q_{1} Q_{2} \in C_{\frac{1}{2}}(n-1)$.

PROPOSITION 3. There exist four line classes in $\pi^{0}{ }_{n-2}$, namely C_{0}, $\mathrm{C}_{\frac{1}{2}\left(\mathrm{n}_{-7}\right)}, \mathrm{C}_{\frac{1}{2}\left(\mathrm{n}_{-5}\right)}, \mathrm{C}_{\frac{1}{2}\left(\mathrm{n}_{-3}\right)}$, and the number of lines in these classes are
$\mathrm{q}_{0}=3, \mathrm{q}_{\frac{1}{2}\left(\mathrm{n}_{-7}\right)}=\frac{1}{2}(\mathrm{n}-3)(\mathrm{n}-5), \mathrm{q}_{\frac{1}{2}\left(\mathrm{n}_{-5}\right)}=\frac{1}{2}(\mathrm{n}+8)(\mathrm{n}-3)$,
$\mathrm{q}_{\frac{1}{2}\left(\mathrm{n}_{-3}\right)}=\frac{3}{2}(\mathrm{n}+3)$, respectively.

SKETCH OF PROOF. Let t_{1}, t_{2}, t_{3} be non deleted tangent lines and $\mathbf{t}_{1} \cap \mathrm{t}_{2}=\mathbf{P}_{3}, \mathbf{t}_{1} \cap \mathbf{t}_{2}=\mathbf{P}_{2}, \mathrm{t}_{2} \cap \mathrm{t}_{3}=\mathbf{P}_{1}$; and let $\mathrm{t}_{\mathrm{i}} \cap \hat{\theta}=\mathrm{Q}_{\mathrm{i}}$ with $\mathrm{i}=1,2,3$. One can find the line classes of $\pi^{0}{ }_{n_{-2}}$ as follows:

$$
\left.\mathbf{C}_{\mathbf{o}}=\left\{\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}\right)\right\}
$$

$\mathrm{C}_{\frac{1}{2}\left(n_{-7}\right)}=\left\{\begin{array}{l} \\ \text { : } \iota \text { is a secant line passing through none of } \\ P_{i}, Q_{i}, ~\end{array}\right.$ with $\mathrm{i}=1,2,3\}$

$$
C_{\frac{1}{2}\left(n_{-5}\right)}=\left\{l: t \text { is a secant line on } P_{i} \text { but not on } Q_{i}\right. \text { or a secant line }
$$ passing through only one Q_{i} but none of P_{i} or ι is an exterior line not on $\left.P_{i}, i=1,2,3\right\}$

$$
\mathrm{C}_{\frac{1}{2}\left(\mathrm{n}_{-3}\right)}=\left\{t: \iota=\mathrm{P}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}} \text { or } t=\mathrm{Q}_{i} \mathrm{Q}_{\mathrm{j}} \text { with } \mathrm{i} \neq \mathrm{j} \text { or } t\right. \text { is an exterior }
$$ line on $\left.P_{i}, i=1,2,3\right\}$.

Proof can be completed by a similar way in the proof of proposition 2.

REFERENGES

Bumcrot, R.J., 1971. Finite Hyperbolic Spaces, Atti Convegno Geom. Comb. e sue Appl., Perugia, pp. 113-130.
Graves, L.M., 1962. A Finite Bolyai-Lobachevsky Plane, Amer. Math. Monthly, 69, pp. 130132.

Kaya, R., Ozcan, E., 1984. On the Construction of Bolyai-Lobachevsky Planes From Projective Planes, Rendiconti Del Seminario Matematico Di Brescia, 7, pp.427-434.
Olgun, Ş., 1986. Bazı Sonlu Bolyai-Lobachevsky Düzlemlerinde Doğru Sınıfları Üzerine, Doğa (Turkish Journal of Mathematics), vol. 10, Num. 2, pp. 282-286.
Ostrom, T.G., 1962. Ovals and Finite Bolyai-Lobachevsky Planes, Amer. Math. Monthly, 69, pp. 899-901.
Sandler, R., 1963. Finite Homogenous Bolyai-Lobachevsky Planes, Amer. Math. Monthly, 70, pp. 853-854.

[^0]: ISSN 02571-081 A.Ü. Basımevi

