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ABSTRACT

Determination of the line classes (and the number of lines in each class) in some hyper-

bolic planes of type

problem for the special hyperbolic planes m,, 7, 7;, 7, 7, and 7%, _,, 7.

occurs as an open problem. In this paper we give a partial answer to the

INTRODUCTION

It is well known that if a line is deleted from a projective plane then
the remaining substructure forms an affine plane. Graves [1962], Ost-
rom [1962] and Bumcrot [1971] have given examples of hyperbolic
planes obtained by deletion from projective planes. Graves [1962]
also asked for additional constructions of such planes. Sandler [1963]
has shown that if three non-concurrent lines are deleted from a pro-
jective plane then the remaining incidence structure forms a hyperbolic
plane in the sense of Graves [1962]. Kaya-Ozcan [1984] has extended
the Sandler’s construction as follows: Let w be a finite projective plane
of order n and m a positive integer provided that m <n-2. Let 14,t5,.. .,
tm denote distinct m lines of = such that no three are concurrent. Let
7m be the substructure obtained by deleting from = all of the lines 1,
i=1,2,...,m, and all points on these m lines. A point of = is called cor-
ner point if it is intersection of any two lines in the set {i,ty,...,tm}-
Let r denote the minimum number of corner points on a line of 7y, as
a line of w. In [Kaya, R.-Ozcan, E., (1984)] it has been shown that if
3<m<n+r-+% (1— 4/4n-+5) then my is 2 hyperbolic plane.

The lines of 7, are classifiel according to the number of points
which are contained in each line of a class. Let Cg denote the set of all
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lines of 7y, such that each line in it contains exactly s corner points in
7. Each line in G contains exactly n--1-—(m-—s) points. There exist
3 m—r-+1 or 3 (m+1)—r classes of lines in wy, according as m is an
even or an odd positive integer, respectively. The line classes are C,
Critse oy Cmyp or Cp,Cryys. .., Cm_yy/, according as m is even or odd,
respectively. It follows that if m is even then there exist exactly
tm—r--1 classes of lines in 7y and 7y, obtained from a projective
plane, namely Cr,Cr,,...,Cy/,. Furthermore, if qs denote the number
of all lines in Cs then one has the following:

t
)] 2 qs=n’+4n-}+1-—m

8=r

) % squ=(n_1) (‘;‘)

S=r

(I11) sér s"qs= [“—lJr ( 5 i )] ( I;)

Where t is —I-;- or 5

(m—1) according as m is even or odd, ves-

pectively. (In what follows t will be used in that sense). One of the un-
solved problems related to these hyperbolic planes is to determine the
number of lines in each class Cg of wy. A partial answer to the problem
is given in [Olgun, {1986) ]. In the first part of this paper, we formulate
the answer to the question for any finite planes of type =,, 7,, ,, and
determine the required numbers for a ; and 7, in terms of the number
of lines in C,. In the second part, the problem is solved for some special
hyperbolic planes of type wn_, and w,_,. It would be very interesting
to find the full answer to the above problem for any m and n.

THE LINE CLASSES IN =,, ©, ©,, ©;» AND =,
PROPOSITION 1. For any hyperbolic plane =y

0 =3 (3) (") - 2(3)e

@ o= () [ (")) + = s(s—2as
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o awia [1= (2014 () ¢ (3)(5)

PROOF: Equality (i) can be obtained substructing the equalities II
and III side by side. Similarly, (ii) can be obtained from JJ using (i), and
(iii) from I using (i) and (ii).

COROLLARY 1. For any hyperbolic plane ny with m € {3, 4, 5}

0w == (3) (%)
6 a = () [ »1— ("]
wmein i (] (F) 4 (3) (7),

Proof follows from proposition 1 since q;==0, i>>3, for m=4 or 5
and, also q;=0 1>2. for m=3.

Notice that, if m=3 then q,=3(n—1), qo=(n—1)°. Similarly if
m=4 then q,=3, q,=6(n—2), qp=n>—5n+6, and if m=>5 then q,=15,
q,=10(n—4), qo=n>-—9n-}21.

The following corollaries are immediate:

COROLLARY 2. Number of lines in Co, C,, C, of any hyperbolic plane
of type m, and w, can be determined in terms of the number of
linesin C, as follows:

q,=45-3q, q,=105-3q,

q,=15(n—7)43q, and  q=21(n—11)3q,

qo=n"—14n--55—q, qo=0—20n-}120—q,
respectively.

COROLLARY 3. Total number of lines of C, and C, in any hyperbolic
plane 7y, can be determined independently from the number of lines of
Co and C,, and vice versa. That is,
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q,+q, = ( I; ) [n—l—%— (1112—2)] + 3 (Sé S(s—3)qs)

v [(1) = (7)) + 4 (5) ()

THE LINE CLASSES IN =°, , AND =no,_,

Let m be a projective plane of order n. A set of 9 of n-}1 poeints in
7 is called an oval if no three points of @ are collinear. A line of © which
contains exactly one point, two points and no points of (9 is called tan-
gent line, secant line and exterior line, respectively. A point of & is cal-
led an exterior point and interior point if it lies on exactly two tar-
gent lines and on no tangent lines, respectively. A secant line contains
3 (n—1) exterior points and an exterior line contains 1 (n-+1)
exterior points. Total number of the exterior points and interior points
of © is { n(n+1) and } n(n—1), respectively. There are n-1
tangent lines of @ and a tangent line contains n exterior points. Let
7 be a projective plans of odd order n, n>>9 and @ an oval in w. Let  be
the set of interior points of @, and consider the restriciions of the secant
and exterior lines of & to the interior points of 9. Hence the restrictions
of these lines are the set theorical intersections of the secant and exterior
lines of 7w with 8. It has been shown by Ostrom [1962] that the geomet-
ric structure so obtained is a hyperbolic plane. Clearly the above model
of the hyperbolic plane can be considered as a special hyperbolic plane
of type 7y provided that vy, t2,...,1y,1 are the tangent lines of an oval
@. Therefore it will be convenient to use the notation m°,; for the
Ostrom’s hyperbolic plane. Furthermore, in what follows we use wy,
instead of ny, provided that the set of deleted lines, {11,t2,...,tm}, With
3<m<(n, is a subset of the set of all tangent lines of (. It can easily be
shown that each of =°,, =0,,...,n%_,, w_, is a hyperbolic plane but
not 7%, since the non-deleted tangent line in 7%, contains only one point.
It is clear from the definitions of corner and exterior points that a corner
point for w0y, 3<m<n-{1. is also n exterior point which is deleted

from 7. It is known that the line classes of =%, are C(n,,) and C;
+1 +1 7 (N—1)
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and q, = —;“ n(n—1) and q, = 1 n(n+1). We give

2(n+1) 2(n_1)

line classes of ©°,_, and w°_, in the following propositions:

PROPOSITION 2. There exist four line classes in =%, , nafnely Co,

C and the number of lines in these classes are

C C
fn-s» Tz Famope

1 1
G = 2.4 = —5— (@—3) (n—1),qy = —— (0=1) (n+4),

2(N—s) 2(1n—3)

1
qi = —5— {n-+1), respectively.

“2(n-1)

PROOF. Let t,, t, be tangent lines of %, | and P=t Nt,, Qi=@Nt;.
And let Q be any point of @ with Q # @; i=1,2. Clearly none of the two
tnes t, = PQ, and t, = PQ, contains a corner point. Therefore t, and t,
belong to Co. Let ¢ be a secant line which passes through none of P, Q,
and Q,. All exterior points on ¢ except tNt, and tNt, are corner points.

1

(n—1)—2 = 5 (n—3) corner points since

1 contains exactly

there exist

MIH

(n—1) exterior points on 1. Thus ¢ belongs to C, (ns)
2\n.s)

The secant line PQ contains exactly ——%— (n—1)—1 = % (n—3)

corner points since all exterior points on PQ except P are corner points.
Similarly all exterior points on Q, Q (or Q,Q), except Q,QnNt, (or
Q,QNt), are corner points. Hence each of the lines Q;Q contains

1 1
<5 (n—1)—1 = - {n—3) corner points. Thus PQ, Q,Q and Q,Q
belong to C1( ) Now let ¢ be any line not passing through P. All ex-
o\n_.3/)
terior points on t except tNt, and 1Nt, are corner points. i contains

1 1
—5— (n+1)—2 = —— (n—3) corner points since there exist exactly

1 (n+-1) exterior points on v in 7. Thus « belongs to G, The se-
2 1 (n-3).

cant line Q,Q, belongs to C, (a0) since all exterior points on Q,Q, are
2\n—;,



12 E. OZCAN S. OLGUN AND R. KAYA

corner points. Finally, an exterior line passing through the point P con-

tains exactly -;— (n4+1)—1 = ;— {n—1) corner points since all

exterior points on such a line except P are corner points. Thus, these
lines belong to C 3(n-1). Consequently, the line classes in ©%,_, are

Co= {tntz}

C )= {i: v is a secant line passing through none of P,Q,Q,}

3

2\N—5

C-l-(n_.3): fr:1==Q4Q,i=1,2, or ¢ is a secani line on P or an exterior
2

line not' on P}

C%(n—l): {u: v = Q,0Q, or  is an exterior line ¢n P}.

o 1 .
Hence, it is clear that q,=2. U (n—5) = 3 (n—3) (n—1) since
the number of secant lines on P is 21 (n—1), the number of se-
cant lines on Q, or Q, is 2(n—1)-+1, and the total number of secant
1 1
lines of 7o, is —— n(n-+1). 1Qin—3) = —— (1) (n+4) since
the number of secant lines on P is ; (z—1), the number of se-
cant lines on Q, or Q, except Q,Q, is 2(n—1), and the total number of

1 1 .
5 (n—1)% U ) = 2 (n+1) since

exterior lines not on P is

the number of exterior lines on P is 1 (n—1), and Q,Q, € C,
2 1(n-1).

PROPOSITION 3. There exist four line classes in %,_,, namely C,,
C, C, G, and the number of lines in these classes are
§(n~7)’ ?(n—5)7 "2‘(11—3)7

9 1 p— 1
Q=3 4y ) = —— @3) @) @y ) = —— @+ (),

1 - 2 (n-3), respectively.
E(n—s) 2
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SKETCH OF PROOF. Let t,, t,, t, be non deleted tangent lines and
1 Nt,=P,, t,Nt,=P,, t,nt,=P,;; and let 1;n@® =Q; with i= 1,2,3.
One can find the line classes of ©°,_, as follows:

Co= {t,,t,t;)}

C%(n_7) = {11 1 is a secant line passing through nome of Pj, Q;
with i=1,2,3}

C%(n_s) = {i:tis a secant line on P; but not on Q; or a secant line

passing through only one Q; but none of P; or ¢ is an exterior line not
on P, i=1,2,3}

C,l( )= {r: v = PiQ; or 1= Q;Q; with i#] or i is an exterior
2\N—3
line on P;, i=1,2,3}.

Proof can be completed by a similar way in the proof of pro-
position 2.
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