Commun. Fac. Sci. Univ. Ank. Series A V. 41. pp. 73-77 (1992)

ON THE GENERALIZED DARBOUX CURVES

ABDULLAH AZİZ ERGİN

Ground Military School, Ankara

(Received April 17, 1992; Accepted May 29, 1992)

ABSTRACT

G. Saban studied on Darboux curves and obtained some results on a surface in E^3 [1]. E. Özdamar and H. Hacısalihoğlu evaluated the center of (n-1)-osculating sphere at α (t) of a curve α in E^n [2].

In this paper we defined general Darboux curve on a hypersufface M in Eⁿ. Then we generalized some results of G. Saban by using [2].

I. INTRODUCTION

This section includes some basic concepts and definitions about curves. Also, the theorem of Özdamar and Hacısalihoğlu will be given here.

Let α be a curve in E^n and $\{V_1,\,V_2,\ldots,\,V_n\}$ be the system of Frenet vector fields of α . Then i-th curvature of α is $k_i(s)$ and

$$k_i(s) = \langle V_i'(s), V_{i+1}(s) \rangle$$

where $i \leq i < n$ and "'" denotes d / ds [3], s denotes the arc–length of $\alpha.$

Frenet formulas is known [3] as

$$\begin{split} V'_1 &= D_{V_1} \ V_1 &= k_1 V_2, \\ V'_1 &= D_{V_1} \ V_1 &= -k_{i-1} V_{i-1} + k_i V_{i+1}, \\ V'_n &= D_{V_1} \ V_n &= -k_{n-1} V_{n-1}. \end{split}$$

Now let α be a curve on a hypersurface M in Eⁿ. If X_i is the unit tangent vector field of α and N is the unit normal vector field of M, then we can find the system of vector fields $\{X_1, X_2, \ldots, X_{n-1}, N\}$ which is called natural frame field system of the pair of (α, M) [4]. And we know that the i-th geodesic curvature function of α is

$$k_{ig}(s) = \langle X'_{i}(s), X_{i+1}(s) \rangle, \ 1 \leq i \leq n-1$$

If we use $X_n = N$, then we have the following derivative formulas

$$D_{X_{1}}X_{i} = X'_{i} = -k_{(i-1)g} X_{i-1} + k_{ig}X_{i+1} + II(X_{i}, X_{i}) N$$

$$D_{X_1}N = N' = -II(X_1, X_1)X_1 - II(X_1, X_2)X_2 - \ldots - II(X_1, X_{n-1})X_{n-1}$$

where II is the second fundamental form of M and $k_{0g} = k_{(n-1)g} = 0$.

1.1. Definition: Let α be a curve on a hypersurface M in Eⁿ. If the tangent space of (n-1)-osculating sphere coincides with tangent space of M at every point α (s), then α is called a generalized Darboux curve on M.

By the definition it is clear that

$$\alpha$$
 (S) – a = λ N

where "a" is the center of (n-1)-osculating sphere and N is the unit normal of M.

In [2] Özdamar and Hacısalihoğlu proved the following theorem about the center of (n-1)-osculating sphere.

1.1. Theorem: Let α be a curve in E^n , k_i be i-th curvature function of α and $k_{n-1} \neq 0$ at α (s) for every s. The center "a" of (n-1)-osculating sphere is

$$\alpha \ (s) - \sum_{i=2}^{n-1} m_i V_i + \lambda \ V_n, \ 2 < i < n$$

where $\{V_1, V_2, \ldots, V_n\}$ is the system of Frenet n-frame, $m_1=0$, $m_2=-1/k_1$, $\lambda \in IR$ and $m_i=\{m'_{i-1}+m_{i-2}k_{i-2}\}$ $1/k_{i-1}[2]$.

II. GENERALIZED RESULTS

In this section we will give generalized results, about Darboux curves on a hypersurface M in Eⁿ, resembling Saban's in E³.

II.1. Theorem: Let a be the center of the (n-1) -osculating sphere at the point α (s) of a curve α in E^n , then α (s)-a and $\alpha'''(s)$ is perpendicular to each other.

Proof: By using Frenet formulas we can show that

$$\alpha'(s) = V_1$$
 $\alpha''(s) = k_1V_2$
 $\alpha'''(s) = k'_1V_2 + k_1V'_2$

and thus

$$\alpha'''(s) = -k^2 {}_1V_1 + k' {}_1V_2 + k_1k_2 V_2.$$

So

$$<\alpha \text{ (s)-a, }\alpha''' \text{ (s) }> \ =\ <\sum_{i=2}^{n-1} m_i \text{ (s) } V_i \text{ (s) } + \lambda V_n \text{ (s), } -k^2_1 \text{ (s) } V_1 \text{ (s) }$$

$$+ k'_1 \text{ (s) } V_2 \text{ (s) } + k_1 \text{ (s) } k_2 \text{ (s) } V_3 \text{ (s) }>$$

$$= -m_1 \text{ (s) } k^2_1 \text{ (s) } + m_2 \text{ (s) } k'_1 \text{ (s) } + m_3 \text{ (s) } k_1 \text{ (s) } k_2 \text{ (s) }$$

$$= (-1/k_1 \text{ (s)) } k'_1 \text{ (s) } + [(-1/k_1 \text{ (s))}'1/k_2 \text{ (s)}] k_1 \text{ (s) } k_2 \text{ (s) }$$

$$= -\frac{k'_1(s)}{k_1 \text{ (s)}} + \frac{k'_1(s)}{k^2_1 \text{ (s)}} k_1 \text{ (s) }$$

$$= 0$$

which completes the proof of the theorem.

We can evaluate the vector $\alpha^{\prime\prime\prime}$ in terms of higher order geodesic curvatures, so we obtain

$$\begin{split} \alpha''' = & -k^2{}_{1g} \, X_1 + k'{}_{1g} \, X_2 + k{}_{1g} \, k_{2g} \, X_3 + \, [k{}_{1g} \, II \, (X_1, X_2) + \\ & (II \, (X_1, X_2))'] \, N + \, II \, (X_1, X_1) N'. \end{split}$$

Therefore we find

$$<\alpha^{\prime\prime\prime},\,\mathrm{N}>=k_{1g}\;\mathrm{II}\;(\mathrm{X}_{1},\,\mathrm{X}_{2})+(\mathrm{II}\;(\mathrm{X}_{1},\,\mathrm{X}_{1})^{\prime}.$$

II.1. Definition: Let α be a curve on hypersurface M in E^n , then we call that

$$\mathbf{k}_{1g}$$
 II $(\mathbf{X}_1, \, \mathbf{X}_2)$ + $(\mathbf{II} \, (\mathbf{X}_1, \, \mathbf{X}_1))'$

is generalized Darboux function through a and it is denoted by D.

II.2. Theorem: Let M be a hypersurface in E^n and α be a curve in M. If α is a Darboux curve on M then we see

$$D = 0$$

through the α .

Proof: Since α is a Darboux curve on M, by I.1. Definition, we have

$$\alpha$$
 (s) – a = λ N.

Also we defined that

$$D = \langle \alpha''' (s), N \rangle$$
.

And so

$$\begin{aligned} D &= <\alpha'''(s), \lambda_1 (\alpha(s)-a) > \\ &= \lambda_1 < \alpha'''(s), \alpha(s)-a > \\ &= 0. \end{aligned}$$

II.3. Theorem: For all curves on a hyperplane and a hypershere D=0.

Proof: It is clear for hyperplane because of the shape operator S=0.

We know that shape operator is $S=1\,/\,r\,\,I_{n-1}$ for the hypersphere with radious r. It follows that

II
$$(X_1, X_1) = \langle S(X_1), X_1 \rangle$$

= 1/r.

Since 1/r is a constant we obtain

$$(II(X_1, X_1))' = 0 \dots (1)$$

And we find that

II
$$(X_1, X_2) = \langle S(X_1), X_2 \rangle$$

= $1/r \langle X_1, X_2 \rangle$
= 0

So.

From (1) and (2), we have that

$$D = 0$$
.

REFERENCES

- SABAN, G., "Sopra Una Caratterizzazione Delle Sfera" Rendiconti Atti Della Accedemia Nazionale Dei Lincei. CCCLVII A, 1960. pp: 345-349.
- [2] ÖZDAMAR, E. and HACISALÎHOĞLU, H., "Characterizations of Spherical Curves in Euclidean n-Space". Communications de la Faculte des Sci. de l'Univ. d'Ankara. 23 A, 1974. pp: 109-125.
- [3] HICKS, NEOL J., "Notes on Differential Geometry" Van Nostrand Reinhold Company, London, 1974.
- [4] GUGGENHEIMER, H.W., "Differential Geometry" Mc Grow-Hill Book Company, Inc., London. 1963.
- [5] ERGÎN, A.A., "A New Characterization for Darboux Curves" K.H.O. Dergisi, II (I), 1992, pp: 96-102.