THE DRALL AND THE SCALAR NORMAL CURVATURE OF ($\mathbf{r}+1$)DIMENSIONAL GENERALISED RULED SURFACES

MAHMUT ERGÜT

Fırat Üniversity, Dept, of Math. 23119 Elazığ, TURKEY

SUMMARY

In this paper, we obtain some relationships between curvatures of ($\mathrm{r}+1$)-dimensional generalised ruled surfaces. We also calculate the drall of a generalized ruled surface when the base curve is taken as an orthogonal trajectory of the generated spaces.

INTRODUCTION

All manifolds, maps, vector fields etc. will be assumed smooth. Let E^{n} be n-dimensional Euclidean space and M a submanifold of E^{n}. Let $\overline{\mathrm{D}}$ denote the standard Riemannian connection of En^{n} and let D denote the Riemannian connection of M. For any vector fields X,Y on M we have the Gauss equation.

$$
\begin{equation*}
\overline{\mathrm{D}}_{\mathbf{X}} \mathbf{Y}=\mathrm{D}_{\mathbf{X}} \mathbf{Y}+\mathrm{V}(\mathrm{X}, \mathrm{Y}) \tag{1.1}
\end{equation*}
$$

where $\mathrm{D}_{\mathrm{X}} \mathrm{Y}, \mathrm{V}(\mathrm{X}, \mathrm{Y})$ are respectively the tangential, normal components of $\overline{\mathrm{D}}_{\mathrm{X}} \mathrm{Y} . \mathrm{V}$ is called the second fundamental form of M . We also have the Weingarten equation giving the tangential and normal components of $\overline{\mathrm{D}}_{\mathbf{X}} \xi$, where ξ is a normal vector field on M ,

$$
\begin{equation*}
\overline{\mathbf{D}}_{\mathbf{X}} \xi=-\mathbf{A} \xi(\mathbf{X})+\mathbf{D}_{\mathbf{X}} \perp \xi \tag{1.2}
\end{equation*}
$$

Let X, Y be vector field on M, ξ a normal vector field and $<,>$ the standard metric on E^{n}. From (1.1) we have

$$
\begin{equation*}
\left.\left.<\overline{\mathrm{D}}_{\mathrm{X}} \mathbf{Y}, \xi\right\rangle=<\mathrm{V}(\mathbf{X}, \mathbf{Y}), \xi\right\rangle \tag{1.3}
\end{equation*}
$$

and then (1.2) implies

$$
\begin{equation*}
<\mathrm{V}(\mathrm{X}, \mathrm{Y}), \xi>=<\mathrm{A}_{\xi}(\mathbf{X}), \mathbf{Y}> \tag{1.4}
\end{equation*}
$$

Let $\left\{\xi_{1}, \ldots, \xi_{n-m}\right\}$ be an orthonormal basis of $\chi^{\perp}(M)$, the space of normal vector fields on M. Then there exist smooth functions $\mathrm{V}^{\mathbf{j}}(\mathrm{X}, \mathrm{Y})$ ($\mathrm{j}=1, \ldots, \mathrm{n}-\mathrm{m}$) from M into R such that

ISSN 02571-081 A.Ü. Basımevi

$$
\begin{equation*}
\mathrm{V}(\mathrm{X}, \mathrm{Y})=\sum_{\mathrm{j}=1}^{\mathrm{n}-\mathrm{m}} \mathrm{~V}^{\mathrm{j}}(\mathrm{X}, \mathrm{Y}) \xi_{\mathrm{j}} \tag{1.5}
\end{equation*}
$$

and furthermore we may define the mean curvature vector field H by

$$
\begin{equation*}
H=\sum_{j=1}^{n-m}\left(\text { trace } A_{\xi_{j}} / m\right) \xi_{j} \tag{1.6}
\end{equation*}
$$

and the mean curvature function as $\|H\|$. At a point $p \in M, H(p)$ is called the mean curvature vector and $\|\mathrm{H}(\mathrm{p})\|$ the mean curvature at $\mathrm{p}[1]$.

$$
\text { If, for each } p \in M, H(p)=0 \text {, then } M \text { is said to be minimal }[1] \text {. }
$$

Let ξ be a unit normal vector, then the Lipschitz-Killing curvature in the direction ξ at the point $p \in M$ is defined by [2]:

$$
\begin{equation*}
\mathrm{G}(\mathbf{p}, \xi)=\operatorname{det} \mathrm{A}_{\xi}(\mathbf{p}) . \tag{1.7}
\end{equation*}
$$

The Gauss curvature is defined by

$$
\begin{equation*}
G(p)=\sum_{j=1}^{n-m} G\left(p, \xi_{j}\right) \tag{1.8}
\end{equation*}
$$

and if $G(p)=0$ for all $p \in M$, we say M is developable. In particular, if the Lipschitz-Killing curvature is zero for each point and each normal direction, then M is developable.

Following [3], we define $\mathbf{M}(\mathrm{A})$ for any symmetric matrix $\mathrm{A}=$ [$\left.\mathrm{a}_{\mathrm{i}}\right]$ by

$$
\begin{equation*}
M(A)=\sum_{i, j}\left(a_{i j}\right)^{2} . \tag{1.9}
\end{equation*}
$$

Let l be an open interval and $\alpha: \mathrm{I} \rightarrow \mathrm{E}^{\mathrm{n}}$ a curve in Euclidean space. For each $t \in I$, let $\left\{\mathbf{e}_{1}(t), \ldots, e_{r}(t)\right\}(1 \leq r \leq n-2)$ be an orthonormal set of vectors spanning the \mathbf{r}-dimensional subspace $W_{r}(t)$ of $T_{\alpha(t)} \mathrm{E}^{n}$. We have

$$
\begin{equation*}
\left\langle\mathbf{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right\rangle=\delta_{\mathrm{ij}}(\mathbf{i}, \mathbf{j}=\mathbf{l}, \ldots \mathrm{r}) \tag{1.10}
\end{equation*}
$$

and denoting by \dot{e}_{i} the derivat:ive of the vector field e_{i} along the curve α;

$$
\begin{equation*}
\left.<\dot{\mathrm{e}}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right\rangle+\left\langle\mathrm{e}_{\mathrm{i}}, \dot{\mathrm{e}}_{j}\right\rangle=0(\mathrm{i}, \mathrm{j}=1, \ldots \mathrm{r}) \tag{1.11}
\end{equation*}
$$

We may define an ($\mathbf{r}+1$)-dimensional submanifold M of E^{n} as follows.

Definition 1.1.

Let $\alpha,\left\{\mathrm{e}_{\mathrm{i}}\right\}$ be as above and define $\varphi: \mathrm{IxE}^{\mathrm{r}} \rightarrow \mathrm{En}^{\mathrm{n}}$ by

$$
\begin{equation*}
\varphi\left(\mathbf{t}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{r}}\right)=\alpha(\mathbf{t})+\sum_{\mathrm{i}=1}^{\mathbf{r}} \mathbf{u}_{\mathrm{i}} \mathbf{e}_{\mathbf{i}}(\mathbf{t}) \tag{1.12}
\end{equation*}
$$

for all $\left(\mathbf{t}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{r}}\right) \in \mathrm{IxEr}$. Let $\mathrm{M}=\varphi(\mathrm{G})$ where $\mathrm{G}=\mathrm{IxEr}^{\mathrm{r}} \subseteq \mathrm{Er}^{r+1}$. Note that $\operatorname{rank}\left(\varphi_{t}, \varphi_{u_{1}}, \ldots, \varphi_{u_{r}}\right)=\operatorname{rank}\left(\alpha(t)+\sum_{i=1}^{r} u_{i} \mathrm{e}_{i}(\mathrm{t}), \mathrm{e}_{1}(\mathrm{t}), \ldots, \mathrm{e}_{\mathrm{r}}(\mathrm{t})\right)=\mathbf{r}+1$ so M is an ($r+1$)-dimensional submanifold of E^{n}. We call M an $(r+1)-$ dimensional generalised ruled surface. The curve α is called the base curve of the generalised ruled surface and the subspace $W_{r}(t)$ is called the generating space (or briefly, the generation) at the point $\alpha(t)$ [4].

Definition 1.2.
The subspace $A(t)$ given by

$$
\begin{equation*}
\mathbf{A}(\mathbf{t})=\mathbf{S p}\left\{\mathbf{e}_{1}(\mathbf{t}), \ldots, \mathbf{e}_{\mathrm{r}}(\mathrm{t}), \dot{\mathbf{e}}_{1}(\mathbf{t}), \ldots, \dot{\mathbf{e}}_{\mathrm{r}}(\mathrm{t})\right\} \tag{1.13}
\end{equation*}
$$

with dimension $\operatorname{dim} \mathbf{A}(\mathbf{t})=\mathbf{r}+\mathbf{m}, 0 \leqq \mathbf{m} \leqq \mathbf{r}$, is said to be the asymptotic bundle of the generalised ruled surface.
$W_{r}(t)$ is a subspace of $A(t)$ and, using the Gram-schmidt orthogonalisation process, basis of the form:

$$
\begin{equation*}
\left\{e_{1}(t), \ldots e_{r}(t), a_{r_{+1}}, \ldots, a_{r_{+}}\right\} \tag{1.14}
\end{equation*}
$$

may be found. Then there exist $b_{i j}, c_{i k}$ such that

$$
\begin{equation*}
\mathbf{c}_{\mathbf{i}}=\sum_{j=1}^{r} b_{i j} e_{j}+\sum_{k=1}^{n} c_{i k} a_{r+k},(i=1 \ldots r), \tag{1.15}
\end{equation*}
$$

with $\mathbf{b}_{\mathbf{i j}}=-\mathbf{b}_{\mathbf{j i}}$ by (1.11). The basis $\left\{\mathbf{e}_{1}(\mathrm{t}), \ldots, \mathrm{e}_{\mathrm{r}}(\mathrm{t})\right\}$ of $\mathrm{W}_{\mathrm{r}}(\mathrm{t})$ uniquely determines the basis of the asymptotic bundle of a generalised ruled surface and $\left\{\mathbf{e}_{1}(\mathbf{r}), \ldots, \mathrm{e}_{\mathrm{r}}(\mathrm{t})\right\}$ is called the natural carrier basis of $\mathrm{W}_{\mathrm{r}}(\mathrm{t})$ [4].

Now let $\eta_{m_{+1}}=<\alpha_{r}(t), a_{r_{+} m_{+1}}>, K_{k}=<\dot{e}_{k}(t), a_{r_{+}}>$for $k=1, \ldots, m$,

($\mathrm{m}<\mathrm{i} \leq \mathrm{r}$). We now define the following:

$$
\begin{equation*}
\delta_{\mathrm{k}}=\eta_{\mathrm{m}_{1}} / \mathrm{K}_{\mathrm{k}}(\mathrm{k}=1, \ldots, \mathrm{~m}) \tag{1.16}
\end{equation*}
$$

and note that each δ_{k} is invariant under a reparameterisation $\mathrm{t} \rightarrow \mathrm{t}^{*}$ with $\mathbf{d t} / \mathrm{dt}^{*}>0 . \delta_{\mathrm{k}}$ is called the $\mathrm{k}^{\text {th }}$ principle drall (principal distribution parameter) of M lying in $W_{r}(t)$ [4]. The drall (distribution parameter) of M is definad by

$$
\begin{equation*}
\delta=\left|\delta_{1} \ldots \delta_{\mathrm{m}}\right|^{1 / \mathrm{m}} \tag{1.17}
\end{equation*}
$$

We remark that the $k^{\text {th }}$ principle drall and the drall are equal for a ruled surface with $m=1$ in E^{3}.

ON THE CURVATURES OF GENERALISED RULED SURFACES

Let M be an ($r+1$)-dimensional generalised ruled surface and s the arc length parameter of the curve α. Let $\left\{e_{1}(s), \ldots, e_{r}(s)\right\}$ be an orthonormal basis of the generating space $W_{r}(s)$. Let us choose the base curve α to be an orthogonal trajectory of the generating spaces $W_{1}(s) . M$ is given by

$$
\begin{equation*}
\varphi\left(s, u_{1}, \ldots, u_{r}\right)=\alpha(s)+\sum_{i=1}^{r} u_{i} e_{i}(s), u_{i} \in R \tag{2.1}
\end{equation*}
$$

Let $\left\{\boldsymbol{e}_{0}, \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{r}}\right\}$ be a (local) orthonormal basis of the space of vector fields $\chi(\mathbf{M})$ and let us choose $\mathbf{e}_{o}=\varphi^{*}(\partial / \partial \mathrm{s})$. By (2.1),

$$
\begin{equation*}
\varphi_{s}=\dot{\alpha}(\mathrm{s})+\sum_{\mathrm{i}=1}^{\mathbf{r}} \mathbf{u}_{\mathrm{i}} \dot{e}_{\mathrm{i}}(\mathrm{~s}), \varphi_{u_{i}}=\mathrm{e}_{\mathrm{i}}(\mathrm{~s}) \tag{2.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\overline{\mathrm{D}}_{\mathrm{ei}} \mathrm{e}_{\mathrm{j}}=0(\mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{r}) \tag{2.3}
\end{equation*}
$$

and using (1.1),

$$
\begin{equation*}
\mathrm{V}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)=0(\mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{r}) \tag{2.4}
\end{equation*}
$$

and since $\overline{\mathrm{D}}_{\mathrm{e}_{\mathrm{i}}} \mathrm{e}_{0} \perp \mathrm{e}_{\mathrm{j}}$ and $\overline{\mathrm{D}}_{\mathrm{e} i} \mathrm{e}_{0} \perp \mathrm{e}_{0}($ for each $\mathrm{i}, \mathrm{j})$, then

$$
\begin{equation*}
\overline{\mathrm{D}}_{\mathrm{e}_{\mathrm{i}}} \mathbf{e}_{0}=\mathrm{V}\left(\mathbf{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{o}}\right)(\mathrm{i}=1, \ldots, \mathrm{r}) \tag{2.5}
\end{equation*}
$$

Let $\left\{\xi_{1}, \ldots, \xi_{n_{-} \mathbf{r}_{-1}}\right\}$ be an orthonormal basis of normal vector fields. Then $\left\{\mathbf{e}_{0}, \mathbf{e}_{1}, \ldots, \mathrm{e}_{\mathbf{r}}, \xi_{1}, \ldots, \xi_{n_{-r_{-1}}}\right\}$ gives a basis of $T_{\varphi} \mathbf{E}^{\mathrm{n}}$ for each point $p \in M$. Let us write

Where the $a^{j_{i t}}$ are coefficients of the matrix of A_{ξ} :
 $1, \ldots, r ; j=1, \ldots, n-r-1)$, and then by (2.3), $a^{j_{i t}}=0$, and now we may write (2.7) as
furthermor
furthermore, (2.6) and (1.4) lead respectively to the relations:

$$
<\overline{\mathrm{D}}_{\mathrm{e}_{\mathrm{i}}} \mathrm{e}_{\mathrm{o}}, \xi_{\mathrm{j}}>=-\mathbf{a}_{\mathrm{o}}^{\mathbf{j}_{\mathrm{oi}}},(\mathrm{i}=1, \ldots, \mathrm{r} ; \mathbf{j}=1, \ldots, \mathrm{n}-\mathrm{r}-\mathrm{l})
$$

and

$$
\left.<\mathbf{V}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{0}\right), \xi_{\mathrm{j}}>=<\mathrm{A}_{\xi_{j}}\left(\mathrm{e}_{\mathrm{i}}\right), \mathrm{e}_{\mathrm{o}}\right)>=-\mathbf{a}_{\mathrm{oi}},(\mathbf{l} \leq \mathbf{i} \leq \mathbf{r} ; 1 \leq \mathrm{j} \leq \mathbf{n}-\mathrm{r}-1)
$$

and therefore, by (1.5) and (2.5);

$$
\begin{equation*}
V\left(e_{i} e_{0}\right)=\bar{D}_{e_{i} e_{0}}=-\sum_{j=1}^{n_{-1}-1} \mathbf{a}_{j_{0 i}} \xi_{j}(i=1, \ldots, r) \tag{2.9}
\end{equation*}
$$

Now let X,Y be vector fields on the m-dimensional Riemannian manifold M whose curvature tensor field is R. As in [6] we have

$$
\begin{equation*}
<\mathrm{X}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Y}>=<\mathrm{V}(\mathrm{X}, \mathrm{X}), \mathrm{V}(\mathrm{Y}, \mathrm{Y})>-<\mathrm{V}(\mathrm{X}, \mathrm{Y}), \mathrm{V}(\mathrm{X}, \mathrm{Y})> \tag{2.10}
\end{equation*}
$$

where V is the $2^{\text {nd }}$ fundamental form of M embedded in E^{n}.

Definition 2.2.
Let M be any m-dimensional Riemannian manifold with curvature tensor R. Let $\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{m}}\right\}$ be an orthonormal basis of $\mathrm{T}_{\mathrm{p}} \mathrm{M}, \mathrm{p} \in \mathrm{M}$. Then the Ricci curvature tensor field S is defined by (see [7]):
$\mathrm{S}(\mathrm{p}): \mathrm{T}_{\mathrm{p}} \mathrm{MxT}_{\mathrm{p}} \mathbf{M} \rightarrow \mathbf{R} ;(\mathrm{X}, \mathrm{Y}) \rightarrow \mathrm{S}(\mathrm{p})(\mathrm{X}, \mathbf{Y})=\sum_{\mathrm{i}=1}^{\mathrm{m}}<\mathrm{R}\left(\mathrm{e}_{\mathbf{i}}, \mathrm{X}\right) \mathrm{Y}, \mathrm{e}_{\mathrm{i}}>$
The scalar curvature of M is defined by ([7]);

$$
\begin{equation*}
r(p)=\sum_{i=1}^{m} S(p)\left(e_{i}, e_{i}\right) \tag{2.12}
\end{equation*}
$$

or, by (2.11),

$$
\begin{equation*}
r(p)=\sum_{i=1}^{m} \quad \sum_{j=1}^{m}<R\left(e_{j}, e_{i}\right) e_{i}, e_{j}> \tag{2.13}
\end{equation*}
$$

In order to calculate the Ricci curvature of M in the direction of the vector fields $e_{t}(t=1, \ldots, r)$, we use (2.4), (2.9), (2.10) and (2.11) to obtain

$$
\begin{equation*}
S\left(e_{t}, e_{t}\right)=\sum_{j=1}^{n \ldots-1}\left(a_{o t} \mathbf{j}_{o t}\right),(t=1, \ldots, r) \tag{2.14}
\end{equation*}
$$

and, for the direction e_{0};

$$
\begin{equation*}
S\left(e_{0}, e_{o}\right)=-\sum_{t=1}^{r} \sum_{j=1}^{n-r}-1\left(a^{j}{ }_{o t}\right)^{2} \tag{2.15}
\end{equation*}
$$

so that, from (2.14) and (2.15),

$$
S\left(e_{0}, e_{0}\right)=\sum_{t=1}^{r} S\left(e_{t}, e_{t}\right)
$$

now we have proved the following:

Theorem 2.1.

Let $\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{r}}\right\}$ be an orthonormal basis of the generating space of the ($r+1$)-dimensional generalised ruled surface M and $\left\{e_{0}, e_{1}, \ldots, e_{r}\right\}$ an orthonormal basis of $\chi(M)$. If the base curve of M is chosen as an orthonormal trajectory of the generating space, then the Ricci curva-
ture in the direction of e_{o} is equal to the sum of the Ricci curvatures in the directions of the vector fields forming a basis of the generating space.

By (2.12), the scalar curvature of the $(r+1)$-dimensional generalised ruled surface M may be expressed as

$$
\mathbf{r}=S\left(\mathrm{e}_{0}, \mathrm{e}_{0}\right)+\sum_{\mathbf{t}=1}^{\mathbf{r}} \mathrm{S}\left(\mathrm{e}_{\mathrm{t}}, \mathrm{e}_{\mathrm{t}}\right)=2 \mathrm{~S}\left(\mathrm{e}_{0}, \mathrm{e}_{0}\right)
$$

so we have the following corollary:

Corollary 2.1.
If an ($\mathrm{r}+\mathrm{l}$)-dimensional generalised ruled surface \mathbf{M} has an orthogonal trajectory of the generating space chosen as base curve, then the scalar curvature of M is equal to twice the Ricci curvature in the direction of the vector field e_{0}.
(2.15) may now be written in the following way:

$$
\begin{equation*}
\mathbf{r}=-2 \sum_{\mathbf{j}=1}^{\mathrm{n}-\mathbf{r}-1} \sum_{\mathbf{t}=1}^{\mathbf{r}}\left(\mathbf{a}_{\mathbf{j} t}\right)^{2} \tag{2.16}
\end{equation*}
$$

and using (1.3), (1.4), (1.5), (2.6) and (2.8) we have:

$$
\begin{equation*}
\mathrm{V}\left(\mathrm{e}_{\mathrm{o}}, \mathrm{e}_{0}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}-\mathrm{r}_{-1}}\left(\text { trace } \mathrm{A}_{\xi_{j}}\right) \xi_{\mathrm{j}} \tag{2.17}
\end{equation*}
$$

and now (1.6) gives;

$$
\mathrm{H}=(1 / \mathrm{r}+1) \mathrm{V}\left(\mathrm{e}_{0}, \mathrm{e}_{0}\right)
$$

If M is minimal then H is zero and so

$$
\begin{equation*}
\mathrm{V}\left(\mathrm{e}_{0}, \mathrm{e}_{0}\right)=0 \tag{2.18}
\end{equation*}
$$

We say that $X_{p}, Y_{p} \in T_{p} M$ are conjugate if $V\left(X_{p}, Y_{p}\right)=0,[5]$. We have the following theorem:

Theorem 2.2.
Let $\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{r}}\right\}$ be an orthonormal basis for the generating space of an ($r+1$)-dimensional generalised ruled surface M, and let e_{0} be a unit tangent vector field to the base curve, the letter taken to be an orthogonal trajector of the generating space of M. Then the ruled surface M is totally geodesic iff e_{o} is conjugate to each vector $e_{i}, i=1, \ldots, r$.

Proof:

$\left\{\mathrm{e}_{0}, \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{r}}\right\}$ is an orthonormal basis of $\chi(\mathrm{M})$ and for each X, Y $\in \mathcal{X}(\mathrm{M})$ we may write

$$
\mathbf{X}=\mathbf{a}_{0} \mathbf{e}_{0}+\sum_{i=1}^{r} \mathbf{a}_{\mathrm{i}} \mathbf{e}_{\mathrm{i}}, \quad \mathbf{Y}=\mathbf{b}_{0} \mathbf{e}_{0}+\sum_{i=1}^{\mathbf{r}} \mathbf{b}_{\mathrm{i}} \mathbf{e}_{\mathrm{i}}
$$

and then

$$
\begin{aligned}
& \mathrm{V}(X, Y)=\mathbf{a}_{0} b_{0} V\left(e_{0}, e_{0}\right)+\sum_{i=1}^{r}\left(a_{i} b_{0}+\mathbf{a}_{0} b_{i}\right) V\left(e_{i}, e_{0}\right)+\sum_{i=1}^{\mathbf{r}} a_{i} b_{i} V\left(e_{i}, e_{i}\right) \\
& \quad: \Rightarrow
\end{aligned}
$$

If M is totally geodesic, then V is identically zero ([7]), so e_{o} is certinly conjugate to $e_{i}, i=1, \ldots, r$.
$: \leftarrow$
If $v\left(e_{0}, e_{i}\right)=0$ for $i=1, \ldots, r$, then by (2.4) and (2.18), (2.19) reduces to $\mathrm{V}(\mathrm{X}, \mathrm{Y})=0$, and this completes the proof of the theorem.

If trace $\mathrm{A}_{\xi_{j}}=-\mathbf{a}^{j_{00}}$ from (2.8) is subsituted into (1.6) we obtain

$$
\begin{equation*}
(\mathbf{r}+1)^{2}\|\mathbf{H}\|^{2}=\sum_{\mathbf{j}=1}^{\mathrm{n}-\mathbf{r}_{-1}}\left(\mathbf{a}_{\mathrm{o}}\right)^{2} \tag{2.20}
\end{equation*}
$$

Definition 2.3.

Let $\left\{\xi_{1}, \ldots, \xi_{n-m}\right\}$ be an orthonormal basis of $\chi^{\perp}(M)$. Then the scalar normal curvature K_{N} of M is defined by([3]);

$$
\begin{equation*}
K_{N}=\sum_{i, j=1}^{n-m} M\left(A_{\xi_{i}} A_{\xi_{j}}-A_{\xi_{j}} A_{\xi_{i}}\right) \tag{2.21}
\end{equation*}
$$

Theorem 2.3.
The scalar normal curvature of an ($\mathbf{r}+1$)-dimensional ruled surface M is
where $\|H\|$ and r are the mean curvature vector field and scalar curvature of M respectively, and the $a^{j}{ }_{o k}$'s are the elements of the matrix $A \xi_{j}$.

Proof:

We have (2.8)
and similarly for $A \xi_{j}$. We may now compute $A \xi_{j} A_{\xi_{j}}-A \xi_{j} A_{\xi}$:
(where $t, k=0,1, \ldots, r ; i, j=1, \ldots, n-r-1$). Then by (1.9), we obtain

$$
\begin{equation*}
M\left(A_{\xi} A_{\xi}-A_{\xi_{j}} A_{\xi_{i}}\right)=\sum_{t, k=0}^{r}\left(b_{t k}\right)^{2}=\sum_{t, k=0}^{r}\left(a^{i}{ }_{o t} a^{j_{o k}}-a^{j}{ }_{o t} \mathbf{a}^{i}{ }_{o k}\right)^{2} . \tag{2.24}
\end{equation*}
$$

$(\mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{n}-\mathrm{r}-1)$ and so, by (2.21);

$$
\begin{equation*}
K_{N}=\sum_{i, j=1}^{n-\mathbf{r}-1} \quad \sum_{t, k=0}^{r}\left(a^{i}{ }_{o t} \mathbf{a}^{j}{ }_{o k}-\mathbf{a}^{j_{o t}} \mathbf{a}^{i}{ }_{o k}\right)^{2} \tag{2.25}
\end{equation*}
$$

and by expanding and using (2.16), (2.20) we complete the proof.

Corollary 2.2.
The scalar normal curvature of a minimal $(r+1)$-dimensional generalised ruled surface is given by:

Proof:
For a minimal surface we have $\mathrm{H}=0$ and so the corollary is clear .

Corollary 2.3.
For a totally geodesic ($\mathrm{r}+1$)-dimensional generalised ruled surface, the scalar normal curvature is identically zero.

Proof:
M is totally geodesic implies V is identically zero and so $A \xi_{j}$ is the zero map for each $\mathrm{j}=1, \ldots, \mathrm{n}-\mathrm{r}-1$.

Theorem 2.4.
Let M be an ($\mathbf{r}+1$)-dimensional generalised ruled surface. Let the base curve α be an orthogonal trajectory of the generating space be parameterised by are length. Then the $k^{\text {th }}$ principle distribution parameter is

$$
\delta_{k}=\left(1-\sum_{t=1}^{r} \eta_{t}^{2} t\right)^{1 / 2} /\left(\left\|\bar{D}_{e_{0}} e_{k}\right\|^{2}-\sum_{j=1}^{r}<\bar{D}_{e_{0}} e_{k}, e_{j}>^{2}\right)^{1 / 2}
$$

$(k=1, \ldots, m)$, and the distribution parameter (drall) is
$\delta=\left(1-\sum_{\mathbf{t}=1}^{\mathbf{r}} \eta^{2} \mathrm{t}\right)^{1 / 2} / \prod_{\mathrm{k}=1}^{\mathrm{m}}\left(\left\|\overline{\mathrm{D}}_{\mathrm{e}_{\mathbf{0}}} \mathbf{e}_{\mathrm{k}}\right\|^{2}-\sum_{\mathrm{j}=1}^{\mathrm{r}}<\overline{\mathrm{D}}_{\mathrm{e}_{\mathrm{o}}} \mathbf{e}_{\mathrm{k}}, \mathbf{e}_{\mathbf{j}}>^{2}\right)^{1 / 2 \mathrm{~m}}(\mathbf{k}=1, \ldots, \mathrm{~m})$
Proof:
Using (1.16) and (1.17) we obtain

$$
\begin{align*}
\delta=\{\| \dot{\alpha}- & \left.\sum_{j=1}^{\mathbf{r}}<\dot{\alpha}, \mathrm{e}_{\mathbf{j}}>\mathbf{e}_{\mathbf{j}}-\sum_{\mathbf{t}=1}^{\mathrm{r}}<\dot{\alpha}, \mathbf{a}_{\mathrm{r}_{+1}}>\mathbf{a}_{\mathbf{r}_{+1}} \|\right\} /\left\{\| \dot{e}_{\mathrm{k}}-\right. \\
& \left.\sum_{\mathbf{j}=1}^{\mathbf{r}}<\dot{e}_{\mathrm{k}}, \boldsymbol{e}_{\mathbf{j}}>\mathbf{e}_{\mathbf{j}} \|\right\}(\mathbf{k}=1, \ldots, \mathrm{~m}) \tag{2.26}
\end{align*}
$$

The base curve α is an orthogonal trajectory so $\left\langle\bar{\alpha}, \mathrm{e}_{j}\right\rangle=0$ for $\mathrm{j}=1, \ldots, \mathrm{r}$. Substituting

$$
<\dot{\alpha}, \mathrm{e}_{j}>=0 \quad(\mathbf{j}=1, \ldots, \mathrm{r}) \quad \dot{\mathrm{e}}_{\mathrm{k}}=\overline{\mathbf{D}}_{\mathbf{e}_{0}} \mathrm{e}_{\mathrm{k}} \quad \text { and } \quad<\dot{\alpha}, \mathrm{a}_{\mathrm{r}+1}>=\eta_{\mathrm{t}} \quad(\mathrm{t}=1, \ldots, \mathrm{~m})
$$

into (2.26), the desired result is obtained.

REFERENGES

[1] KOBAYASHI, S. and NOMIZU, K., Foundations of differential geomerty, Vols. 1, II (1963) Interscience Publishers (John Wiley \& sons), New-York.
[2] THAS, C., Properties of ruled surfaces in the Euclidian space En, Acedemice Sinica Vol. 6, 1, 133-142.
[3] HOUH, C.S., Surfaces with maximal Lipschitz-Killing curvature in the direction of mean curvature vector. Proc. Amc. Maths. Soc. Vol. 35, 2, 537-542 (1972).
[4] FRANK, H. und GIERING, O., Verallgemeinerte regelflachan. Math. Zelt. 150, 261271 (1976).
[5] FRANK, H., On kinematics of the n-dimensional Euclidean space. Contributions to geometry. Proceedings of the Geometry Symposium in Siegen. 355-342 (1978).
[6] HACISALİHOĞLU, H.H., Diferensiyel geometri. I.U. Fen-Edebiyat Fakültesi yayınları, Mat.2, Malatya (1983).
[7] CHEN, B.Y., Geometry of manifolds. Marcel Dekkar, New York, (1973).

