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ABSTRACT

The aim of this paper is to investigate sufficient conditions {Theorem 1) for the nonexistence
of nontrivial periodic solutions of the antonomous equation (1.1) and (Theorem 2) the existence
of periodic solutions of the nonautonomous equation (1.2).

1. INTRODUCTION

In this paper we consider certain eighth order autonomous and
nonautonomous differential equations. In [1] and [2] some interesting
results are studied for sixth and seventh order differential equations.

We propose to obtain similar results for
xX® 4 a,x0) - ayx(5) 4 ax@ 4+ f(x, X, x, x, x4, x00), x6), xM) x

F s ()X 4 £ (5%, %, % x@, xO, xO, x M) x 4 fy(x) = 0 (L)

wherein a, a;, a, are constants and fs, £, £, £ are continuous functions
depending only on the arguments shown,

and

xB®) + ax©® + a,x(® 4 ax@ 4 asx -+ gq(x) x + g7 (x, x) x

+ gg(x) = p (t, x, x, X, X, X, x5), x6), x7) (1.2)
wherein a5, a,, a,, as are constants and g6> 87> g3 and p are continuous
functions depending only on the arguments shown. The function p is
assumed to be w-periodic in t, that is
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Pt Xppeun, Xg) = p (t 4 ©, Xp,. .., Xg)
for some w > 0 and for arbitrary x;,..., X,.

Firstly, let us consider the eighth crder constant—coefficient dif-
ferential equation

x®)da) xO4a, xO)tfa, x@ag §+aﬁ x‘x7 x+agx = 0, (1.3)

and the corresponding characteristic equation

w(r) =8+ and - apd 4- apd 4- agd + agr? + axr + ag = 0. (1.4)
if § is an arbitrary real number, then

b (iB) = B5 — ayB0 + a B4 - agB? + ag + iB (ap* - asp? + ay)
and if a; 3£ 0, then

a4 —aB2 -+ a; = a; (B2~ §ag7lag)? 4 a; - fa;7lal.
Therefore, if .
a3 7 0, a3 ¢ 0 and {(a; -} a;7! a%) sgna; > 0, (1.5)
then (1.4) cannot have any purely imaginary root. By‘fhe geﬁeral
theory, this, in turn, implies firstly that (1.3) has no periodic solution
other than x == 0. and secondly that the perturbed equation

x®) - a; x0) + ax®ta, x @ aS.x“ + ag x 4 a; x + agx = p(t),
in which p is a continuous w—periodic function of t, has an w—periodic
solution subject to (1.5).

The main aim of the present paper is to generalise the above “esults
by taking into account equations (1.1) and {1.2). With reference to this
we state and prove two theorems in the following part of this paper.

Theovrem 1, If a, % 0 and
(1) £5(0) = 0 and fy(x) 5= 0 for x 7 0,
(ii) £, (xq,..., Xg) sgnay > L1 a, 7 25 (xy,.. ., X,)
for arbitrary xy,...,Xg, then the equation (11) has no periodic solution
other than x = 0.

Theorem 2, a; 5= 0 and assume that

(i) inf g; (x2, x3) sgnay > } |a; ["1al

X2, X3
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(ii) gg(x) satisfies

gq (X) sgnx > o0 as x| - w (1.6)
or

gg (%) sgox -~ —w as |x| > oo (1.7
(iii) there is a finite constant k such that

P(txpLxg) | <k
for all t, xq,..., x4

Then the equation (1.2) has at least one w-periodic solution.

2. Proof of Theorem 1.

Using x; = x, x5 = );7 Xy = X, X, = X, x5 = x4, x4 = x0, x,
= x(, xg = x( the differential equation (1.1) can be transformed to
the equivalent system

Xi=x.q (i=1...,7)

"‘8 = —a3 X7 = a3 Xg — a4X5 ~f5 (X1, . ., Xg) x4 — £ (%) x5

£, (X150 .., Xg) X5 — fg (x9)- (2.1)

Let (y1,..., yg) = (yi(t),..., yg(t)) be an arbitrary o—periodic
solution of (2.1), that is

(Vi(t)- -5 y3(t) = (yi (t + «) ooy y3 (8 + @) (2.2)

for some o ~ 0.

For the completion of the proof of Theorem 1, it is enough to
establish that

0=y1=y2= ... =y

The main tool here is the function V(xi,..., xg) which is defined
by V = U (sgna,) where

X1 X2
U = —x (x5 + azxg + a3xs + azx,) - j fy(s) ds —Oj nfs () dy
0

- 3 (ax2; + axx?, - x2y)
+ X5 (X7 + anxs - oayxy - agx;) — XX, (2.3)

Consider the function
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0 (1) = V (y1(t):- . v5 (1)

This function is bounded, since V is continuous and yy,..., yg are

periodic in t.

A straightforward calculation gives
. d :
= o V(Y1005 ¥y
S dt (,VI yb)

= {_Y3 (vs -+ axys -+ a3y + azyy ~¥2 [_32}77 ~ 3¥6 T 84Y5
A (YY) Ve~ fs (v2) vy = £ (Y- - ¥e) Y2~ f3 (¥1)]
—y2 (a2y7 + a3y5 - ayys) - vafy (v1) — yayafs (v2)
—a,Y3Y4 ~ 2¥4Ys -+ Vs¥e + ¥4 (y7 T a2ys + a3ys - a5ys)
+ v3(ys + a2y + a3ys 4 a4y4) — Ys¥e ~ Ya¥7l sgna;
{a3y2 - £5 (1o - -0 o) Yoy + £ (1o- 5 ¥3) Y221 sgnay
= lay| {y% + (a3 5 (V1. - -2 ¥5) Yoy sgnay) +
£7(Y15- - -5 ¥g) Y22 sgnay
= lazl {ys + & la3 7 f5(y1a- - o5 yp) Y2 sgnay)
+ {5 (Yoo ye) sgmay - 4 [ag [T (y ., )b v (24)

~
&

By hypothesis (ii),

® > 0 for all t.

Thus, ®(t) is monotone in t and, recalling that ©(t) is bounded, we

have that lim ©(t) = O, (constant). In view of (2.2) we can write
t - o

O () = 0 (t + mx) (2.5)

for any arbitrarily fixed t and for arbitrary integer m, and then letting
m — oo in the right-hand side of (2.5) it follows that

@ (1) = O for all t. (2.6)
The resuit {2.6) implies that

O (t) = 0 for all t.

Therefore, from (2.4) and according to liypothesis (ii) of Théorem 1,
it must be that

yp = 0 for all t. : 2.7
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Since v = yi (1= 1,...,7),(2.7) in turn implies that

Y1 = Xo (constani), y,=0=y,=ys=ys=y,=yg=7yg for all t. (2.8)

Since (yj,...,yg) is a selution of (2.1), it is evident from (2.7) and
(2.8) that fy(x¢) = 0; so that x3 = 0, by hypothesis (i). Thus

(Yire o0 ¥g) = (0,..., 0).

This completes the proof of Theorem 1.

3. PRELIMINARIES FOR THE PROOF OF THEOREM 2

First, it is required here to reproduce a theorem [3] which was
proved by the Leray-Schauder fixed point technique. It is as follows:

Theorem, The vector differential equation
x =f({t,x) [f(t + o, x)=f(t, x) continuous]

admits at least one w-periodic solution if there is a decomposition of

the right-hand side
n
f=A@®x +2 gl x)
=1

[A(+ o) = A (1), gt + v, x) = gj (t, x) continuous ]
with the following properties:

a) the homogeneous linear equation
x'=A@)x
has no non-irivial w—periodic solution;

b) there exists an a priori estimate independent of p for the
w—periodic solutions of the equation

n
x'=A(t)x 4+ .}] gy (b, x), 0 <<p <1,

1

According to this theorem, our equation (1.2) is embedded in the
parameter (u)-dependeént equation '

x® 4 a, x©6) 4 a, x5 a, x4 | asls.(. + uge(x) X + g* (x, x) x
+g%x) =pp (tx...,x(M) (0w, (3.1)
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which reduces to (1.2) when p. = 1. The functions g*,, g*; are defined by

g*; = (L-u) by sgnas +- ug (x, ¥), (3.2)
g% = (1-) by x -+ wa(x), (3.3)
where b, is a constant such that
g7 (x5, X3) sgnay > b, > 1 ay |71 a2 forall x,, x; and (3.4)
the constant by in (3.3) is fixed, positive or negative according as gg

is subject to (1.6) or (1.7).

Also, using x==x, Xj=xy,; (i=1,..., 7), the parameter (u)-dependent
equation (3.1) can be written in the system form

X = AX 4+ G (X, 1) (3.5)
where

X = (x1, X2, X3, Xy, X5, X4, X4, X0)T, G = (0,0, 0,0,0,0, 0, DT,

-0 1 0 0 0 0 0 0~
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

A =

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

_~bg —b.sgna; O -ag —ay -8y —aj 0

and

O = p(t, xq,. .., Xg)-gs(X2) X3 + byxpsgnas —g; (x2, X3) X +

byxy —gg (x1)- (3.6)

Note that G (X, t) satisfies the condition G (X, t) = G (X, t -+ o)
since the function p is w—periodic in t. Farthermore, when p =0 the
system (3.5) reduces to the homogeneous linear equation

X = AX (3.7)
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which has no non-—trivial w—periodic solution. In fact, the eigenvalues
of A are the roots of the equation

8 4 ab 4 aS 4 a,ré + alsrr3 -+ (bssgna;) r +4- by = 0 (3.8)
which can be found from equation (1.4) by substituting ag = 0, a,; =
b,sgna, and a; = b,. Hence, since

ay £ 0, bg 720 and b, -} | ay;["1a2 > 0,

equation (3.8) has no purely imaginary roots, and so by the general
theory, the homogeneous equation (3.7) has no non—trivial w—periodic
solution. Thus the matrix (8©*-1), 1 being the identity 8 x 8 matrix,
is non-singular, and hence, an «w—periodic solution of (3.5) is written in

the form [5]:

X (U = u (00 1) j j’m 8004 G (X (5), 5) ds. (3.9)

To complete the preof of Theorem 2, it is necessary to establish
that

max® (|x@®)]+ [x(@®)+ ... + |xD@)) <D, (3.10)
I<t<w

for every w-periodic solution x(t) of (3.1), where D is a constant whose
magnitude is independent of p.

Actually it will be enough for our purpose here merely to show that

max (| x(t)[ 4+ | x(¥) ]+ [x(t)]) < Dy .11
I<t<o

for every w—periodic solution x(t) of (3.1). Indeed, if (3.11) holds then,
by hypothesis (iii) of Theorem 2, the function @ defined by (3.6) is
bounded, which implies the boundedness of the right-hand side of
(3.9) subject to the standard uniform norm.

Throughout what follows D, D,, D,, D;, D,, D, Dy, D,. denote
positive constants whose magnitudes depend only on k, aj, a3, a,, as,
bo, bg, g6, g4, g3 but not on .

4. PROOF OF THEOREM 2

Let us concider equation (3.1) ‘and assume that gg is subject to
(1.6). According to this assumption, by is positive constant. The main
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tool in our verification of (3.11) is a function W(x,,...,Xq), defined by
W = H {sgna,)
where

X1 X2
H = —x; (x5 + axxg + azxs + azx,) —OJ g¥g(s) ds - HOJ nge(n) dn
=5 (ax2y 4 arx?, — x24) + x5 (x5 + axg + a;x, + a4xX;) — XX
Given any solution x(t) of (3.1), set
Zolt) = W (x(1), x(t),. .., x(D(1)).

By an elementary differentiation, we get
Ty = {a3x2 + agx x + g*; (x,X) x2 - u x p! sgnay
= lay | {x+ § [a; |7 a5 x sgna,} 2

+ {g";sgna; ~ } |a; |71 a2y} \2 - B P;P sgna,.
By (3.2) and (3.4)

g*; sgnay = (1-p) b, + ug; (x, ) sgna,
> b,
and again from (3.4),
g*7 sgnay — ¢ [ay"laZ; > D,
for some Dj.

By hypothesis (iii),

lpxpsgna;| <k [x [
Therefore

502 ay | {x»‘«é | a, ["lasisgna3}2+D1;§2—k ]x]

>D,(x2+x3)-D (D= k2/4D)) (4.1)

for some sufficiently small D,.
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From now onwards, we assume that x(t) is an w—periodic solution
of (3.1). By integrating both sides of (4.1) with respect to t from t = 0

to t = w, we get
w . .
0> D, J (x2 + x2) dt - D
0
and thus it follows that

w W .,
J X2 dt < D, J <2 dt < D, 4.2)
0 0

In view of the periodicity condition x(O) =x () we conclude that
X (Tl) = 0 at some T € (0, ©). Hence

x(t)EX(Tl)—}—TJ x(s)ds:TJ x (s) ds

1 1

and, therefore,

.. « 10 1/2
max |x (t)| < j [ x(s)] ds gm1/2( J x2 (s) ds)
0<t<o 0 0
by Schwarz’s inequality.
By (4.2), we obtain
max | x (t)| < 0l/2 D,U2 = D, (4.3)

0<t<w

Now, since

. . L
x (t) = x (Ty) + [ X (s) ds,
T,
and according to the periodicity condition (x(0) = x (w)) we can choose

a T, e (0, @) such that x (Ty) = 0, we obtain, in view of (4.3), the
following

max | x (t) | < D . (4.4)
0<t<o



64 HUSEYIN BEREKETOGLU

Now integrating both sides of (3.1) with respect to t and using
the fact that x (t) = x (t 4+ ©) we obtain, after some computations,

[ 1000 bgx w0y e = [ (6w x O (30 x
0 0 (4.5)

Since p is bounded and 0 < p. < 1, it is clear from (4.3) and (4.4) that
the right-hand side of (4.5) is bounded:

© .
j @ ip (6 X, 0, xM) - g, (x,x) x} dt | < Dg.
0

Now according to (4.5), there exists some T; € (0, ) such that
| x(T3) | < Dy (4.6)

for some sufficiently large D, because gg is subject to (1.6) and bg > 0.
Thus, from the inequality (4.6) and the identity

t .
x (8) = x (T3) + j % (s) ds
T

3

combined with (4.4), we at once get the following estimate

max | x(t)| < D; + Dsw2. 4.7)
<t<w
Thus, when gg is subject to (1.6), (3.11) helds for every w-periodic
solution of (3.1).

On the other hand, if g; is subject to (1.7), then by must be assumed
as negative constant. Therefore, the estimate (4.6) can be obtained
from (4.5). Moreover, the estimates (4.3) and (4.4) also follow exactly
as before. Hence, we shall have (4.7) and this completes the proof.

Example. The equation

L) X

+x2

x® 1 2 x6 L xO) 4 x4 4 x + (1 -
2

16 cost

+ x = ~2sint + .. 2 2 <2 2
28 +x2+x24+x@W 4-x6 L5 (x24x24-x5) +xO)

satisfies all the hypotheses of Theorem 2, and therefore, it has at
least one w—periodic solution. In fact, the funection x = cost, with
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2m-periodie, is a solution of this equation. Note that the function

Pt x x,..., x(M) is 2n—periodic in t.
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