ON THE 3-PLANE AND CONE AND SPHERES

ABDULLAH AZIZ ERGIN**H. HILMI HACISALIHOĞLU**
*Kara Harp Okulu, Ankara
**Science Faculty, Ankara University, Ankara.

SUMMARY

Elkholy and Areefi showed that in a space time, the intersection of a plane, passing through the origin, with the ligt cone, given by the equation $\sum_{i=1}^{3} x_{i}{ }^{2}-x_{4}^{2}=0$, is two 2-planes perpendicular to each other. In this study, instead of Elkholy-Areefi's ligt cone in a space time by dealing with the cone given by the equation, $a_{1}^{\prime} x_{1}{ }^{2}+a_{1}^{\prime} x_{2}{ }^{2}+a_{1}^{\prime} x_{3}{ }^{2}-b x_{4}{ }^{2}=0$ and showing that also it's intersection with 3 -plane, passing through the origin, is two 2 -planes perpendicular to one enother, the generalization of the article of Elkholy-Areefi has been obtained. Furthermore, validity is proved for the sphere given by the equation

$$
\sum_{i=1}^{3} x_{i}^{2}+\alpha=x_{4}^{2}
$$

I. Introduction

1.2. Definition

A diametral plane is known by the equation

$$
\begin{equation*}
l \frac{\partial \mathbf{F}}{\partial \mathbf{x}}+\mathbf{m} \frac{\partial \mathbf{F}}{\partial \mathbf{y}}+\mathbf{n} \frac{\partial \mathbf{F}}{\partial \mathbf{z}} \tag{1}
\end{equation*}
$$

where

$$
F(x, y, z)=a x+b y+c z+2 f y z+2 g z x+2 h x y+d=0 \quad[1] .
$$

Calculating $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ and $\frac{\partial F}{\partial z}$, the equation of diametral plane is obtained as

$$
\begin{equation*}
\mathrm{x}(\mathrm{a} l+\mathrm{hm}+\mathrm{gn})+\mathrm{y}(\mathrm{~h} l+\mathrm{bm}+\mathrm{fn})+\mathrm{z}(\mathrm{gl}+\mathrm{fm}+\mathrm{cn})=0 . \tag{2}
\end{equation*}
$$

ISSN 02571-081 A.Ü. Basımevi

1.2. Definition:

If the normal of a diametral plane is linearly dependent to the vector ($l, \mathrm{~m}, \mathrm{n}$), then the diametral plane given by (2) is called perpendicular to the line

$$
\frac{\mathrm{x}}{\mathrm{l}}=\frac{\mathrm{y}}{\mathrm{~m}}=\frac{\mathrm{z}}{\mathrm{n}} .
$$

If the diametral plane is perpendicular to the line
$\frac{\mathbf{x}}{l}=\frac{\mathrm{y}}{\mathrm{m}}=\frac{\mathrm{z}}{\mathrm{n}}$ then the homogeneous system of linear equations,

$$
\left.\begin{array}{l}
(\mathrm{a}-\lambda) l+\mathrm{hm}+\mathrm{gn}=0 \tag{3}\\
\mathbf{h} l+(\mathrm{b}-\lambda) \mathrm{m}+\mathrm{fn}=0 \\
\mathrm{~g} l+\mathrm{fm}+(\mathrm{c}-\lambda) \mathbf{n}=0
\end{array}\right\}
$$

is obtained. To have non-trivial solutions, the coefficient determinant must be zero for this equation system. That is,

$$
\begin{equation*}
\lambda^{3}-\lambda^{2}(\mathbf{a}+\mathbf{b}+\mathbf{c})+\lambda\left(\mathbf{b} \mathbf{c}+\mathbf{c a}+\mathbf{a b}-\mathbf{h}^{2}-\mathrm{g}^{2}-\mathbf{f}^{2}\right)-\mathbf{D}=0 \tag{4}
\end{equation*}
$$

where,

$$
\mathbf{D}=\left|\begin{array}{lll}
\mathbf{a} & \mathrm{h} & \mathrm{~g} \\
\mathbf{h} & \mathbf{b} & \mathbf{f} \\
\mathbf{g} & \mathbf{f} & \mathbf{c}
\end{array}\right|
$$

1.3. Definition

The equation,

$$
\lambda^{3}-\lambda^{2}(a+b+c)+\lambda\left(b c+c a+a b-h^{2}-g^{2}-f^{2}\right)-D=0
$$

is called the cubic discriminating of $F(x, y, z)[1]$.
Regarding to the equation in (4), for λ there are at most three solutions. For each $\lambda_{i}, 1 \leq i \leq 3$, we can find the three non-trivial solutions ($l_{i}, \mathrm{~m}_{\mathrm{i}}, \mathbf{n}_{\mathbf{i}}$). So,

$$
l_{\mathrm{i}} \mathbf{x}+\mathrm{m}_{\mathrm{i}} \mathbf{y}+\mathbf{n}_{\mathrm{i}} \mathbf{z}=0, \quad \mathbf{1} \leq \mathrm{i} \leq 3
$$

diametral planes are obtained.

II. The Main Results

Let

$\mathrm{A}_{1} \mathrm{x}_{1}+\mathrm{A}_{2} \mathrm{x}_{2}+\mathrm{A}_{3} \mathrm{x}_{3}+\mathrm{A}_{4} \mathrm{x}_{4}=0$
be a 3 -plane passing through the origin. Getting $\frac{A_{i}}{A_{4}}=B_{i}$,
$1 \leq i \leq 3$, the equation of this plane becomes,

$$
\begin{equation*}
\sum_{i=1}^{3} B_{i} x_{i}+x_{4}=0 \tag{5}
\end{equation*}
$$

On the other hand, for the cone given by

$$
\sum_{i=1}^{3} a_{i}{ }^{\prime} x_{i}{ }^{2}-b x^{2}{ }_{4}=0
$$

substituting $\frac{\mathbf{a}_{\mathbf{i}}{ }^{\prime}}{\mathbf{b}}=\mathbf{a}_{i}$, the equation reduces to,

$$
\begin{equation*}
\sum_{i=1}^{3} a_{i} x_{i}{ }^{2}-x_{4}^{2}=0 \tag{6}
\end{equation*}
$$

From (5) and (6) we have that

$$
\left(\sum_{i=1}^{3} B_{i}^{2} x_{i}\right)^{2}=\sum_{i=1}^{3} a_{i} x_{i}^{2}
$$

or

$$
\Rightarrow \sum_{i=1}^{3}\left(B_{i}{ }^{2}-a_{i}\right) x_{i}{ }^{2}+\sum_{\substack{i, j=1 \\ i \neq j}}^{3} B_{i} B_{j} x_{i} x_{j}=0
$$

If we denote $B_{i}{ }^{2}-a_{i}=C_{i}{ }^{2}$, we have the quadric

$$
\begin{align*}
& F\left(x_{1}, x_{2}, x_{3}\right)=C_{1}{ }^{2} x_{1}{ }^{2}+C_{2}{ }^{2} x_{2}{ }^{2}+C_{3}{ }^{2} \mathbf{x}_{3}{ }^{2}+2 B_{1} B_{2} x_{1} x_{2}+ \\
& 2 B_{1} B_{3} x_{1} x_{3}+2 B_{2} B_{3} x_{2} x_{3}=0 . \tag{7}
\end{align*}
$$

The diametral plane of this quadric can be given as,

$$
\begin{equation*}
l \frac{\partial \mathbf{F}}{\partial \mathbf{x}_{1}}+\mathbf{m} \frac{\partial \mathbf{F}}{\partial \mathbf{x}_{2}}+\mathbf{n} \frac{\partial \mathbf{F}}{\partial \mathbf{x}_{3}}=0 . \tag{8}
\end{equation*}
$$

Calculating $\frac{\partial \mathrm{F}}{\partial \mathrm{x}_{\mathrm{i}}}, \mathbf{1} \leq \mathrm{i} \leq 3$, we can have

$$
\begin{gather*}
\left(\mathrm{C}_{1}{ }^{2} l+B_{1} B_{2} m+B_{1} B_{3} \mathbf{v}\right) x_{1}+\left(B_{1} B_{2} l+C_{2}^{2} m+B_{2} B_{3} n\right) x_{2}+ \\
\left(B_{1} B_{3} l+B_{2} B_{3} m+C_{3}^{2} n\right)=0 . \tag{9}
\end{gather*}
$$

If we consider that this diametral plane is perpendicular to the line

$$
\frac{\mathrm{x}_{1}}{l}=\frac{\mathrm{x}_{2}}{\mathrm{~m}}=\frac{\mathrm{x}_{3}}{\mathrm{n}}
$$

then we have,

$$
\begin{aligned}
\frac{\mathrm{C}_{1}^{2} l+\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~m}+\mathrm{B}_{1} \mathrm{~B}_{3} \mathrm{n}}{l} & =\frac{\mathrm{B}_{1} \mathrm{~B}_{2} l+\mathrm{C}_{2}^{2} \mathrm{~m}+\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{n}}{\mathrm{~m}} \\
& =\frac{\mathrm{B}_{1} \mathrm{~B}_{3} l+\mathrm{B}_{2} \mathrm{~B}_{3} \mathbf{m}+\mathrm{C}_{3}^{2} \mathrm{n}}{\mathrm{n}}=\lambda,
\end{aligned}
$$

and therefore we can write the homogeneous system of linear equations,

$$
\left.\begin{array}{l}
\left(\mathrm{C}_{1}^{2}-\lambda\right) l+\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~m}+\mathrm{B}_{1} \mathrm{~B}_{3} \mathrm{n}=0 \tag{10}\\
\mathrm{~B}_{1} \mathrm{~B}_{2} l+\left(\mathrm{C}_{2}^{2}-\lambda\right) \mathrm{m}+\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{n}=0 \\
\mathrm{~B}_{1} \mathrm{~B}_{3} l+\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~m}+\left(\mathrm{C}_{3}^{2}-\lambda\right) \mathrm{n}=0
\end{array}\right\}
$$

The cubic discriminating of the equation (7) is

$$
\begin{gather*}
\lambda^{3}-\lambda^{2}\left(\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\mathrm{C}_{3}{ }^{2}\right)+\lambda\left(\mathrm{C}_{2}{ }^{2} \mathrm{C}_{3}{ }^{2}+\mathrm{C}_{1}{ }^{2} \mathrm{C}_{2}{ }^{2}+\mathrm{C}_{1}{ }^{2} \mathrm{C}_{2}{ }^{2}-\right. \\
\left.\mathrm{B}_{2}{ }^{2} \mathrm{~B}_{3}{ }^{2}-\mathrm{B}_{2}{ }^{2} \mathbf{B}_{3}{ }^{2}-\mathrm{B}_{1}{ }^{2} \mathrm{~B}_{2}{ }^{2}\right)-\mathrm{D}=0 \tag{ll}
\end{gather*}
$$

where

$$
D=\left|\begin{array}{lll}
\mathrm{C}_{1}{ }^{2} & \mathrm{~B}_{1} \mathrm{~B}_{2} & \mathrm{~B}_{1} \mathrm{~B}_{3} \\
\mathrm{~B}_{1} \mathrm{~B}_{2} & \mathrm{C}_{2}{ }^{2} & \mathrm{~B}_{2} \mathrm{~B}_{3} \\
\mathrm{~B}_{1} \mathrm{~B}_{3} & \mathrm{~B}_{2} \mathrm{~B}_{3} & \mathrm{C}_{3}{ }^{2}
\end{array}\right|
$$

Substituting $B_{i}{ }^{2}=C_{i}{ }^{2}+a_{i}$, equation (11) becomes,

$$
\begin{align*}
& \lambda_{3}-\lambda^{2}\left(\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\mathrm{C}_{3}{ }^{2}\right)-\lambda\left[\left(a_{2}+a_{3}\right) \mathrm{C}_{1}{ }^{2}+\left(a_{1}+a_{3}\right) \mathrm{C}_{2}{ }^{2}+a_{1} a_{2}+a_{1} a_{3}+\right. \\
& \left.\left.\mathbf{a}_{2} a_{3}+\left(a_{1}+a_{2}\right) \mathrm{C}_{3}{ }^{2}\right)\right]-\left[a_{2} a_{3} C_{1}^{2}+a_{1} a_{3} \mathrm{C}_{2}{ }^{2}+a_{1} a_{2} C_{3}^{2}+2 a_{1} a_{2} a_{3}\right]=0 \tag{12}
\end{align*}
$$

As a special case if we take $a_{1}=a_{2}=a_{3}=a$ in (6) the equation (12) becomes

$$
\begin{aligned}
& \lambda^{3}-\lambda^{2}\left(\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\mathrm{C}_{3}{ }^{2}\right)-\lambda\left[2 a\left(\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\mathrm{C}_{3}{ }^{2}\right)+3 \mathrm{a}^{2}\right]-\left[\mathrm { a } ^ { 2 } \left(\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}\right.\right. \\
&\left.\left.+\mathrm{C}_{3}{ }^{2}\right)+2 \mathbf{a}^{3}\right]=0 .
\end{aligned}
$$

For the sake of shortness, if we denote, $\mathrm{A}=\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\mathrm{C}_{3}{ }^{2}$, then the cubic equation becomes,

$$
\begin{equation*}
\lambda^{3}-\lambda^{2} A-\lambda\left[2 \mathbf{a} \cdot \mathbf{A}+3 \mathbf{a}^{2}\right]-\left[\mathbf{a}^{2} \mathbf{A}+2 \mathbf{a}^{3}\right]=0 \tag{13}
\end{equation*}
$$

or

$$
(\lambda+\mathbf{a})^{2}[\lambda-(A+2 a)]=0 .
$$

It follows that

$$
\lambda_{1}=\lambda_{2}=-\mathbf{a} \text {, and } \lambda_{3}=A+2 \mathbf{a} .
$$

Using $\lambda_{1}=\lambda_{2}=-\mathrm{a}$ in equation (10) we have

$$
\begin{equation*}
\mathrm{B}_{1} \mathrm{l}_{1}+\mathrm{B}_{2} \mathrm{~m}_{1}+\mathrm{B}_{3} \mathrm{n}_{1}=0 . \tag{14}
\end{equation*}
$$

And using $\lambda_{3}=\mathrm{A}+2 \mathrm{a}$ in (10) we have,

$$
\left.\begin{array}{l}
-\left(\mathrm{B}_{2}{ }^{2}+\mathrm{B}_{3}{ }^{2}\right) l_{3}+\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~m}_{3}+\mathrm{B}_{1} \mathrm{~B}_{3} \mathrm{n}_{3}=0 \tag{15}\\
\mathrm{~B}_{1} \mathrm{~B}_{2} l_{3}-\left(\mathrm{B}_{1}{ }^{2}+\mathrm{B}_{3}{ }^{2}\right) \mathrm{m}_{3}+\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{n}_{3}=0 \\
\mathbf{B}_{1} \mathrm{~B}_{3} l_{3}+\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~m}_{3}-\left(\mathrm{B}_{1}{ }^{2}+\mathbf{B}^{2}{ }^{2}\right) \mathbf{n}_{3}=0
\end{array}\right\} .
$$

Dividing the first equation of (15) by B_{1} and the second by B_{2} then subtracting, we have

$$
\begin{equation*}
\frac{l_{3}}{\mathrm{~B}_{1}}=\frac{\mathrm{m}_{3}}{\mathrm{~B}_{2}} . \tag{16}
\end{equation*}
$$

Again from the second and third equations, we can have

$$
\begin{equation*}
\frac{\mathrm{m}_{3}}{\mathrm{~B}_{2}}=\frac{\mathrm{n}_{3}}{\mathrm{~B}_{3}} \tag{17}
\end{equation*}
$$

and then from (16) and (17)

$$
\begin{equation*}
\frac{l_{3}}{B_{1}}=\frac{\mathbf{m}_{3}}{\mathbf{B}_{2}}=\frac{\mathbf{n}_{3}}{\mathbf{B}_{3}}=\mathrm{k}, \mathrm{k} \in \mathrm{IR} . \tag{18}
\end{equation*}
$$

On the other hand, from solution (10) we have the diametral planes as

$$
\left.\begin{array}{l}
l_{\mathbf{l}_{1}}+\mathbf{m}_{1} \mathbf{x}_{2}+\mathbf{n}_{1} \mathbf{x}_{3}=0 \tag{19}\\
l_{3} \mathbf{x}_{1}+\mathbf{m}_{3} \mathbf{x}_{2}+\mathbf{n}_{3} \mathbf{x}_{3}=0
\end{array}\right\}
$$

and from (18), these equations reduces to

$$
\left.\begin{array}{l}
l_{1} \mathbf{x}_{1}+\mathbf{m}_{1} \mathbf{x}_{2}+\mathbf{n}_{1} \mathbf{x}_{3}=0 \\
\mathbf{B}_{1} \mathbf{x}_{1}+\mathbf{B}_{2} \mathbf{x}_{2}+\mathbf{B}_{3} \mathbf{x}_{3}=0
\end{array}\right\}
$$

where

$$
\begin{equation*}
<\left(l_{1}, \mathrm{~m}_{1}, \mathbf{n}_{1}\right),\left(\mathrm{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}\right)>=l_{1} \mathbf{B}_{1}+\mathrm{m}_{1} \mathrm{~B}_{2}+\mathbf{n}_{1} \mathbf{B}_{3} \tag{20}
\end{equation*}
$$

and from (14) it ve nishes. So the planes given by (19) are perpendicular to each other.

As a result, we can write the following theorem:

II.1. Theorem :

The intersection of the cone $\sum_{i=1}^{3} a_{i}{ }^{\prime} x_{i}{ }^{2}=b x_{4}{ }^{2}$ and the 3-plane $\sum_{\mathbf{i}=1}^{4} \mathbf{A}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}=0$ is two 2-planes, perpendicular to each other, if $\mathbf{a}_{1}^{\prime}=$ $\mathrm{a}_{2}^{\prime}=\mathrm{a}_{3}$.

By using the $S \alpha$ sphere $\sum_{i=1}^{3} \alpha_{i}{ }^{2}+\alpha=\alpha_{4}{ }^{2}$ instead of the cone (6) all of the results are valid. So we can express the following theorem:

II.2. Theorem :

In $(3+1)$-spacetime, the intersection of the sphere $\sum_{i=1}^{3}{x_{i}}^{2}+\alpha$ $=\mathbf{x}_{4}{ }^{2}$ and the hyperplane $\sum_{i=1}^{4} A_{i} \mathbf{x}_{\mathbf{i}}=0$ is two 2-planes, which $\alpha \mathrm{re}$ perpendicular to each other.

REFERENCES

[1]. ELKHOLY E.M. and AL-AREEFI, S.M., "The 3-Plane And The Light Cone". Submitted to publish (1988).
[2]. ELKHOLY, E.M., "Curvature Of Spheres In Minkowski ($\mathrm{n}+1$) space". Comm. Fac. Sci. Univ. Ankara. Volume 35, 1-2, Series A. pp. 23-25 (1987).

