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ABSTRACT
In [1] the main result (Teorem 2) which states that “a submanifold M™ of a RiemanSian
maniforld 1\;“ is an extrinsic sphere (i.e. the submanifold which is umbilic and has parallel

. ~
mean curvature) iff every circle in M" is a circle in M™ must have some additional hypothesis.
We pointed out these hypothesis just the special case of M™ = IR™

1. INTRODUCTION

Let i be the inclusion map of (M®, g) into IR1 where g denotes the:
induced Riemannian metric on M2 from IR®. Then the following equ-
alities hold

VY = 7, Y + h(X, Y)

UVl =-AX 4 DL
for every vector fields X, Y on M?™ and { ortogonal to M, where 5, AV
D denote the connections on IR®, M1 and the normal connection on
Mn» respectively. h is the second fundamental form of MR and Ay de-
notes the shape operator with respect to {. The second fundamental
form h and the shape oper ator Ay have the following relation

g(AX, Y) =g(h (X, Y ). 1) (1.2)

(1.1)

If %Xh — O for every vector field X on M then we call Mn a
parallel immersed submanifold of IRn (i.e. the inclusion map i:

Mn - TR™ parallel immersion) where % denotes the Van der-Waerden
Bortolotti connection on Mn. The vector field

H = (1/n) é h (ej, )
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called the mean curvature vector field where {e;,...,en} is an ort-
honormal vector fields on M. If DyH = O for every X then we call
that (M7, g) has parallel mean curvature vector.

Secondly, we recall the notion of planar sections from [2]. p € M®
and t € TpM where TpM denotes the tangent space to M at the point
p. Affin subspace E(p, t) of IR™ is defined as the subspace that corres-

ponds to the vector subspace Sp {t, *TM'L} at the point p expressed as
E (p,t) = p + Sp {t, TM™

L
where TM™ denotes the orthogonal complemantary vector subspace of

TpM in TpIR™ and Sp it, TM'L} is vector subspace spanned by t and

™™ .

The intersection curve Mt < E(p, t) will be called the normal
section of M2 through t at the point p.and denoted by ns(M, p.t).
If the curve ns(M, p, t) is an 2-dimensional plane curve in IR™ for
every t € TpM and every p € M then we call that M has 2-planar normal
sections. If the curve ns (M, p, t) doesn’t have to be 2—planar globally
but locally, near the point p, then we call M» that has pointwise 2-
planar normal sections. In that case if a parametrization of ns (M, p, t)
will be given as s — y(s) then '

v'(0) Ay(0) Ay (0) = 05 (v(0) = p)
vice verse [2], where A denotes the exterior product of the vectors
7'(0), v (0), +"(0).
Tt is clear that the submanifold M? of IR™ has 2—planar normal
sections then it has pointwise 2-planar normal sections.

We recall three main results from [2] about pointwise 2-planar-
sections and a general result of [3] as follows:

Theorem. A: If M" has pointwise 2-planar normal sections iff
‘ (§~71h) (t, t) Ah{t,t) =0 (1.3)
for every t € TpM2 [2].

_Theorem. B: If M1 has pointwise 2-planar normal sections the
point p is a vertex of the normal section curves then

(V&) (5 1) =0 (1.4)

for every t € TpM™ and vice versa [2].
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Theorem. C: M™ has planar geodesics iff it has planar normal
sections of the same constant curvature [2].

Theorem. D: Let f: Mn, — IRN, be an isometric immersion of
connected pseudo-Riemannian manifold, n > 2. If every non-null
gedesics ¢ of M, foc is a plane curve in IRN,, then L = g(h(X, X),
h(X, X)) is constant for all unit vectors X € TM, and we have the fol-
loWiﬁg cases: ' '

L > O: Each foc is part of S1; < IR2; or an = IRz, O each
of radius (1/4/ L. '

L < O: Each foc is part of an [H! < IR2, or an IH!; < IR2,,
each of radius (-1/4/ L).

L = O: Each foc is either a line segment or a curve in a de-
generate plane IR2), |, or IR2;,; [3].

Finally, a circle s — y(s) satisfies the following differential equation
of third order

VxVxX + g(VxXVX) X =0 (1.5)
where v'(s) = X (y(s)), [1].

2. A CHARACTERIZATION FOR SPHERES IN IR™

In this section, we shall prove

Theorem 1: Let M™ be an n—dimensional connected Riemannian
submanifold of IR™. If M® is total umbilic and has parallel mean
curvature vector then M™ has pointwise 2-planar normal sections and
for some k >> 0, every circle of radius k in M2 is a circle in IR™,

And conversly;

Theorem 2: Let M™ be an n—diemensional connected Riemanian
submanifold of IR™, If

i) every circle in M1 is a circle inIR™
ii) M™ has planar geodesics
iii) dimension of (im(h)) = 1 at every point of M where
im(h) = {h(t, t) | t € TpM}
and h is the second fundamental form of M=n

then M2 is totally umbilic and has parallel mean curvature vector.
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Remark: In [1], Theorem. 2 states nearly same thing as the
above two theorems. The proof which is given in [1] and based
on” changing Y into -Y” where Y is the second Frenet vector field
and defined as the following:

(VxXes—o = (1/1) Y

and the vector fields system {X, Y} satifies the following equations

(in [1], eq. (1), (2))
VxXs = k Y

Vx, Yo =k X, | &

But the system {X,- Y} doesn’t satisfies the equation (2.1).
In fact, if we assume that

Vy, Xs=kY
Vx, Yo=-k X,k >0
then k (-Y) =- Vx, Xi = Vx X = kY,
but Vx, (Y =-vx Y¢=-(kXg=kXq
s0 Vx, (Y, # -k X,
thus the equations false for (X, -Y}.

Proof of Theorem 1: Let p be an arbitrary point of M and t, y
are orthonormal vectors in TpM. If v is a circle in M such that

v =rp
v (0) =1
that Frenet equations of v as the following:
(VxX) (0) = Vi X =y
(2.2)
(VYY) (0) = vtY =-kt

where {X, Y} uniquely determined by the equations (2.1) with initial
conditions

X(0)=t

Y(0) =y

Since vy is a circle, then
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VxVxX + g (VyX, VX)X = 0. : (2.3)
M is totally umbilic, that is,
h(W,Z) =g(W,Z) H, for every W, ZcTM

then

| h (7 X, X) = g (VxX, X) H=k g(Y,X) H (2.4)
aﬁd ' o o :”
AnonX = g (H, H) X, | 2.5)

Now, by the equations (1.1) we have

~

VXVXX = vaXX + h (X7 VX) - Ah(X7 X)X + th (Xa X) (2°6)
Substituting (2.4) and (2.5) into (2.6) we obtain

~

VxVX = ViV X-g(H, H X (2.7

Secondly, we calculate g (%XX, %XX) by using the equations
(1.1) together with (1.2) and bilinearity of g as follows
g (VxX, ViX) = g(VyX + h(X, X), VX + h (X, X))
= g (VsX, VxX) + g (H, H) (2.8)
Thus, by (2.3), (2.7) and (2.8) we obtain '

VxVxX + g (ViX, VX)X = VyVxX + g (H, H)X +
g{vxX, VX)X -g(H, H) X
= 0.
That is, y is a circle in IR™
On the other hand M® has parallel mean curvature vector so
Dyh (X, X) = DyH = 0.
Thus
(74h) (X, X) = Dh(X, X) = 2h (t, 74X) = 0
and a consequence of that;
(Vib) (t,t) A h{t,t) =0

which shows by Theorem. A that M has pointwise 2-planar normal
sections. 0.E.D
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Proof of Theorem. 2: By the Theorem. C M® has 2-planar normal
sections of the same constant curvature. Thus M?" satisfies the hypot-
hesis of Theorem. D so the geodesic v’ with the initial condition x e
TM is an arc on a circle S! of costant radius

passes through X in TM. This arch by [3], is the solution curve of
the following initial-value problem:

VX = |h(X,X) 1Y
VxY = -|h(X.X) |X 2.9)
X)) =xY(p)=y
Furthermore,
_ hGex)
[ h(x, x) |

thus Y is unique up to = (x) and independent of choice of x,at the
point 7 (X) since dim (imh) = 1 so the curvature centre of v is the
point c satifies the following equation
c=mn(x) + ! Y
= X e (X
[hGe ] 7
which is independent of the choice of x, that is ¢ is constant what we
have shown that every point of M™ has a hyperspherical neighbor
hood in IR™ which can be considered as neighborhood of that point
in M?, Thus Mn is totally umbilic and has parallel mean curvature
vector.
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