Commun. Fac. Sci. Univ. Ank. Series A. V. 41. pp. 49-54 (1992)

ON CIRCLES AND SPHERES IN GEOMETRY

MURATHAN, C., ÖZDAMAR, E.

Department of Mathematics Uludağ University Art. and Sci. Fac. 16059 Görükle/Bursa / Türkiye.

(Received March 31, 1992; Accepted May 8, 1992)

ABSTRACT

In [1] the main result (Teorem 2) which states that "a submanifold M^n of a RiemanSian maniforld \widetilde{M}^n is an extrinsic sphere (i.e. the submanifold which is umbilic and has parallel mean curvature) iff every circle in \widetilde{M}^n is a circle in M^m must have some additional hypothesis. We pointed out these hypothesis just the special case of $M^m = IR^m$

1. INTRODUCTION

Let i be the inclusion map of (M^n, g) into IR^n where g denotes the induced Riemannian metric on M^n from IR^n . Then the following equalities hold

$$\overset{\sim}{\nabla}_{\mathbf{X}} \mathbf{Y} = \nabla_{\mathbf{X}} \mathbf{Y} + \mathbf{h}(\mathbf{X}, \mathbf{Y})
\overset{\sim}{\nabla}_{\mathbf{X}} \zeta = -\mathbf{A} \zeta \mathbf{X} + \mathbf{D}_{\mathbf{X}} \zeta$$
(1.1)

for every vector fields X, Y on M^n and ζ ortogonal to M, where $\overset{\sim}{\nabla}$, \bigtriangledown , D denote the connections on IR^n , M^n and the normal connection on M^n respectively. h is the second fundamental form of M^n and A_ζ denotes the shape operator with respect to ζ . The second fundamental form h and the shape oper ator A_ζ have the following relation

$$g(A_{\zeta}X, Y) = g(h(X, Y), \zeta)$$
(1.2)

If $\nabla_X h \equiv 0$ for every vector field X on M^n then we call M^n a parallel immersed submanifold of IR^n (i.e. the inclusion map i: $M^n \to IR^m$ parallel immersion) where ∇ denotes the Van der-Waerden Bortolotti connection on M^n . The vector field

$$H = (1/n) \sum_{j=1}^{n} h(e_j, e_j)$$

called the mean curvature vector field where $\{e_1,\ldots,e_n\}$ is an orthonormal vector fields on M. If $D_xH=0$ for every X then we call that (M^n,g) has parallel mean curvature vector.

Secondly, we recall the notion of planar sections from [2]. $p \in M^n$ and $t \in T_PM$ where T_PM denotes the tangent space to M at the point p. Affin subspace E(p, t) of IR^n is defined as the subspace that corresponds to the vector subspace $S_P\{t, TM^{\perp}\}$ at the point p expressed as

$$\mathrm{E}\left(p,\,t\right)=p+\mathrm{S}_{P}\left\{t,\,TM^{\perp}\right\}$$

where TM^{\perp} denotes the orthogonal complementary vector subspace of T_PM in T_PIR^m and S_P $\{t, TM^{\perp}\}$ is vector subspace spanned by t and TM^{\perp} .

The intersection curve $M^n \subset E(p,t)$ will be called the normal section of M^n through t at the point p and denoted by ns(M,p,t). If the curve ns(M,p,t) is an 2-dimensional plane curve in IR^m for every $t \in T_PM$ and every $p \in M$ then we call that M has 2-planar normal sections. If the curve ns(M,p,t) doesn't have to be 2-planar globally but locally, near the point p, then we call M^n that has pointwise 2-planar normal sections. In that case if a parametrization of ns(M,p,t) will be given as $s \to \gamma(s)$ then

$$\gamma'(0) \Lambda \gamma''(0) \Lambda \gamma'''(0) = 0; (\gamma(0) = p)$$

vice verse [2], where A denotes the exterior product of the vectors $\gamma'(0)$, $\gamma''(0)$, $\gamma'''(0)$.

It is clear that the submanifold Mⁿ of IR^m has 2-planar normal sections then it has pointwise 2-planar normal sections.

We recall three main results from [2] about pointwise 2-planarsections and a general result of [3] as follows:

Theorem. A: If Mn has pointwise 2-planar normal sections iff

$$(\overset{\sim}{\nabla}_t^h)(t,t) \Lambda h(t,t) = 0$$
 (1.3)

for every $t \in T_PM^n$ [2].

Theorem. B: If Mⁿ has pointwise 2-planar normal sections the point p is a vertex of the normal section curves then

$$(\widetilde{\nabla}_{\mathbf{t}}^{\mathbf{h}})(\mathbf{t},\mathbf{t}) = 0 \tag{1.4}$$

for every $t \in T_PM^n$ and vice versa [2].

Theorem. C: M^n has planar geodesics iff it has planar normal sections of the same constant curvature [2].

Theorem. D: Let $f \colon M^n_r \to IR^N_a$ be an isometric immersion of connected pseudo-Riemannian manifold, $n \geq 2$. If every non-null gedesics c of M, foc is a plane curve in IR^N_a , then L = g(h(X,X),h(X,X)) is constant for all unit vectors $X \in TM$, and we have the following cases:

L>0: Each foc is part of $S^1_1\subset IR^2_1$ or an $S^1\subset IR^2$, 0 each of radius $(1/\sqrt{L})$.

L < 0: Each foc is part of an $IH^1 \subset IR^2$ or an IH^1 $\subset IR^2$, each of radius $(-1/\sqrt{L})$.

L=0: Each foc is either a line segment or a curve in a degenerate plane IR_{20}^{2} , 1, or IR_{111}^{2} [3].

Finally, a circle $s \to \gamma(s)$ satisfies the following differential equation of third order

$$\nabla_{\mathbf{X}}\nabla_{\mathbf{X}}\mathbf{X} + \mathbf{g}(\nabla_{\mathbf{X}}\mathbf{X}\nabla_{\mathbf{X}}\mathbf{X}) \mathbf{X} = 0 \tag{1.5}$$
 where $\gamma'(\mathbf{s}) = \mathbf{X} (\gamma(\mathbf{s})), [1].$

2. A CHARACTERIZATION FOR SPHERES IN IR^m

In this section, we shall prove

Theorem 1: Let M^n be an n-dimensional connected Riemannian submanifold of IR^m . If M^n is total umbilic and has parallel mean curvature vector then M^n has pointwise 2-planar normal sections and for some k > 0, every circle of radius k in M^n is a circle in IR^m . And conversly;

Theorem 2: Let Mⁿ be an n-diemensional connected Riemanian submanifold of IR^m. If

- i) every circle in Mⁿ is a circle in IR^m
- ii) Mn has planar geodesics
- iii) dimension of (im(h)) = 1 at every point of M^n where $im(h) = \{h(t, t) \mid t \in T_PM\}$

and h is the second fundamental form of M^n then M^n is totally umbilic and has parallel mean curvature vector.

Remark: In [1], Theorem. 2 states nearly same thing as the above two theorems. The proof which is given in [1] and based on" changing Y into -Y" where Y is the second Frenet vector field and defined as the following:

$$(\bigtriangledown_{\mathbf{X_s}}\mathbf{X_s})_{s=o} = (1/r) \mathbf{Y}$$

and the vector fields system $\{X, Y\}$ satisfies the following equations (in [1], eq. (1), (2))

But the system $\{X, -Y\}$ doesn't satisfies the equation (2.1). In fact, if we assume that

$$\begin{array}{cccc} \bigtriangledown_{\mathbf{X_s}} & \mathbf{X_s} = \mathbf{k} \ \mathbf{Y} \\ & \bigtriangledown_{\mathbf{X_s}} & \mathbf{Y_s} = -\mathbf{k} \ \mathbf{X_s}, \, \mathbf{k} > 0 \\ \\ \text{then} & \mathbf{k} \ (-\mathbf{Y_s}) = - \bigtriangledown_{\mathbf{X_s}} \ \mathbf{X_s} \Rightarrow \bigtriangledown_{\mathbf{X_s}} \mathbf{X_s} = \mathbf{k} \mathbf{Y_s} \\ \\ \text{but} & \bigtriangledown_{\mathbf{X_s}} & (-\mathbf{Y_s}) = -\bigtriangledown_{\mathbf{X_s}} \ \mathbf{Y_s} = -(-\mathbf{k} \mathbf{X_s}) = \mathbf{k} \mathbf{X_s} \\ \\ \text{so} & \bigtriangledown_{\mathbf{X_s}} & (-\mathbf{Y_s}) \neq -\mathbf{k} \ \mathbf{X_s} \end{array}$$

thus the equations false for $\{X, -Y\}$.

Proof of Theorem 1: Let p be an arbitrary point of M and t, y are orthonormal vectors in T_PM . If γ is a circle in M such that

$$\gamma (0) = p \\
\gamma' (0) = t$$

that Frenet equations of $\dot{\gamma}$ as the following:

$$(\bigtriangledown_{\mathbf{X}} \mathbf{X}) (0) = \bigtriangledown \mathbf{t} \ \mathbf{X} = \mathbf{y}$$

$$(\bigtriangledown_{\mathbf{X}} \mathbf{Y}) (0) = \bigtriangledown \mathbf{t} \ \mathbf{Y} = -\mathbf{k} \ \mathbf{t}$$

$$(2.2)$$

where {X, Y} uniquely determined by the equations (2.1) with initial conditions

$$X(0) = t$$
 $Y(0) = y$
Since γ is a circle, then

$$\nabla_{\mathbf{X}}\nabla_{\mathbf{X}}\mathbf{X} + \mathbf{g}\left(\nabla_{\mathbf{Y}}\mathbf{X}, \nabla_{\mathbf{Y}}\mathbf{X}\right)\mathbf{X} = 0. \tag{2.3}$$

M is totally umbilic, that is,

$$h(W, Z) = g(W, Z) H$$
, for every $W, Z \in TM$

then

$$h(\nabla_X X, X) = g(\nabla_X X, X) H = k g(Y, X) H$$
 (2.4)

and

$$A_{h(x,x)}X = g(H, H) X. \tag{2.5}$$

Now, by the equations (1.1) we have

$$\overset{\sim}{\bigtriangledown}_{X}\overset{\sim}{\bigtriangledown}_{X}X = \bigtriangledown_{X}\bigtriangledown_{X}X + h(X, \bigtriangledown_{X}) - A_{h(X, X)}X + D_{X}h(X, X) \quad (2.6)$$

Substituting (2.4) and (2.5) into (2.6) we obtain

$$\nabla_{\mathbf{X}} \nabla_{\mathbf{X}} \mathbf{X} = \nabla_{\mathbf{X}} \nabla_{\mathbf{X}} \mathbf{X} - \mathbf{g} (\mathbf{H}, \mathbf{H}) \mathbf{X}$$
 (2.7)

Secondly, we calculate $g(\nabla_X X, \nabla_X X)$ by using the equations (1.1) together with (1.2) and bilinearity of g as follows

$$g\left(\stackrel{\sim}{\nabla}_{X}X, \stackrel{\sim}{\nabla}_{X}X\right) = g\left(\nabla_{X}X + h\left(X, X\right), \nabla_{X}X + h\left(X, X\right)\right)$$
$$= g\left(\nabla_{X}X, \nabla_{X}X\right) + g\left(H, H\right) \tag{2.8}$$

Thus, by (2.3), (2.7) and (2.8) we obtain

$$\overset{\sim}{\nabla}_{\mathbf{X}}\overset{\sim}{\nabla}_{\mathbf{X}}\mathbf{X} + \mathbf{g}(\overset{\sim}{\nabla}_{\mathbf{X}}\mathbf{X}, \overset{\sim}{\nabla}_{\mathbf{X}}\mathbf{X})\mathbf{X} = \nabla_{\mathbf{X}}\nabla_{\mathbf{X}}\mathbf{X} + \mathbf{g}(\mathbf{H}, \mathbf{H})\mathbf{X} + \mathbf{g}(\nabla_{\mathbf{X}}\mathbf{X}, \nabla_{\mathbf{X}}\mathbf{X})\mathbf{X} - \mathbf{g}(\mathbf{H}, \mathbf{H})\mathbf{X} \\
= 0.$$

That is, γ is a circle in IR^m

On the other hand Mn has parallel mean curvature vector so

$$D_{X}h(X, X) = D_{X}H = 0.$$

Thus

$$(\nabla_t \mathbf{h}) (\mathbf{X}, \mathbf{X}) = \mathbf{D}_t \mathbf{h}(\mathbf{X}, \mathbf{X}) - 2\mathbf{h} (\mathbf{t}, \nabla_t \mathbf{X}) = 0$$

and a consequence of that;

$$(\nabla_t \mathbf{h})(\mathbf{t}, \mathbf{t}) \Lambda \mathbf{h}(\mathbf{t}, \mathbf{t}) = 0$$

which shows by Theorem. A that Mⁿ has pointwise 2-planar normal sections. O.E.D

Proof of Theorem. 2: By the Theorem. C M^n has 2-planar normal sections of the same constant curvature. Thus M^n satisfies the hypothesis of Theorem. D so the geodesic γ' with the initial condition $x \in TM$ is an arc on a circle S^1 of costant radius

$$\frac{1}{\parallel \mathbf{h} (\mathbf{x}, \mathbf{x}) \parallel}$$

passes through X in TM. This arch by [3], is the solution curve of the following initial-value problem:

$$\overset{\sim}{\nabla} \mathbf{x} \mathbf{X} = \| \mathbf{h} (\mathbf{X}, \mathbf{X}) \| \mathbf{Y}
\overset{\sim}{\nabla} \mathbf{x} \mathbf{Y} = -\| \mathbf{h} (\mathbf{X}, \mathbf{X}) \| \mathbf{X}
\mathbf{X} (\mathbf{p}) = \mathbf{x}, \mathbf{Y} (\mathbf{p}) = \mathbf{y}$$
(2.9)

Furthermore,

$$Y = \frac{h(x, x)}{\|h(x, x)\|}$$

thus Y is unique up to π (x) and independent of choice of x, at the point π (X) since dim (imh) = 1 so the curvature centre of γ is the point c satisfies the following equation

$$\mathbf{c} = \pi \left(\mathbf{x} \right) \ + \ \frac{1}{\parallel \mathbf{h} \left(\mathbf{x}, \, \mathbf{x} \right) \parallel} \ \mathbf{Y} \pi_{(\mathbf{X})}$$

which is independent of the choice of x, that is c is constant what we have shown that every point of M^n has a hyperspherical neighborhood in IR^m which can be considered as neighborhood of that point in M^n . Thus M^n is totally umbilic and has parallel mean curvature vector.

REFERENCES

- NOMIZU, K. and YANO, K., On circles and spheres in Riemannian geometry. Math. Ann., 210, 163-170 (1974).
- [2] CHEN, B.Y., Submanifolds with planar normal sections. Soochow J. Math., 7 (1981).
- [3] BLOMSTROM, C., Planar geodesic immersions in Pseudo-Euclidean Space. Math. Ann., 274, 585-598 (1986).