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ABSTRACT

Convexity and starshape concepts in the cartesian product of two complete simply con-
nected smooth Riemannian manifolds without conjugate points are studied in terms of the
same concepts in the components of the product.

1. INTRODUCTION

In [10], Pandey introduced an interesting form of a Riemannian
metric g and connection D on the Cartesian product MyxM, of two C®
Riemannian manifolds M; and M;. Through studying the properties
of g and D in addition to other geometric characteristics, Pandey proved
some interesting results concerning the product of almost complex
manifolds, Kahlerian manifolds as well as almost Tachibana manifolds.
Other properties of the Ricei tensor of the manifolds product have also
been established in [10].

Utilizing the study of [10], we established some geometric results
concerning conjugate as well as focal points in the Cartesian product
M;xM, of Riemannian manifolds [2]. Among the results of [2] we
proved that the product M;xM, of two C® Riemannian manifolds is
free from conjugate (resp. focal) points under the metric and connection
given in [10] if and only if both M; and M, are free from conjugate
(resp. focal) points under their own metrics and connections. For the
detailed study see [2]. ‘

The main goal of the present work is to use the principal results
of both [2] and [10] to study the convexity and starshape concepts
in the Cartesian product of Riemannian manifolds without conjugate
points,
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In the following, we suppose that the reader has some familiarity
with [2, 3,4, 5, 8, 9] for main facts related to conjugate as well as
focal points. From now on, all manifolds, maps, vector fields, ... ete.
are assumed sufficiently smooth for computations to make sense.

2. ON MANIFOLDS CARTESIAN PRODUCT

Let M; and M, be two C* complete Riemannian manifolds with
Riemannian metrics g; and g, and Riemannian connections D() and
D), respectively. A Riemannian metric g on M xM, may be defined
as follows [10]

g (X, Y) = g((X1, Xy), (Y, Yy))
= g1 (X1, Y1) + g2 (X2, Yy) (2.1)

where X, Y; e g¢ (M;) and J¢(M;) denotes the set of all vector fields
on Mj, i = 1, 2. Similarly, a Riemannian conaection D on M;xM, may
be given by [10]

DxY = Dx1, x2) (Y1, Yp) = (Dx® Y, Dx®@ Y),) (2.2)
1 2

It is not difficult to prove that D is metric as well as torsion free con-
nection. For details see [2, 10].

A nice example of the Cartesian product of two Riemannian
manifolds under g and D mentioned above is the Euclidean space
(E2, <, >) where <C, > denotes the usual metric on E2. We can
write E2 = El x EL. If we consider X, Y ¢ ¢ (E2), we have that

<X, Y > =< (X, X5, (Y1, YY) > = XY, + X,Y,
= <X19Y1 > + <X27Y2>

Taking into account that the connection in this case is the usual
differentiation when acting on real functions, we have in terms of the
Cartesian coordinates

Dx,x) (Y, Yy)=D_ 8 4+ & (Y,Yy
r 2 1ok 2oy

~

=D 0 4y, 2 Y, D ¢ 0 Yy

x X9 —— X,—— + X —
e 23y x 20y
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=@, 2 YD, b Y
X Oy

= (Dx® Yy, Dx® Y,).
1 2

With respect to the above mentioned g and D we can easily show
that tangents to one manifold are regarded as being perpendicular to
those of the other, i.e for X; ¢ J¢ (M;) and X, € J¢ (M,), we have that
(X1, 0), (0, X5) € J¢ (M; x M) are orthogonal since

g (X1, 0), (0, X)) = g1 (X, 0) + g2 (0, X)) = 0

If v: [0, 2] - MxM, is a smooth curve in M;xM,, then the natu-
ral projections yq: [0, A] > M; and y,: [0, 2] = M, of v on both M;
and M,, respectively, are smooth curves. Moreover, v is a geodesic in
M;xM,; if and only if both v; and v, are geodesics in M; and M, res-
pectively. This claim may be verified as follows:

D, y=D Loowy = (DO L. D@

T gy 0T ( wo Uy, (2.3)
where y is the velocity vector field along the curve y. Consequently,
D v =0 if and only if D@ v; = 0 for i = 1, 2.

Y 1
Let vy: [0, 2] - M; and v;: [0, ] - M, be two smooth curves
in M; and M,, respectively. Through a simple linear transformation
between [0, 1] and [0, ] we can reparametrize the curve v,, say,
on the interval [0, A] and consequently one can talk about segment
curves in W; and W, as being defined on the same interval.

3. ON CONVEX AND STARSHAPED SUBSETS
Definition (3.1)

A subset B of a Riemannian manifold M is convex if for each pair
of points. a, b ¢ B there exists a unique minimal geodesic segment v
joining a and b in M such that v < B. A convex subset B « M will
be called convex body if B has non—empty interior [11].

Definition (3.2)

For a subset B < M, the convex hull of B is defined to be the
smallest convex subset of M containing B and denoted by CH(B).
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Definition (3.3)

A subset B of a Riemannian manifold M is starshaped (starlike)
with respect to the point p € B if for each point q € B there exists a
unique minimal geodesic segment v in M joining p and g such that
v < B. We say that p sees all the points of B via B [0, 7] or all points
of B are visible from p via B. The collection of such a point p e B is
called the kernel of B and denoted by ker B.

It is easy to show that for a starshaped subset B < M, ker B is
itself a convex subset of M. Morcover, if B is a subset of a Riemannian
manifold M, then B is convex of and only if B = ker B. These two
statements may be considered as a generalization of a result proved

by H. Brunn (See [11] ». 3).

If M is a complete simply connected €C* Riemannian manifold
without conjugate points one can omit compleiely the word “unique
minimal” in the above definitions (3.1) — (3.3) as in such a type of
manifolds cach pair points has a unique conpecting geodesic segment
[4,8,9].

From now on let us take W; and W, te be complete simply con-
nected C* Riemannian manifolds without conjugate points. Using
proposition (1-3) [2] we have that W xW,® is also a complete simp-
ly connected C* Riemannian manifeld without conjugate points.
Notice that dim (WixW,) = dim (W) & dim (W,). Consequently,
each pair of different points (py, p,) and {q;, q,) in W; x W, are joined
by a unique geodesic segment . This segment when naturally projected
on W; and W, yields two geodesic segments vi < W; joining p; and g,
i = 1, 2 each one is unique in its own manifeld (Section 2). The natural
projection will be denoted by

T W1 X Wz > Wi
where m; (p1, p2) = pi» 1 =1, 2.

Proposition (3.4)

Let By € Wy and B, < W, be subsets of W, and W,. Then
B;xB; « WyxW, is convex if and only if both B; and B, are convex.

Proof:

Firstly, assume that B) x B, is a convex subset of W; x W,.
Consider pj, q; € By and p-, q» € B, to be arbitrary points. Let

*The metric and connection on W,xW, are as given in Section 2.
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vi:[0, 1] = W; be the geodesic segment joining p; and q;, i = 1, 2. Consi-
der the curve v: [0,2] + W; x W, defined by +(t) = (v1(t), v2(r)
for t € [0,2]. As we mentioned in Section 2, it is clear that v is a geodesic
segment joining the points (py, po), (q1, q2) € By x By, By convexity
of By x B; we have v < By x B,. If we project the segment ¢ na-
turally on W and W,, we have that my = vi < By, i = 1, 2, which
shows that both B; and B; are convex subsets of W, and W, res-
pectively.

For sufficiency, assume that both B; € W, and B, < W, are
convex subseis. Consider any arbitrary pair of points (p;, ps) and
(91> q2) in By xBy, © W; x W,. Let v be the geodesic segment in
W, x W, joining (pi, p,) and (91> 92). We show that vy = By x B,.

Assume in contrary that v ¢ B x B,. Consequently, there exists
a peint (cy, ¢2) € vy such that {e. ¢;) ¢ By x B,. In this way, we have
that one —at leasi— of the following statements ¢y ¢ By, ¢, ¢ By is
satisfied. Without loss of generality, assume that ¢, ¢ B;. Considering
the natural projection 7y of v, we obtain a geodesic segment vy = 77
joining p; and ¢; in W, such that ¢; € v; and ¢; ¢ By. Consequently,
B, would be a non-convex set in W, contradicting the assumption.
Same discussion can be carried out in the cases ¢, ¢ B, or ¢; ¢ By,
¢s ¢ B; and the proof of the sufficiency part is now complete.

In the light of Proposition (3.4) we can prove the following.

Coroliary (3.5)

Let B © W;x W, be a convex subset. Then the natural projec-
tions By = miB < W; of B onto Wi, i = 1, 2, are both convex subsets.

it is worth mentioning that the converse of Corollary (3.5) is not
necessarily true, i.e. for a sunset B © W, x W,, the natural projec-
tions m; B < Wy, i = 1, 2, might be convex although B is itself non-
convex. Fig. {1) shows this fact. Notice that in this case,

’ITIBXTCzB/iB.

The following example may be considered as an application of
Proposition (3 .4). ‘

Example (3.6)

Consider the two convex subsets A < E! and B © E2 where
A= [0,1] and B = {(x,y): x2 4+ y2 < 1} the unit disc. The subset



40 M. BELTAGY

By

Vrm

Fig. (1)

AxB < EixE2= E3 which represents a truncated cylinder is
clearly a convex subset of E3. (See Fig. (2)).

Proposition (3.7)

Iet By © W, and B, © W, be two subsets of W; and W,. Then
CH (B; x By) = CH (B,) x CH (B,).
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Proof:

Let us assume that CH (B; x B,) is a proper subset of CH (B} x
CH(B;). Consequently, B; x B, < CH (B; x B,) « CH (B,) x CH (B,).
If we naturally project CH(B,; x B,) as a convex subset of WixW,
onto W) and W,, then one of the two projections, say m;CH(B| x B,),
will be a convex proper subset of CH(Bj) containing B; which
contradicts the assumption that CH(B,) is the convex hull of Bj.

Finally, if we assume that CH(B,) x CH(B,) is a proper subset
of CH(B; x B), then as CH(B,) x CH(B,) (Proposition (3.4) is a
convex subset of W x W, containing B; x B,, CH(B; x B,) will not
be the convex hull of B; x B, which is again a contradiction.

From the above discussion we have that CH(B; x B,) = CH(B,)
x CH(B,) and the proof is complete.

Propesition (3-8)
Let By @ W, and B, © W, be two subsets. Then

(i) By x B, « W; x W, is starshaped if and only if both By and B,
are starshaped.

(ii) ker (B; x B,) = (ker B;) x (ker B,)

- Proof of Part (i)

Firstly, assume that B; x B, « W, x W, is starshaped with
respect to the point (py, py) € By x B,. We prove that B; is starshaped
with respect to p; e By, i = 1, 2.

Now, we show that B is starshaped with respect to p;. Consider
any arbitrary point q; € B;. Since B; x B, is starshaped with respect
to (p1. p2) so there exists a geodesic segment +: [0, A] > W, x W,
such that v(0) = (py, p2), v(A) = (q1. q2) and v < By x B,. Projec-
ting v onto W{ we obtain that 7,y = v is a geodesic segment contained
in By and so By is starshaped with respect to pj.

Similar argument shows that B, is starshaped with respect to ps.

Conversely, let By « W, and B, < W, be starshaped subsets
with respect to the points p; € By and p, e B, respectively. We shall
prove that By x By © W, x W, is starshaped with respect to the point
(P1- P2) € By x By,
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Consider any arbitrary point (q;, q2) < By x B, and let v: [0, 2]
> W, x W, be the unique geodesic segment joining (pi, p2) and (qi,
qz) such that v(0) = (py, p2), 7 (&) = (q1> q2)- If we project v onto
W, and W, we obtain a unique geodesic segment vi: [0, A] > Wy
joining p; and g and a unique geodesic segment yp: [0, 2] = W,
joining p, and q,. Since B and B; are starshaped with respect to p;
and p,, respectively, then v < By and v, < B;. Consequently, v =
(1, 72) is contained in Byx B, which means that (p;, py) sees all the
points of B} x B, via By x B, and so B; x B is starshaped.

Proof of Part (ii)

From the proof of the necessity and sufficiency of Part (i), we
obtain that

p1 € ker By, p; e ker By = (pi. p2) € ker (B x By)
i.e

ker By x ker B, < ker (B x B)) (3.1)
Moreover,

(p1> p2) € ker (B; x B;) = py e ker By, ps c ker B;
i.e.

ker (B, x B,) < ker By x ker B, (3.2)
From (3.1) and (3.2) we have that

ker (B; x B,) = ker B x ker B,.

The following example is an application of Proposition (3.8).

Example (3.9)

Consider the starshaped subsets By = I;UI, < E2 and Bj ==
[0,1] € El, where I; = i(x,0): 0<x <1} and I, = {(0, v):
0 <y < 1}. Clearly, ker B; = (0, 0) and ker B, = B,. Fig. (3) shows
that B; x B, is starshaped with respect to any point of the set

K= {(0,0,2): 0 <z <1} = ker (B; x By).

At the same time

K = {(0,0)! x B, — ker B, x ker B..
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Similar to Corollary (3.4), we can prove that a starshaped subset

B = W; x W, has starshaped natural projections but the converse

is not necessarily true. Circular annulus in E2 can be considered as an

example indicating the last claim.

4. CONCLUSION

(a)

(b)

(¢)

(d)

All results of the present work hold in the cartesian product of
Euclidean as well as hyperbolic spaces as this sort of manifolds
represents nice examples of complete simply connected C* Rie-
mannian manifolds without conjugate points. Also the results
we have just proved are valid in the case of cartesian product
of manifolds without focal points as every manifold without
focal points has no conjugate points.

If another Riemannian metric and connection are given on M x M,
instead of g and D mentioned in Section (2), results of this paper
will be changed.

The problem which is more interesting is to consider the convexity
and starshape concepts in the cartesian product of general Rie-
mannian manifolds.

The study we have established in this work could be considered
as a base of a study of other concepts such as local convexity,
local non—convexity, supporting subsets, separating subsets, .. ., etc.
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