Commun. Fac. Sci. Univ. Ank. Ser. A, V. 38, Number 1-2, pp 67-76 (1989)

ON THE COHOMOLOGY GROUPS OF COMPLEX ANALYTIC MANIFOLDS

SABAHATTIN BALCI

Dept. of Mathematics, Faculty of Science, Ankara University, ANKARA

SUMMARY

Let X be a connected complex analytic manifold of dimension n with fundamental group $H_X \neq \{1\}$, for any $x \in X$. Let H be the sheaf of the fundamental groups over X, $[H,H] \subseteq H$ be the commutator subsheaf, Q be the sheaf of Abelian groups [1] determined by [H,H] over X and A be the Restricted sheaf of germs of holomorphic functions on X defined in [4]. It is shown, in this paper, that; The Cohomology group $H^0(X,Q)$ of the structure sheaf Q of X is isomorphic to the Cohomology group $H^0(X,A)$ of the structure restricted sheaf A of X. Moreover, the Cohomology group $H^p(Y,Q)$ of the structure sheaf Q of X and the Čech Cohomology group $H^p(\gamma/, Q)$ of the structure sheaf Q of $\gamma/$ equal to zero, for $p \geq 1$.

1– INTRODUCTION

Let X be a connected complex manifold of dimension n with fundamental group $H_x \neq \{1\}$, for any $x \in X$. Let $H = V H_x$. A natural $x \in X$

topology introduced on H in [1]. H is a sheaf with the cannocial projection mapping $\varphi : H \to X$ defined by $\varphi(\sigma_x) = x$, for every $\sigma_x \in H$. H is called the sheaf of the fundamental group. Let $\Gamma(X,H)$ be the group of global sections of X and D $\subset \Gamma(X,H)$ be the commutator subgroup. The subsheaf defined by D is called Commutator subsheaf of H and it is denoted by [H,H]. The Commutator subsheaf [H,H] is a normal subsheaf of H. The quotient sheaf $Q_{[H,H]}$ (or only Q) determined by [H,H] is a sheaf of Abelian groups and it is a regular covering space of X. The sheaf Q is isomorphic to the sheaf \overline{H} of homology groups of X [1]. Hence, we identify the stalk Q_x with the stalk \overline{H}_x , for any $x \in X$, and the section γ [s] $\in \Gamma(X,Q)$ with the section $\dot{s} \in \Gamma$ (X, \overline{H}).

We now give the following definition.

Definition 1.1. Let $(G_i)_{i \in IN}$ be a family of Abelian groups. Then, i) A cochain complex is a sequence of group homomorphisms

SABAHATTIN BALCI

$$\begin{array}{c} d^{0} \quad d^{1} \quad d^{2} \\ G^{*} : G_{0} \rightarrow G_{1} \rightarrow G_{2} \rightarrow \ldots \end{array}$$

with $d^i o d^{i-1} = 0$, for $i \in IN$.

ii) $Z^{p}(G^{*}) = Ker d^{p}$ is called the p-th group of cocycles.

iii) $B^p(G^*) = Im d^{p-1}$ is called the p-th group of coboundaries. We set $B^o(G^*) = 0$. Then clearly $B^p(G^*) \subset Z^p(G^*)$.

iv) The quotient group $H^{p}(G^{*}) = Z^{p}(G^{*})/B^{p}(G^{*})$ is called the p-th cohomology group of the complex G^{*} .

Finally, the homomorphism $d=d^p$ with d^p o $d^{p-1}=0$ is called the coboundary operator, for $p \ge 0$.

Definition 1.2. An augmented cochain complex is a triple (E, ε , G*) with the following properties:

- i) E is an Abelian group.
- ii) G* is a cochain complex.

iii) $\varepsilon : E \to G_0$ is a monomorphism with Im $\varepsilon = \text{Kerd}^0$.

If (E, ε, G^*) is an augmented complex, then

 $E \cong Im \epsilon = Ker d^{o} = Z^{o} (G^{*}) \cong H^{o} (G^{*}).$

From now on, X will be considered as a connected complex manifold of dimension n with fundamental group $H_x \neq \{1\}$, for any $x \in X$.

2. ČECH COHOMOLOGY GROUPS.

Let $\mathcal{U} = (U_i)_i \in_I$ be an open covering of X with $U_i \neq \emptyset$ for every $i \in I$. It is shown, in this section, that;

i) The o-th Čech Cohomology group of U with values in Q is isomorphic to the Homology group \overline{H}_x of X, for any $x \in X$.

ii) The p-th Čech Cohomology group $H^p(\mathcal{U}, Q)$ of \mathcal{U} with values in Q equals to 0, for $p \ge 1$.

Let Q be the sheaf of Abelian groups determined by [H,H] over X and $\mathcal{U} = (U_i)_i \in_I$ be an open covering of X with $U_i \neq \emptyset$ for every $i \in I$. We define,

$$\begin{array}{rcl} \mathbf{U_{i_0}} \ \dots \ \mathbf{i_p} \ = \ \mathbf{U_{i_0}} \ \cap \ \dots \ \cap \ \mathbf{U_{ip}} \\ & \mathbf{I_p} \ = \ \{(\mathbf{i_0}, \ \dots, \ \mathbf{i_p}): \mathbf{U_{i0}} \ \dots \ \mathbf{i_p} \ \neq \ \varnothing \,\}. \end{array}$$

Let τ_n be the set of permutation of the set $\{0,1,2,\ldots,(n-1)\}$. For $\tau \in \tau_n$, let

Definition 2.1. An p-dimensional (alternating) cochain over \mathcal{U} with values in Q is a mapping

$$\mathbf{m}: \mathbf{I}_p \rightarrow \bigcup_{ (\mathbf{i}_0, \ldots, \mathbf{i}_p)} \Gamma (\mathbf{U}_{\mathbf{i}_0} \ldots \mathbf{i}_p, \mathbf{Q})$$

with the following properties:

i)
$$m(i_0,\ldots,i_p) \in \Gamma (U_{i_0} \ldots i_{i_p}, Q)$$

ii)
$$m(i\tau(0),\ldots,i\tau(p)) = sgn(\tau)$$
. $m(i_0,\ldots,i_p)$, for $\tau \in \tau_{p+1}$

The set of all p-dimensional alternating cochains over U with values in Q denoted by $C^p(\mathcal{U}, Q)$. $C^p(\mathcal{U}, Q)$ becomes an Abelian group by setting

$$(\mathbf{m}_1 + \mathbf{m}_2) \ (\mathbf{i}_0, \dots, \mathbf{i}_p) = \mathbf{m}_1(\mathbf{i}_0, \dots, \mathbf{i}_p) + \mathbf{m}_2 \ (\mathbf{i}_0, \dots, \mathbf{i}_p).$$

Let us now define a mapping,

 $d = d^p : C^p (\mathcal{U}, Q) \rightarrow C^{p+1} (\mathcal{U}, Q)$ with

$$(\mathrm{dm})(\mathbf{i}_0,\ldots,\mathbf{i}_{p+1}) = \sum_{\lambda=0}^{p+1} (-1)^{\lambda+1} (\mathbf{m}(\mathbf{i}_0,\ldots,\mathbf{\hat{i}}_{\lambda},\ldots,\mathbf{i}_{p+1}) | \mathbf{U} | \mathbf{i}_0 \ldots \mathbf{i}_{p+1}),$$

where \hat{i}_{λ} means that the index i_{λ} is delated.

It is easily seen that d is a homomorphism with $d^{p+1} o d^p = 0$.

Definition 2.2. The sequence

$$C^*(\mathcal{U},Q) : C^{0}(\mathcal{U},Q) \xrightarrow{d^{0}} C^{1}(\mathcal{U},Q) \xrightarrow{d^{1}} C^{2}(\mathcal{U},Q) \xrightarrow{d^{2}} \dots$$

is called the čech complex.

Let us now define a mapping $\varepsilon : \Gamma(X,Q) \to C^{0}(\mathcal{U},Q)$ with $(\varepsilon \tilde{s})$ (i) = $\tilde{s} | U_{i}$, for every $\tilde{s} \in \Gamma(X,Q)$. Then we can give,

Theorem 2.1. The triple ($\Gamma(X,Q)$, ε , $C^*(\mathcal{U},Q)$, is an auqmented cochain complex.

Proof. Clearly, ε is a homomorphism. If $\varepsilon \ \tilde{s} = 0$, then $\tilde{s} | u_i = 0$, for every $i \in I$; therefore $\tilde{s} = 0$. Hence ε is injective.

Let $m \in C^{o}(\mathcal{U},Q)$ and dm=0. Since,

 $(dm) \ (i_0,i_1) \ = \ (-m(i_1) \ + \ m(i_0)) \ | \ U_{i_0i_1}$

this is equivalent to $m(i_0) | U_{i_0i_1} = m(i_1) | U_{i_0i_1}$. Therefore there is a section $\tilde{s} \in \Gamma$ (X Q) with $\varepsilon \tilde{s} = m$ defined by $\tilde{s} | U_i = m(i)$. Thus, Im $\varepsilon = \text{Ker } d^o$.

Definition 2.3. Let C* (\mathcal{U}, Q) be the Čech complex and p (≥ 0) be an integer.

i) $Z^p(\mathcal{U},Q)=Ker\ d^p$ is called the group of p-th cocycles over $\mathcal U$ with values in Q

ii) $B^{p}(\mathcal{U},Q) = Im(d^{p-1})$ is called the group of p-th coboundaries over \mathcal{U} with values in Q.

Clearly, $B^{p}(\mathcal{U}, Q) \subset Z^{p}(\mathcal{U}, Q) \subset C^{p}(\mathcal{U}, Q)$.

iii) The quotient group $H^{p}(\mathcal{U},Q) = Z^{p}(\mathcal{U},Q)/B^{p}(\mathcal{U},Q)$ is called the p-th Čech Cohomology group of U with values in Q [2.3].

In particular, $H^{o}(\mathcal{U},Q) \cong \Gamma(X,Q)$. On the other hand, $\Gamma(X,Q) \cong \Gamma(X,\overline{H}) = \overline{H}_{x}$. Therefore, $H^{o}(X,Q) \cong \overline{H}_{x}$, i.e., the o-th Čech Cohomology group of U with values in Q is isomorphic to the Homology group of X, for any $x \in X$.

Definition 2.3. Let S be a sheaf over X. If the restriction mapping $\gamma_{X,U}$: $\Gamma(X,S) \rightarrow \Gamma(U,S)$ is a surjection for any open set $U \subset X$, then S is called a flabby sheaf.

It is easy to see that the sheaves H, [H,H] and Q are flabby sheaves by considering their constructions, respectively.

Let O be zero sheaf or identy sheaf. The sequence,

 $0 \rightarrow [H,H] \xrightarrow{1} H \xrightarrow{\pi} Q \rightarrow 0$ is exact, where the mapping i is cannonical injection and the mapping π is cannonical surjection. Let $\gamma[s] \in \Gamma(X,Q)$. Then, there exists a unique element $[s] \in \Gamma(X,H) / \Gamma(X,[H,H])$ such that $\gamma[s] = \tilde{s}$, by means of the isomorphism between Q and H. So, there is at least one section $s \in \Gamma(X,H)$ such that $\gamma[s] \in \Gamma(X,Q)$. Since the mapping $\pi : H \rightarrow Q$ is cannonical projection, $(\pi \text{ os})(x) = \gamma[s](x)$, for every $x \in X$. Then we may state,

Theorem 2.2. The Sequence,

$$0 \to \Gamma(\mathbf{X}, \ [\mathbf{H},\mathbf{H}]) \xrightarrow{\mathbf{i}_{*}} \Gamma(\mathbf{X},\mathbf{H}) \xrightarrow{\pi_{*}} \Gamma(\mathbf{X},\mathbf{Q}) \to 0$$

is exact.

Theorem 2.3. Let Q be the sheaf of Abelian groups determined by [H,H] over X, $\mathcal{U} = (U_i)_i \in_I be$ an open covering of X with $U_i \neq \emptyset$ and $X \in \mathcal{U}$. Then, $H^p(\mathcal{U},Q) = 0$, for $p \ge 1$.

Proof. If $\mathcal{U} = (U_i)_i \in I$, then there is an $\Gamma \in I$ with $X = U_r$. Let $m \in Z^p(\mathcal{U},Q)$, $p \geq 1$. There is an element $n \in C^{p-1}(\mathcal{U},Q)$ defined by $n(i_0,\ldots,i_{p-1}) = m(r,i_0,\ldots,i_{p-1})$. Since dm = 0, we have

$$0 = dm (\mathbf{r}, \mathbf{i}_0, \dots, \mathbf{i}_p) = -\mathbf{m}(\mathbf{i}_0, \dots, \mathbf{i}_p) + \sum_{\lambda=0}^p (-1)^{\lambda} \mathbf{m}(\mathbf{r}, \mathbf{i}_0, \dots, \mathbf{i}_{\lambda}, \dots, \mathbf{i}_p)$$

Therefore,

$$\begin{split} \mathbf{d}(-\mathbf{n}) \; (\mathbf{i}_0, \dots, \mathbf{i}_p) &= - \sum_{\lambda=0}^p \; (-1)^{\lambda+1} \; \mathbf{n}(\mathbf{i}_0, \dots, \mathbf{\hat{i}}_\lambda, \dots, \mathbf{i}_p) \\ &= \sum_{\lambda=0}^p \; (-1)^\lambda \; \mathbf{m}(\mathbf{r}, \mathbf{i}_0, \dots, \mathbf{\hat{i}}_\lambda, \dots, \mathbf{i}_p) = \; \mathbf{m}(\mathbf{i}_0, \dots, \mathbf{i}_p). \end{split}$$

In other words, d(-n) = m, so $m \in B_p(\mathcal{U},Q)$. Namely, the Čech Cohomology sequence is exact at every location $p \ge 1$, i.e., $H^p(\mathcal{U},Q) = 0$, for $p \ge 1$.

We now give the following theorem.

Theorem 2.4. Let \mathcal{U} be an arbitrary covering of X. Then, $H^{p}(\mathcal{U},Q) = 0$, for $p \geq 1$.

Proof. We prove this tehorem by induction on p. Let $p \ge 1$ and $m \in Z^p(\mathcal{U}, Q)$. If $U \subseteq X$ is an open set, then we set $U \cap \mathcal{U} = \{U \cap U_i \neq \emptyset : U_i \in \mathcal{U}\}$ and

 $(m \mid U) \ (i_0, \ldots, i_p) = \ m(i_0, \ldots, i_p) \mid U \cap U_{i0} \ \ldots i_p.$

With this notation we have $m | U \in Z^p(U \cap \mathcal{U}, Q)$.

For arbitrary $x_0 \in X$, there is an $i_0 \in I$ and an open neighborhood $U(x_0) \subset U_{i0}$. But then $U \in U \cap \mathcal{U}$, so $H^p(U \cap \mathcal{U},Q) = 0$, for $p \ge 1$, and there is an $n \in C^{p-1}(U \cap \mathcal{U},Q)$ with dn = m | U.

SABAHATTIN BALCI

If $V \subset X$ is an open set with the same property, i.e., there is an n' $\in C^{p-1}(V \cap \mathcal{U}, Q)$ with n' = m |V, we set

 $\mathbf{t} = (\mathbf{n}-\mathbf{n}') | \mathbf{U} \cap \mathbf{V} \in \mathbf{Z}^{p-1}((\mathbf{U} \cap \mathbf{V}) \cap \mathcal{U}, \mathbf{Q}).$

If p=1, then t lies in $\Gamma(U \cap V,Q)$, and since Q is flabby, we can extend t to a $\hat{t} \in \Gamma(V,Q)$. Then set

$$\mathbf{t^*}~(\mathbf{x}) = \left\{ egin{array}{cc} \mathbf{n}(\mathbf{x}), & \mathbf{x} \in \mathbf{U} \ & \ \mathbf{n}'(\mathbf{x})~+~\hat{\mathbf{s}}(\mathbf{x})~~\mathbf{x}~\in~\mathbf{V}. \end{array}
ight.$$

Clearly $t^* \in \Gamma(U \cup V, Q)$ and $dt^* = m | U \cup V$, because $d\hat{s} = 0$.

If p > 1, then by the induction hypothesis there is a $\gamma \in C^{p-2}$ (U $\cap V \cap \mathcal{U},Q$) with $d\gamma = t$. Since Q is flabby:

$$\gamma(\mathbf{i_0},\ldots,\mathbf{i_{p-2}}) \in \Gamma(\mathbf{U} \cap \mathbf{V} \cap \mathbf{U_{i0}} \ldots \mathbf{i_{p-2}},\mathbf{Q})$$

can be extended to an element

$$\widehat{\gamma}(\mathbf{i}_0,\ldots,\mathbf{i}_{p-2}) \in \Gamma(\mathbf{V} \cap \mathbf{U}_{\mathbf{i}_0} \ldots,\mathbf{i}_{p-2},\mathbf{Q}).$$

Let

$$\mathbf{n}^*(\mathbf{i}_0,\ldots,\mathbf{i}_{p-1}) (\mathbf{x}) = \begin{cases} \begin{array}{l} \mathbf{n}(\mathbf{i}_0,\ldots,\mathbf{i}_{p-1}) (\mathbf{x}) & \text{for } \mathbf{x} \in \mathbf{U} \cap \mathbf{U}_{\mathbf{i}0} \ldots \mathbf{i}_{p-1} \\ \\ (\mathbf{n}' + \mathbf{d}\hat{\gamma})(\mathbf{i}_0,\ldots,\mathbf{i}_{p-1})(\mathbf{x}) \text{for } \mathbf{x} \in \mathbf{V} \cap \mathbf{U}_{\mathbf{i}0} \ldots \mathbf{i}^{p-1} \end{cases} \end{cases}$$

Then $\mathbf{n}^* \in C^{p-1}$ ($(U \cup V) \cap \mathcal{U}, Q$) and $d\mathbf{n}^* = \mathbf{m} | U \cup V$.

By Zorn's lemma there must be a maximal element (U_0,t_0) for p=1, resp. (U_0,n_0) for p>1 with $t_0 \in \Gamma(U_0,Q)$ and $dt_0 = m | U_0$, resp. $n_0 \in C^p(\mathcal{U},Q)$ and $dn_0 = m | U_0$. But an element is only maximal if $U_0 = X$; therefore $m \in B^p(\mathcal{U},Q)$. Hence, $H^p(\mathcal{U},Q) = 0$.

3 FLABBY COHOMOLOGY GROUPS

In this section, it is shown that;

i) The o-th Cohomology group $H^{o}(X,Q)$ of X with values in Q is isomorphic to the Homology group \overline{H}_{x} of X for any $x \in X$.

ii) The p-th Cohomology group $H^p(X,Q)$ of X with values in Q equals to zero for $p \ge 1$.

Let Q be the sheaf of Abelian groups determined by [H,H] over X and U \subset X be an open set. Let $\widehat{\Gamma}(U,Q)$ denote the set of all mappings f: U \rightarrow Q with ψ of $= 1_U$, where ψ : Q \rightarrow X is the sheaf projection. We

call these not necessarily continuous functions generalized sections. Clearly $\Gamma(U,Q)$ is a subgroup of $\hat{\Gamma}(U,Q)$. We set $M_U = \hat{\Gamma}(U,Q)$. If U, $V \subset X$ are open with $V \subset U$, then we define ${}^{\gamma}_{U,V}$: $M_U \to M_V$ by ${}^{\gamma}_{U,V}(f) = f | V$. Then $\{X, M_U, {}^{\gamma}_{U,V}\}$ is a pre-sheaf and we denote the corresponding sheaf by W(Q) [2].

Theorem 3.1.

1. The cannonical mapping $\gamma:M_U\to \Gamma$ (U,W(Q) is a group homomorhism.

2. The cannonical injection i_U : $\Gamma(U,Q) \subset \hat{\Gamma}(U,Q)$ induces an injective sheaf homomorphism ε : $Q \to W(Q)$ with $\varepsilon_* \mid \Gamma(U,Q) = \gamma \text{ oi}_U$, where γ is the inductive limit operator.

Proof. 1. A similar proof can be found for 1 in [1].

2. Clearly $i_U(\hat{s}) | V = i_V(\hat{s}) | V$) for $\hat{s} \in \Gamma(U,Q)$. If we identify the sheaf induced by $\{X, M_U, \gamma_{U,V}\}$ with the sheaf Q, then there exists exactly one sheaf morphism $\varepsilon: Q \to W(Q)$ with $\varepsilon_*(\hat{s}) = \gamma oi_U(\hat{s})$ for $\hat{s} \in \Gamma(U,Q)$ [1]. If $\tilde{\sigma} \in Q_x$ and $\varepsilon(\tilde{\sigma}) = O_x$, then there exists a neighborhood $U(x) \subset X$ and an $\hat{s} \in \Gamma(U,Q)$ with $\hat{s}(x) = \tilde{\sigma}$. Therefore, $O_x = \varepsilon(\tilde{\sigma}) = \varepsilon o \hat{s}(x) = \varepsilon_*(\hat{s})$ (x) $= \gamma_0 i_U(\hat{s})$ (x) with $\gamma i_U(\hat{s}) \in \Gamma(U,W(Q))$. Then there exists a neighborhood $V(x) \subset U$ with $\gamma i_U(\hat{s}) | V = O$; thus $i_U(\hat{s}) | V = O$ and then clearly $\hat{s} | V = O$. Hence $\tilde{\sigma} = \hat{s}(x) = O_x$.

Let
$$W_o(Q) = W(Q)$$
. Let us construct the sequence
 $\epsilon \qquad d^o \qquad d^{p-1}$
 $0 \rightarrow Q \rightarrow W_o(Q) \rightarrow \ldots \rightarrow W_p(Q) \ldots$

Where $I_m(d^{-1}) = Im \epsilon$, $W_{p+1} = W(W_p(Q)/Im(d^{p-1}) \text{ and } d = d^p = j \circ q$ for the cannonical projection $q: W_p(Q) \rightarrow W_p(Q)/I_m(d^{p-1})$ and the cannonical injection $j: W_p(Q)/I_m(d^{p-1}) \rightarrow W(W_p(Q)/I_m(d^{p-1}))$. Clearly Ker $d^p = Ker q = Im(d^{p-1})$. Thus the sequence

$$0 \rightarrow Q \xrightarrow{\epsilon} W_0(Q) \rightarrow \ldots \rightarrow W_p(Q) \ldots$$

is exact and it is called the cannonical resolution of Q.

Theorem 3.2. Let Q be the sheaf of Abelian groups determined by [H,H] over X and W*(Q): $\Gamma(X,W_0(Q)) \rightarrow \Gamma(X,W_1(Q)) \rightarrow \Gamma(X,W_2(Q))$... Then the triple ($\Gamma(X,Q), \varepsilon_*, W^*(Q)$) is an augmented cochain complex.

SABAHATTIN BALCI

Proof. Clearly $W^*(Q)$ is a cochain complex. The mapping $\varepsilon_* \colon \Gamma(X, Q) \to \Gamma(X, W_0(Q))$ is a group homomorphism and $(d^o)_* \circ \varepsilon_* = 0$.

Consider the mapping

n

$$\mathrm{d}^{o} \colon \operatorname{W}_{0}(Q) \xrightarrow{q} \operatorname{W}_{0}(Q) / \operatorname{I}_{\mathrm{m}} \epsilon \ \subset \ \operatorname{W}(\operatorname{W}_{0}(Q) / \operatorname{I}_{\mathrm{m}} \epsilon) = \operatorname{W}_{1}(Q).$$

Let $f \in \Gamma(X, W_0(Q))$ and $O = d^\circ$ of f = joqof. Then qof = O, so $f(x) \in \text{Im } \varepsilon$ for every $x \in X$. Since $\text{Im } \varepsilon \cong Q$, $\Gamma(X, \text{Im } \varepsilon) \cong \Gamma(X, Q)$. Thus there is an element $\tilde{s}^* \in \Gamma(X, Q)$ such that $\varepsilon_*(\tilde{s}^*) = \tilde{s}$.

Definition 3.1. Let Q be the sheaf of the Abelian groups determined by [H,H] over X and ($\Gamma(X,Q)$, ε_* , W*(Q)) be the augmented cochain complexs.

i) $Z^p(X,Q) = Ker d^p$ is called the group of p-th cocycles of X with values in Q.

ii) $Z^{p}(X,Q) = Im(d^{p-1})$ is called the group of p-th coboundaries of X with values in Q.

iii) The quotient group $H^p(X,Q) = Z^p(X,Q)/B^p(X,Q)$ is called p-th cohomology group of X with values in Q.

In particular, $H^{0}(X,Q) \cong \Gamma(X,Q)$. On the other hand, $\Gamma(X,Q) \cong \overline{H}_{x}$. Therefore, $H^{0}(X,Q) \cong \overline{H}_{x}$, i.e., o-th cohomolony group $H^{0}(X,Q)$ of X with values in Q is isomorphic to the homology group \overline{H}_{x} of X for any $x \in X$.

Let us now consider the sequence

 $0 \to \Gamma(X,Q) \to \Gamma(X,W_0(Q)) \to \Gamma(X,W_1(Q) \to \dots$ For $p = 0, 1, 2, \dots$, let $B_p = Im (d^{p-1})$ and $d^{-1} = \epsilon$. By the induction, it is shown that all B_p are flabby. In fact, for $B_0 = Q$ this is true. Suppose that B_0, B_1, \dots, B_{p-1} are flabby sheaves. Since the sequence $0 \to B_{p-1} \to W_{p-1}(Q) \to W_p(Q) \to 0$ is exact, the sequence $0 \to \Gamma(U, B_{p-1}) \to \Gamma(U, W_{p-1}(Q)) \to \Gamma(U, W_p(Q)) \to 0$ is exact for the open $U \subset X$. Let $f \in \Gamma(U, B_p)$. Then there exists a section $f' \in \Gamma(U, W_{p-1}(Q))$ such that $d^{p_0} f = f'$. Since the sheaf $W_{p-1}(Q)$ is flabby there exists a section $f^* \in \Gamma(X, W_{p-1}(Q))$ with $f^* \mid U = f'$. But d^p of $f^* \in \Gamma(X, W_p(Q))$ and d^p of $f^* \mid U = f$. Therefore, B_p is flabby.

On the other hand, the following sequences

$$\mathbf{O} \rightarrow \mathbf{B}_{p-1} \rightarrow \mathbf{W}_{p-1}(\mathbf{Q}) \rightarrow \mathbf{B}_p \rightarrow \mathbf{O}$$

74

$$\begin{array}{l} O \ \Rightarrow \ B_p \ \Rightarrow \ W_p(Q) \ \Rightarrow \ B_{p+1} \ \Rightarrow \ O \\ O \ \Rightarrow \ B_{p+1} \ \Rightarrow \ W_{p+1}(Q) \ \Rightarrow \ B_{p+2} \ \Rightarrow \ O \end{array}$$

are exact. Thus the corresponding sequences of groups of sections are exact [2]. Therefore the sequence

$$\Gamma(\mathbf{X}, \mathbf{W}_{p-1}(\mathbf{Q})) \rightarrow \Gamma(\mathbf{X}, \mathbf{W}_p(\mathbf{Q})) \rightarrow \Gamma(\mathbf{X}, \mathbf{W}_{p+1}(\mathbf{Q}))$$

is exact. Then we may state,

Theorem 3.3. Let Q be the sheaf of Abelian groups determined by [H,H] over X. Then $H^{p}(X,Q) = 0$ for $p \ge 1$.

4. THE MAIN RESULT

Let X be a connected complex analytic manifold with fundamental group $H_x \neq \{1\}$, for any $x \in X$ and A(X) be the vector space of all holomorphic functions of X. Let $f \in A(X)$ and $x \in X$ a point. f can be expanded into a power series f_x convergent at z the local parameter of x. The totality of such power series at x as f runs through A(X) is denoted by A_x which is again a vector space (or C -Algebra) isomorphic to A(X). The disjoint uniou $A = V A_x$ is a set over X with a natural $x \in X$

projection $\pi : A \to X$ mapping each f_x onto the point of expansion x.

A natural topology on A was introduced in [4]. In that topology π is locally topological mapping. Hence (A, π) is a sheaf over X. The sheaf A is called the Restricted Sheaf of germs of the totality of holomorphic functions A(X) on X [4]. In paper [4] it is shown that the cohomology group $H^{o}(X,A)$ of X with values in A is isomorphic to the homology group \overline{H}_{x} of X. In this paper, we show that \overline{H}_{x} , is isomorphic to the cohomology group $H^{o}(X,Q)$ (= $H^{o}(\mathcal{U},Q)$). Then,

i)
$$\mathrm{H}^{0}(X,Q) \cong \mathrm{H}^{0}(\mathcal{U},Q) \cong \mathrm{H}^{0}(X,A) \cong \mathrm{H}^{0}(\mathcal{U},A).$$

ii) $H^{p}(X,Q) = H^{p}(\mathcal{U},Q) = 0$, for $p \ge 1$.

Let $Q' \subset Q$ be a subsheaf. Then there corresponds a subsheaf $A' \subset A$ to Q'. It can be shown, in similar way, that

$$\mathrm{H}^{0}(\mathbf{X},\mathbf{Q}') \cong \mathrm{H}^{0}(\mathcal{U},\mathbf{Q}') \cong \Gamma(\mathbf{X},\mathbf{Q}') \subset \Gamma(\mathbf{X},\mathbf{Q}).$$

Since Q' is flabby

- i) $\mathrm{H}^{0}(\mathrm{X},\mathrm{Q}') \cong \mathrm{H}^{0}(\mathcal{U},\mathrm{Q}') \cong \mathrm{H}^{0}(\mathrm{X},\mathrm{A}') \cong \mathrm{H}^{0}(\mathcal{U},\mathrm{A}').$
- ii) $H^p(X,Q') \cong H^p(\mathcal{U},Q') = 0$ for $p \ge 1$.

REFERENCES

- [1] BALCI, S., On the Restricted Sheaf, Comm. Fac. Sci. Univ. Ankara, Ser. A₁: Mathematiques and Statistics (accepted for publication).
- [2] GRAUERT, H., FRITSCHE, K., Several Complex Variables, Springer-Verlag (1976).
- [3] SERRE, J.-P., FASIC. Eaux Algebraiques Cohéerents, Ann. Math. Vol. 61., pp.197–278 (1955).
- [4] ULUÇAY, C., On the Homology group of the Complex Analytic Manifolds, Comm. Fac. Sci. Univ. Ankara, Ser A₁: Mathematiques, Tome: 30, pp. 37-44 (1981).