Commun. Fac. Sci. Univ. Ank. Series A₁ V. 41. pp. 197-207 (1992)

ON THE SPECTRUM OF C, AS AN OPERATOR ON by

J.T. OKUTOYI

Moi University, Mathematics Department, P.O. Box 3900 Eldoret, Kenya. (Received Nov. 6, 1991; Accepted July 14, 1992)

ABSTRACT

In 1985 John Reade determined the spectrum of C_1 , the Cesàro Operator which is represented by the matrix:

$$C_1 = \left(egin{array}{ccccc} 1 & 0 & \cdots & 0 \dots \\ rac{1}{2} & rac{1}{2} & 0 \dots \\ rac{1}{3} & rac{1}{3} & rac{1}{3} & 0 \dots \end{array}
ight)$$

regarded as an operator on the space c_o of all null sequences normed by $\|\,x\,\| = \sup_{n \geq 0} |\,x_n\,|$. It is the purpose of this paper to determine the spectrum of C_1 regarded as an operator on the space by of all sequences x such that $\lim_{n \to \infty} x_n$ exists and $\|\,x\,\| = \lim_{n \to \infty} |\,x_n + \sum_{n = 0}^{\infty} |\,x_{n+1} - x_n|$ $|\,x_n - x_n|$ and $|\,x_n - x_n|$ and $|\,x_n - x_n|$ are with all $|\,x_n - x_n|$ and $|\,x_n - x_n|$ and $|\,x_n - x_n|$ are with all $|\,x_n - x_n|$ and $|\,x_n - x_n|$ are with all $|\,x_n - x_n|$ and $|\,x_n - x_n|$ and $|\,x_n - x_n|$ are with all $|\,x_n - x_n|$ and $|\,x_n - x_n|$ and $|\,x_n - x_n|$ are with

1. INTRODUCTION

In 1986 we determined the spectrum of the Cesàro Operator C_1 regarded as an operator on the space bv_0 , the space of all sequences

$$x$$
 such that $\lim_{n\to\infty}x_n=0$ and $\|\,x\,\|\,=\,\sum\limits_{n=0}^\infty\,\,\,|\,x_{n+1}-x_n\,|\,<\,\infty.$ Using

methods similar to those of John Reade in [6] we determine the spectrum of C_1 as an operator on by.

1.1. Definition: (F, FK and BK spaces)

A Fréchet space F is a complete linear space. An FK-space is a Fréchet space with continuous coordinates. A normed FK-space is called a BK-space.

1.2. Theorem: by is a BK-space with Schauder basis $(\delta, \delta^{\circ}, \delta^{1}, \ldots)$, where $\delta = (1, 1, 1, \ldots)$ and $\delta^{k} = (0, 0, \ldots, 0, 1, 0, \ldots)$.

Proof: by is a BK-space by [10] page 110.

It is clear that $\lim \in bv^*$, where bv^* denotes the continuous dual of bv.

$$\mid \text{lim } (x)\mid = \text{lim } \mid x\mid \leq \underset{n\rightarrow \infty}{\text{lim }} \mid x_n\mid + \underset{n=0}{\overset{\infty}{\sum}} \mid x_{n+1} - x_n\mid = \parallel x\parallel_{bv}$$

and so $\|\lim\| \le 1$. Now

$$\mathbf{x} = l\delta + \sum_{n=0}^{\infty} (\mathbf{x}_n - l) \, \delta^{n'}$$

where $x \in bv$ and $l = \lim_{n \to \infty} x_n$ and if also $x = b\delta = \sum_{n=0}^{\infty} b_n \delta^n$,

then by the continuity of lim we have

$$\label{eq:lim_def} \mbox{lim } \mathbf{x} = \mathbf{b} \mbox{ lim } \delta + \sum_{n=0}^{\infty} \mbox{ b}_n \mbox{ lim } \delta^n = \mathbf{b}, \mbox{ therefore } \mathbf{b} = \mathbf{l}.$$

We also need to show that $b_n=x_n-l$ for all $n\geq 0$. So consider P_N : $bv\to C$, then $P_N\in bv^*$

$$\text{since} \,\mid P_N(x) \mid \ \, = \, \mid x_N \mid \text{ and } \parallel x \parallel_{\text{bv}} = \lim_{n \to \infty} \,\mid x_n \mid + \, \sum_{n=0}^{\infty} \,\mid x_{n+1} - x_n \mid,$$

$$\|\,x\,\,\|_{b\boldsymbol{v}} \geq \lim_{n\to\infty}\,\,|\,\,x_n\,\,|\,\,+\,\,\sum_{k=N}^{\infty}\,\,|\,\,x_{n+1}\!-\!x_n\,\,|,\,\,\text{therefore}$$

$$\|\mathbf{x}\|_{\text{bv}} \geq \lim_{n \to \infty} \|\mathbf{x}_n\| + \lim_{m \to \infty} \sum_{n=N}^{m} \|\mathbf{x}_{n+1} - \mathbf{x}_n\| \geq \lim_{n \to \infty} \|\mathbf{x}_n\| + \lim_{m \to \infty} \|\mathbf{x}_{m+1} - \mathbf{x}_N\|$$

that is,
$$\|\mathbf{x}\|_{\mathrm{bv}} \geq |\mathbf{l}| + |\mathbf{l} - \mathbf{x}_{\mathrm{N}}| \geq |\mathbf{x}_{\mathrm{N}}|.$$

Hence we see that $|P_N(x)| \le ||x||_{by} \Rightarrow P_N \in bv^*$. So

$$P_{N}(\mathbf{x}) = P_{N} \left(l\delta + \sum_{k=0}^{\infty} (\mathbf{x}_{n} - l) \delta^{n} \right) = l P_{N}(\delta) + \sum_{n=0}^{\infty} (\mathbf{x}_{n} - l) P_{N}(\delta^{n})$$

$$= l + (\mathbf{x}_{N} - l) = \mathbf{x}_{N}.$$

But also
$$P_N(x)=P_N\left(b\delta + \sum\limits_{n=0}^{\infty} \, b_n \delta^n \right) = b + b_N$$
 therefore

 $x_N = b_N + b = b_N + l \Rightarrow b_n = x_n - l$. We therefore conclude that $(\delta, \delta^{\circ}, \delta^{1}, \ldots)$ is a Schauder basis for by.

1.3. Theorem: Let $T \in B(X)$, where X is any Banach space, $T \in B(X)$ denotes a bounded operator on X, then the spectrum of T^* is identical with the spectrum of T.

Furthermore, $R_{\lambda}(T^*)=(R_{\lambda}(T))^*$ for $\lambda\in\rho(T)=\rho(T^*)$, where $R_{\lambda}(T)=(T-\lambda I)^{-1}$ and $\rho(T)=\{\lambda\in\mathcal{C}\colon (T-\lambda I)^{-1} \text{ exists}\}$ and T^* denotes the adjoint operator of T.

Proof: The proof of this is given in [1] page 568 and [2] page 71.

1.4. Lemma: Let
$$Z_n = \prod\limits_{\nu=0}^n \ \left(1-\frac{1}{\lambda\left(\nu+1\right)}\right), \ \lambda \neq 0, \ \lambda \in C.$$

Then the partial sums of $\sum\limits_{n=1}^{\infty}~Z_{n}$ are bounded iff

$$\operatorname{Re} \left(\frac{1}{\lambda}\right) \geq 1, \quad \lambda \neq 1$$

Proof: Let C be a constant depending only on λ which may be different at each occurrence, A a non-zero constant and O denotes capital order. We have that:

$$\log_{\mathrm{e}}\left(\mathrm{l-u}\right) = -\mathrm{u} + \mathrm{O}\left(\mathrm{u}^{2}\right)$$

Uniformly in $|u| \leq \frac{1}{2}$, ueC. Now given $\lambda \neq 0$

there is a ν_0 such that $|\,\lambda\mid(\nu+1)>z$ for $\nu\geq\nu_0\,hence$ for $n\geq\nu_0$

$$\begin{split} \log_e \, Z_n \, &= \, \sum\limits_{\nu=0}^n \, \, \log \, \left(1 - \, \frac{1}{\lambda \, (\nu+1)} \right) \\ &= \, C \, - \, \frac{1}{\lambda} \, \sum\limits_{\nu=\nu_0}^n \, \, \frac{1}{\nu+1} \, + \sum\limits_{\nu=\nu_0}^n \, \, t_\nu \end{split}$$

where $t_{\nu} = O\left(\frac{1}{\nu^2}\right)$.

Now
$$\sum\limits_{\nu=\nu_0}^n t_{\nu} = \sum\limits_{\nu=\nu_0}^{\infty} t_{\nu} - \sum\limits_{\nu=n+1}^{\infty} t_{\nu} = C + O\left(\frac{1}{n}\right)$$

Also
$$\sum_{\nu=\nu_0}^n \frac{1}{\nu+1} = C + \log n + O\left(\frac{1}{n}\right)$$
. If $C_n = \sum_{\nu=0}^n \frac{1}{\nu+1} - \log n$, then

$$C_{n+1}-C_n = \frac{1}{2+n} - \log \left(\frac{n+1}{n}\right) = O\left(\frac{1}{n^2}\right)$$

Therefore
$$C_{n+1} = C + \sum_{\nu=0}^{n} (C_{\nu+1} - C_{\nu}) = C + O\left(\frac{1}{n}\right)$$

Hence as
$$n \to \infty \mbox{ log } Z_n = C - \frac{1}{\lambda} \mbox{ log } n + O \left(\frac{1}{n} \right)$$

So that
$$Z_n = A_n^{-\frac{1}{\lambda}} \quad \left(1 + O\left(\frac{1}{n}\right)\right)$$

$$= A_n^{-\frac{1}{\lambda}} \quad + O\left(n^{-\operatorname{Re}\left(\frac{1}{\lambda}\right) - 1}\right)$$

If Re $\left(\frac{1}{\lambda}\right) \geq 1$, $\lambda \neq 1$, the partial sums of

so that the partial sums of $\sum\limits_{n=1}^{\infty} \ Z_n$ are bounded.

If $0 < \operatorname{Re} \left(\frac{1}{\lambda} \right) < 1$ or $\lambda = 1$ then the partial sums of

$$\sum_{n=1}^{\infty} -\operatorname{Re}\left(\frac{1}{\lambda}\right) - 1$$
 are unbounded but still we have

$$\sum_{n=1}^{\infty} \quad n = \operatorname{Re} \left(\frac{1}{\lambda}\right) \left(1 - 1\right) < \infty.$$

$$\text{If } \operatorname{Re} \left(\frac{1}{\lambda} \right) \leq 0, \text{ then } \sum_{n=1}^{N} \frac{1}{n^{-\frac{1}{\lambda}}} \asymp \frac{1}{N^{-\frac{1}{\lambda}}} \left/ \left(1 - \frac{1}{\lambda} \right) \right.$$

where $a_n \succeq b_n$ means that there exist $m, \ M \in \mid R^+ \text{ such that } mb_n \leq a_n \leq Mb_n$

$$\operatorname{Now} \begin{array}{ccc} \sum & -\operatorname{Re} & \left(\frac{1}{\lambda}\right) - 1 &= \left\{ \begin{array}{c} O\left(N^{-\operatorname{Re} \left(\frac{1}{\lambda}\right)}\right), & \operatorname{Re} \left(\frac{1}{\lambda}\right) < 0 \\ O & (\log N), & \operatorname{Re} \left(\frac{1}{\lambda}\right) = 0 \end{array} \right.$$

Hence we see that the partial sums of

$$\sum_{n=1}^{\infty} -\frac{1}{\lambda}$$
 are unbounded although

$$\underset{n=1}{\overset{\alpha}{\sum}}\quad n^{-Re} \ \left(\frac{1}{\lambda}\right) \ -1 < \, \infty \ \ \text{hence we conclude}$$

that the partial sums of $\sum\limits_{n=1}^{\infty}~Z_n$ are bounded iff Re $\left(\frac{1}{\lambda}\right)~\geq 1.$

- 2. Determination of the Spectrum of c₁ on by
- **2.1. Lemma:** Let C_1 : bv \rightarrow bv, then

$$C_1^*$$
: bv* \to bv* and $\|C_1\|_{(bv,\ bv)} = \|C_1\|_{(bv_0,\ bv_0)} = \|C_1\|_{(bv_0,\ bv_0)} = \|C_1^*\|_{(bv^*,\ bv^*)} = 1$ so that C_1^* is bounded, where

$$\|C_1\|_{(bv,\ bv)} = \sup_{n>1} \sum_{j=0}^{\infty} |\sum_{k=n}^{\infty} a_{jk} - \sum_{k=n}^{\infty} a_{j-1}, \ _k |, \ a_{jk} = C_{jk}.$$

Proof: Let T: $bv \to bv$ be given by the matrix $A=(a_{n\,k})$ then we show that $T^*\colon bv^*\to bv^*$ is given by the matrix:

$$T^* = egin{bmatrix} \overline{\chi} \, \mathbf{v}_0 \, - \overline{\chi} & \mathbf{v}_1 \, - \overline{\chi} & \mathbf{v}_2 \, - \overline{\chi} \, \dots \ \mathbf{a}_0 & \mathbf{a}_{00} - \mathbf{a}_0 & \mathbf{a}_{10} - \mathbf{a}_0 & \mathbf{a}_{20} - \mathbf{a}_0 \dots \ \mathbf{a}_1 & \mathbf{a}_{01} - \mathbf{a}_1 & \mathbf{a}_{11} - \mathbf{a}_1 & \mathbf{a}_{21} - \mathbf{a}_1 \dots \ \dots & \dots & \dots \end{bmatrix}$$

We then choose $A = (a_{nk})$ to be C_1 and conclude the lemma.

It is clear that bv* is equivalent to $\mathbb{C} \oplus$ bs via the map $h(f) = (\widehat{\chi}, t_0, t_1.)$ where \oplus denotes the direct sum and bs denotes the space of sequences

$$x$$
 such that $\underset{n\geq 0}{\sup} \ \mid \overset{n}{\underset{k=0}{\sum}} \ x_{\,k} \mid \ < \ \infty$

Define $W = hoT^* oh^{-1}$: $C \oplus bs \to C \oplus bs$, that is,

W:
$$\mathbb{C} \oplus bs \to \mathbb{C} \oplus bs$$
, h: $bv^* \to \mathbb{C} \oplus bs$

is an isometry, where

$$\|(l, \mathbf{x})\|_{\mathbb{C} \oplus \mathbf{bs}} = \max(|l|, \sup_{\mathbf{n} \geq 0} |\sum_{\mathbf{k}=0}^{\mathbf{n}} \mathbf{x}_{\mathbf{k}}|) \text{ and }$$

$$h (lim) = (lim \delta, lim \delta^1, lim \delta^2, \ldots) = (1, \theta)$$
 (2.1)

where $\lim \in bv^*$, i.e. $\lim is$ a functional and

θ is the zero sequence. Thus the zero column of W is:

$$\begin{array}{lll} \mathbf{W} \; (\mathbf{1}, \, \boldsymbol{\theta}) & = \; \mathbf{hoT^*} \; \; \mathbf{oh^{-1}} \; (\mathbf{1}, \, \boldsymbol{\theta}) \\ \\ & = \; \mathbf{hoT^*} \; \mathbf{oh^{-1}h} \; (\mathbf{lim}) \\ \\ & = \; \mathbf{hoT^*} \; \; \mathbf{olim} \; = \; (\mathbf{lim} \; \; \mathbf{o} \; \; \mathbf{T}) \; = \\ \\ & = \; (\mathbf{lim} \; \; \mathbf{oT}) \; (\boldsymbol{\delta}), \; (\mathbf{lim} \; \; \mathbf{o} \; \; \mathbf{T}) \; (\boldsymbol{\delta}^{\circ}), \ldots) \\ \\ & = \; (\bar{\lambda}, \, \mathbf{a}_0, \, \mathbf{a}_1, \, \mathbf{a}_2, \ldots) \\ \end{array}$$

where
$$\overline{\chi} = (\lim \sigma T) (\delta) = \lim_{n \to \infty} \sum_{\gamma=0}^{\infty} a_{n\gamma}$$
 and

$$a_n = (lim \ o \ T) \ (\delta^n) = \lim_{k \to \infty} \ a_{kn} \ by \ [9]$$

Also
$$\lim_{n\to\infty} a_{n\,k} = \lim_{n\to\infty} c_{n\,k} = 0$$
 for each $k \ge 0$

since
$$a_{n\,k}=c_{n\,k}=\frac{1}{1+n}$$
 and $v_k=(P_k o T)\ (\delta)=1$ for T represented by

 $a_{nk} = \frac{1}{1+n}$ hence C^*_1 has the representation as the infinite matrix:

$$egin{bmatrix} -1 & 0 & 0 & 0 & \dots & - \ 0 & 1 & rac{1}{2} & rac{1}{3} & \dots & \ 0 & 0 & rac{1}{2} & rac{1}{3} & \dots \ \end{pmatrix}$$

acting on C \oplus bs \simeq bv*. (C \oplus bs is isomorphic to bv*) which is bounded since

$$\|C_1\|_{(bv,bv)} = \|C_1\|_{(bv^*,bv^*)} = 1 \text{ by } [5].$$

2.2. Theorem: Let $C_1: s \rightarrow s$, where s is the space of all sequences,

then
$$\lambda = \frac{1}{1+m'}$$
,

 $m\geq 0$ are the only eigenvalues of C_1 where $x^{(m)}=(x_n{}^{(m)})_{n=1}^\infty$ the eigenvectors corresponding to λ are given by:

$$\mathbf{x_n}^{(\mathbf{m})} = \begin{cases} & \binom{\mathbf{n}}{\mathbf{m}}, \ \mathbf{n} \geq \mathbf{m} \\ & 0, \ 1 \leq \mathbf{n} < \mathbf{m} \end{cases}$$

Note that when m=0, $\lambda=1$ and the eigenvector corresponding to this eigenvalue is:

$$x^{(m)} = x^{(0)} = (x_n^{(0)})_{n=0}^{\infty} = (1, 1, 1, \ldots) = \delta$$

When $m \geq 1$ none of the eigenvectors corresponding to

$$\lambda = \frac{1}{1+m}$$
 is bounded.

Proof: See [4]

3.2. Corollary: $C_1 \in B(c)$, where c is the space of all convergent sequences has only one eigenvalue, namely $\lambda = 1$ corresponding to the eigenvector $\mathbf{x}^{(0)} = \delta$.

Proof: The proof follows immediately from Theorem 2.2 since $C_1 \colon s \to s \text{ has countably many eigenvalues } \lambda = \frac{1}{1+m}, \ m \geq 0 \text{ cor-}$

responding to $x^{(m)}$; $\lambda=\frac{1}{1+m}$, $m\geq 1$ gives rise to unbounded sequences which cannot be in $c\subseteq s$. Hence $\lambda=1$ is the only eigenvalue of $C_1{\in}B(c)$.

2.4. Corollary: The only eigenvalue of $C_1 \in B$ (bv) is $\lambda = 1$.

Proof: The proof follows from Theorem 2.3 since by \subset c and both by and c are BK-spaces with $(\delta, \delta^{\circ}, \delta^{1}, \delta^{2}, \ldots)$ as Schauder basis.

2.5. Theorem: The eigenvalues of

$$C^*_1 \in B$$
 (bv*) = B (C \oplus bs) are all $\lambda \in C$ satisfying $|\lambda - \frac{1}{2}| \leq \frac{1}{2}$

Proof: Suppose $C^*_1 x = \lambda x$, $x \in C \oplus bs$, $x \neq \theta$, then solving the system of equations:

$$\mathbf{x}_0 = \lambda \ \mathbf{x}_0$$

 $\mathbf{x}_1 + \frac{1}{2} \mathbf{x}_2 + \frac{1}{3} \mathbf{x}_3 + \dots = \lambda \mathbf{x}_1$
 $\frac{1}{2} \mathbf{x}_2 + \frac{1}{2} \mathbf{x}_3 + \dots = \lambda \mathbf{x}_2$

We obtain:

$$\begin{array}{l} x_0 = 0 \text{ or } \lambda = 1 \\ x_2 = \left(1 - \frac{1}{\lambda}\right) \; x_1 \\ x_3 = \left(1 - \frac{1}{\lambda}\right) \left(1 - \frac{1}{2\lambda}\right) \; x_1 \\ & \dots \\ x_N = \prod\limits_{n=2}^N \left(1 - \frac{1}{(n-1)\,\lambda}\right) \; x_1 \\ x_{N+1} = \left[\prod\limits_{n=2}^N \left(1 - \frac{1}{(n-1)\,\lambda}\right)\right] \left(1 - \frac{1}{N\lambda}\right) \; x_1 \\ \text{therefore } x_N/\,x_{N+1} = \frac{1}{1} = 1 \, + \, \frac{1}{N\lambda - 1} \; . \end{array}$$

By Lemma 1.4.,
$$(x_N)_{N=1}^{\infty} \in \text{bs iff Re } \left(\frac{1}{\lambda}\right) \ \geq \ |, \lambda \neq 1$$

i.e. $\mid \lambda - \frac{1}{2} \mid \; \leq \; \frac{1}{2}$. Thus the eigenvalues of

 $C^*_1 \in B$ (bs) are all $\lambda {\in} \mathbb{C}$ such that $|\lambda - \frac{1}{2}| \leq \frac{1}{2}$.

2.6. Corollary: Let C_1 : by \rightarrow by, then the spectrum of C_1 is given by $\sigma(C_1) = \{\lambda \in \mathbf{C} \colon |\lambda - \frac{1}{2}| \le \frac{1}{2}\}$

Proof: By virtue of Theorem 2.5 and the fact that $\sigma(C_1) = \sigma(C^*_1)$ (see Theorem 1.3), it is enough to prove that $(C_1 - \lambda I)^{-1} \in B$ (bv) for all λ such that $|\lambda - \frac{1}{2}| > \frac{1}{2}$. Solving the equation $(C_1 - \lambda I) = y$ for x in terms of y we obtain:

$$x_{0} = \frac{1}{1-\lambda} y_{0}$$

$$x_{1} = -\frac{1}{(1-\lambda)(1-2\lambda)} y_{0} = \frac{2}{1-2\lambda} y_{1}$$

$$x_{2} = \frac{2\lambda}{(1-\lambda)(1-2\lambda)(1-3\lambda)} y_{0} - \frac{2\lambda}{(1-2\lambda)(1-3\lambda)} + \frac{3}{1-3\lambda} y_{2}$$
...

therefore $(C_1-\lambda I)^{-1}=B=\begin{bmatrix} \frac{1}{1-\lambda} & 0 & 0 & 0 \dots \\ -\frac{1}{(1-\lambda)(1-2\lambda)} & \frac{2}{1-2\lambda} & 0 & 0 \dots \\ & & & & & & & & & & & & \\ that is, \ B=(b_{n\,k}), \ where & & & & & & & & & & & \\ \end{bmatrix}$

$$b_{n\,k} = \left\{ \begin{array}{c} -1/\left(1+n\right)\lambda^2 \prod\limits_{\nu=k}^n \left(1-\frac{1}{(\nu+1)\lambda}\right), \; 0 \leq k < n \\ \\ \frac{1+n}{1-(1+n)\lambda} \; , \qquad \qquad n=k \end{array} \right.$$

by M. Stieglitz and H. Tietz [7]. Also

$$\lim_{n\to\infty}\,b_{n\,k}\,=-\,\frac{1}{(1+n)\lambda^2\,\prod\limits_{\nu=k}^n\,\left(1-\frac{1}{(1+\nu)\lambda}\right)}\,=\,0\,\,by$$

Reade [6] Lemma 7.

$$\lim_{n\to\infty} \quad \sum_{k=0}^{\infty} \, b_{n\,k} = \lim_{n\to\infty} \quad \sum_{k=0}^{n} \, b_{n\,k} \text{ exists since each row}$$

of
$$(b_{n\,k})$$
 is finite and $\sum\limits_{k=0}^{n}\,b_{n\,k}=\,\,\frac{1}{\,\,1-\lambda}\,$ hence

$$\lim_{n\to\infty}\quad \sum_{k=0}^n\ b_{n\,k}=\ \frac{1}{1-\lambda}\ ,\ \lambda\ne 1,\ therefore\ B\in B(bv).$$

2.7. Remark: C_1 : $l_p \rightarrow l_p \ (1 \leq p < \infty)$, where l_p is the space of all sequences x such that

$$\sum_{k=0}^{\infty} |x_k|^p < \infty \text{ normed by } ||x|| = \left(\sum_{k=0}^{\infty} |x_k|^p\right)^{1/p}$$

has no eigenvalues and the spectrum of C_1 acting on l_p is given by:

$$\sigma\left(\mathbb{C}_{1}\right)=\left\{ \lambda\in\mathbb{C}:\mid\lambda\mid\frac{\mathbf{q}}{2}\mid\leq\frac{\mathbf{q}}{2}\right\}$$

where
$$\frac{1}{p} + \frac{1}{q} = 1$$
.

Proof: Since $l_P \subseteq c_0$ $(1 \le p < \infty)$ and

 C_1 : $c_0 \rightarrow c_0$ has no eigenvalues by [6]

 $C_1: l_P \rightarrow l_P$ has no eigenvalues either.

$$\sigma\ (C_1)=\ \{\lambda{\in}\mathbb{C}\colon |\ \lambda{-}\ \frac{q}{2}\ |\ \leq \frac{q}{2}\ \text{follows from Leibowitz}\ [4].$$

3. ACKNOWLEDGEMENTS

I would like to thank Prof. A. Kuttner and Dr. B. Thorpe both of at the University of Birmingham (U.K.), Department of Mathematics for their help.

REFERENCES

- DUNFORD, N., SCHWARTZ, J.T., "Linear Operators Part I, General Theory". John Wiley and Sons (1967), page 568.
- [2] GOLDBERG, S., "Unbounded Linear Operators-Theory and Applications" McGraw Hill Book Co. (1966), page 71.
- [3] KREYSZING, E., "Introductory Functional Analysis with Applications" John Wiley and Sons (1980).
- [4] LEIBOWITZ, G., "The Cesaro Operators and their Generalizations: Examples in Infinite Dimensional Linear Analysis" American Math. Monthly 80 (1973), 654-661.
- [5] JAKIMOVSKI, A., RUSSELL, D.C., "Matrix Mappings between BK-spaces" Bull. London Math. Soc. 4 (1972), 345-353.
- [6] READE, J.B., "On the Spectrum of the Cesaro Operator" Bull. London Math. Soc. 17 (1985), 263-267.
- [7] STIEGLITZ, M., TIETZ, H.: "Matrix Transformationen von Folgenraumen eine Ergenbnisübersicht", Math. Zeit. 154 (1977), 1-16.
- [8] WILANSKY, A., "Functional Analysis", Blaisdell Publishing Co. (1964), 226-230.
- [9] WILANSKY, A., "Subalgebras of B(X)", Proc. Amer. Math. Soc. 19(2), (1971), 355-360.
- [10] WILANSKY, A., "Summability Through Functional Analysis", North-Holland (1984), pages 109-110.