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ABSTRACT

In 1985 J ohn Reade determined the spectrum of C,, the Cesaro Operator which is repre-
sented by the matrix:

1 0 0..
C, = ( 1 3 0.. )
b F o
regarded as an operator on the space ¢, of all null sequences normed by | x || = sup | x, |-
n>0

It is the purpose of this paper to determine the spectrum of €, regarded as an operator on the
@] !
space bv of all sequences x such that lim x_ exists and |[x || =lim |x, + = [%n el
n-+>Q0 n—>00 n=0

< 00 We do so by proving that (C; — AI)~! €B (bv) for all XeC such that I2a-3]>%.

1. INTRODUCTION

In 1986 we determined the spectrum of the Cesaro Operator C;
regarded as an operator on the space bv, the space of all sequences

oC
x such that lim x5 = 0 and [x] = X |x5.;1-%n| < 0. Using
n-co n=(

methods similar to those of John Reade in [6] we determine the spectrum
of €; as an operator on bv.

1.1. Definition: (F, FK and BK spaces)

A Fréchet space F is a complete linear space. An FK-space is a
Fréchet space with continuous coordinates. A normed FK-space is
called a BK-space.

1.2. Theorem: bv is a BK-space with Schauder basis (3§, 3°, §1,. . .),
where 8§ = (1,1, 1,...) and 8 = (0,0,...,0,1,0...).
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Proof: bv is a BK-space by [10] page 110.

It is clear that lim € bv*, where bv* denotes the continuous dual

of bv.

oC

lm (x) | =lm |x | < lm |5 |+ 2 [xne; %0 | =] % Jov

n->co n=(Q
and so [ lim | < 1. Now

x=18 + 2 (x,-10)3
n=g
where xe bv and | = lim x, and if also x = b8 = X b,dn,
n—wo n=()

then by the continuity of lim we have

lim x=b1lim§ 4+ X b, limd2 = b, therefore b = .
n=y

We also need to show that b, = x, -/ for all n > 0. So consider
Py: bv - C, then Pye bv*

o
since | Py(x) | = [xy | and |x |py = lim |x4 | 4+ X |xp.1~%n |
n-% n=Q

o

|x fpy = lim {xq | + X | xn,1-%n |, therefore
n-»00 k=1

m
[%loy = blm | xq|-+ lim 2 | xy ;=% | > lim | %y |+ lim | xp, -%x]
n-oc m-aw n=N -0 m-oc
that is, [x Jpw = [ ]+ | F=xx| = |xx |

Hence we see that | Py(x) | < || x

by = Py ebv*. So

Px(x) = Py (ls + X (o) &n) = IPx(8) + X (xn-1) Px(")

n=(Q

= 1 —{— (XN—l) = XN-

But also Py(x) = Py (b8 +~ 2 byd®) = b 4 bx therefore

n=(
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xy = by - b =bhy + I =by, = x,-I. We therefore conclude that
(3, 8° 3%,...) is a Schauder basis for bv.

L.3. Theorem: Let TeB(X), where X is any Banach space, TeB(X)
denotes a bounded operater on X, then the spectrum of T* is identical
with the spectrum of T.

Furthermore, Ry (T*) = (R; (T))* for 2ep(T) = o(T*), where Ry (T)
= (T-A1)71 and o(T) == {eC: (T-2I)"1 exists; and T* denotes the
adjoint operator of T.

Proof: The proof of this is given in [1] page 568 and [2] page 71.

n
14. Lemma: Let 7, = I i- mel__)’ A% 0, xel.
0 Av -+ 1)

Y=

o«
Then the partial sums of X 7, are bounded iff
n=1

1

Re (T) > 1, a1

Proof: Let C be a constant depending only on A which may be
different at each occurrence, A a non-zero constant and O denotes
capital order. We have that:

loge (I-u) = ~u -+ O (u2)
Uniformly in |u | < 4, ueC. Now given A £ 0
there is a vy such that |2 | (v - 1) > z for v > vghence forn > Vo

n

1
loge Zn = % lo (1_ ____.__>
Ze 4m ot g NOES
1 = 1 n
=0 --- X —_ ¥ i
Ao, vEr TS
0
: 1
where ty = O (———) .
\JZ
n o o 1
Now 2 ty= 2 t,- X% tv:C+0(,,,,>
y=y v=y v=n+1 n

0 0
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1 n
Also £ -~ —C-tlogn-+0 (i) If G ¥~ _log n, then
vy v-+1 n y=g V- 1
1 n--1 1
C - C S — o R = PR
ner = Cn EEra ( n ) 0 (n~ )

n A
Therefore Cp.; = C + ¥ (Cyiq—Cy) = C + O (]1;)
v=0

i 1 . 1N
Hence as n — o log Zp, = € — 5 logn 4+ O (ﬂ{)

So that Z, = An

1 1
o« e o - Re <_\) -1
¥ n % are bounded and £ n A < o
n=| n=1
so that the partial sums of S Zy are bounded.
n==1

If 0 << Re (—1—7) <21 or » = 1 then the partial sums of

— Re (--) -1 are unbounded but still we have
n <
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N 3
If Re (,1,) < 0, then ¥ n *xX N * / (1 - 317")

n—1
where ap = by means that there exist

m, M !R* such that mb, << a, < Mb,

——Re (f%——) 1 v
T — ) <0
x  -Re (ﬂ,l,,>~1: 0(1\ )’Re(x) :
Now X n A
n=1 1
[0 (log N). Re <T> — 0
Hence we see that the partial sums of
B 1
> n A are unbounded although
n=}
1
« —Re <7-) -1 < o hence we conclude
X n
n=1

S e

that the partial sums of ¥ Z, are bounded iff Re (

n=1
2. Determination of the Spectrum of ¢; on bv

2.1. Lemma: Let Cy: bv - bv, then

Ci*: bv* > bv* and [C1 | v, ey = [ C1 | (bve, brvey =

[ Cy* | mv*, bv*y = 1 so that C;* is bounded, where

. oC % oC

1€t pv,w = sup T | ¥ ajx- X a gk |, 2= Gy
nzl j=0 k=n (=1

Proof: Let T: bv - bv be given by the matrix A = (apx) then
we show that T*: bv* > bv* is given by the matrix:

_?VO—Y Vl—x Vo jf

a9 apg—ag ajp—dg d20=Ag « . -
r11* —

a; ap1—ay arj—ag a21=a1 « ..
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We then choose A = (agy) to be C; and conclude the lemma.

Tt is clear that hv* is equivalent to @ bs via the map h (€)= (¥ tp. t; .)
where @ denotes the direct sum and bs denotes the space of sequences

s

x such that sup |

HZO k

in<‘f_r
0

il

Define W = hoT* oh 1: € @ bs — € & bs, that is,
W: 2 @ bs € @bs, h: bv* > € @ bs

is an isometry, where

n
I, x) | = max (|l |, sup | X xi |) and
G @ bs n>0 k=p
h (lim) = (lim 3, lim 3!, lim §2,...) = (1, 0) 2.1

where lim € bv*, i.e. lim is a functional and
0 is the zero sequence. Thus the zero column of W is:
W (1, 0) = hoT* oh~1(1,0)
= hoT* oh~1h (lim)
= hoT* olim == (lim o T) =
= (im oT) (3), (im o T) (3°),...)
= (h}i(, ag, &1, d2,. . )
where 7 = (lim o T) (3) = lim 2 ayy and
n-»oc Y0

ap = (lim o T) (3 = lim ay, by [?]

o0
Also lim anx = lm cpi == 0 for each k > 0
B> 0 n-- oo
. i . o
since ang = Cnj = and v = (PxoT) (8) = 1 for T represented by
L~ .
1 " : . . e .
anx = -—— hence C*; has the representation as the infinite matrix:

I+n



U

[am]

- D
-

o

« b

acting on T @ bs ~ bv* (2 @ bs is isomorphic to bv*) which is
bounded since

“ Cy ” Mbve. bv) = ” by H ©v*s 'y = 1 by [5].
2.2, Theorem: Let C: s-»s, where s is the space of all sequences,

1

then A\ = —I‘l——{‘:Axﬁ;v .

m > 0 are the only eigenvalues of C;
where x(m) = (x,™)2, the eigenvectors
corresponding to i are given by:

I

( )»nzm
Xp (M) = m

0 ,1<n<m

Note that when m = 0, A == 1 and the eigenvector corresponding to
this eigenvalue is:

x(m = x© = (x, @)%, =(1,1,1,...) =3

When m > 1 none of the eigenvectors corresponding to

A = —————— is bounded.

+ m
Proof: See [4]

3.2, Corollary: C;eB(c), where ¢ is the space of all convergent
sequences has only one eigenvalue, namely % = 1 corresponding to
the eigenvector x(0) == J.

Proof: The proof follows immediately from Theorem 2.2 since

. 1 ’
Cy: 8 > s has countably many eigenvalues A = o-———, m = 0 cor-

14+ m
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1

responding to x(m; % = ... m > 1 gives rise to unbounded

14 m
sequences which cannot be in ¢ < s. Hence A = 1 is the only eigen-

value of C,eB(c).

2.4, Corollary: The only eigenvalue of CieB (bv)isx = 1.

Proof: The proof follows from Theorem 2.3 since bv < ¢ and
both bv and ¢ are BK-spaces with (8, 8°, 81, §2,...) as Schauder basis.

2.5. Theorem: The eigenvalues of

C*1eB (bv*) == B (C @ bs) are all 2.l satisfying

b=

Proof: Suppose C*; x = hx, x 0@ bs, x 7% 0, then solving
the system of equations:

XOZ)\XO
X1+'%X2+%—X3~:ﬁ...:;\xl
%X2+%X3+...:)\X2

We obtain:

xg=0o0rx=1

X2 = (1— %—) X1
1 1
o= (5) () =

(- )
XN == - ] X
N n=2 (n—-l) A !
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& bs iff Re (31) sl

\

o
By Lemma 1.4., (xy)
N=1

ie. [A-2% | << }. Thus the eigenvaliues of

C*; € B (bs) are all %€l such that |3A- 1 | < 1

< = Yo
2.6. Corollary: Let Cy: bv — bv, then the spectrum of C; is given by
O'(CI) = {7\6(:1 : -1 < _%}

Proof: By virtue of Theorem 2.5 and the fact that 6(C;) = o(C*y)
(see Theorem 1.3), it is enough to prove that (C; — AI)~t € B (bv) for
all % such that |A- } | > 1. Solving the equation (C; —I) x = y
for x in terms of y we obtain:

1
X0 = o Yo

1 2

T Ty Y0 T 1w T

. 22 20 L3

27 T -2 -3y YO T =) (1-sn) 1-3n Y2

1 2

—_ ~1 — == — -
therefore (Cy AI) B (1-2) (1-22) 1-23

0 0...

that is, B = (byy), where

n 1
bux = | Harmie f (- o) o<k
nk =
| _1+m n=k
l -1+ na
Now |B | ~ IB | < @, B = (bax) € (bv, bv)
(bVO, bVO) (bV, bV)

by M. Stieglitz and H. Tietz [7]. Also
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lim by =~ ! = 0 by
- 00 o 1

1 -~ 1 7\2 H (1— — *"‘”A"A‘:*')

(1+m) yek 1 -+ v
Reade [6] Lemma 7.

o n

lim 2 bpg = lim 2 by exists since each row
no-on k=0 n— o k=0

n
of (bnx) is finite and 2 by = 1 hence
k=0 —h
n 1
lim 2 by = T % # 1, therefore BeB(bv).
n—>oo k=0 —A

2.7. Remark: Cy: I, - I, (1 << p < o), where I, is the space of
all sequences x such that

& 1/p
| xx P < o0 normed by |x | = (2} Xk }p)
k=0

has no eigenvalues and the spectrum of C; acting on [, is given by:

A

q
2

Q
a
o
Z
5
f
m
[9p]
~
rala

where 7}7 4+ i, — 1.
P q

Proof: Since Ip < ¢y {1 << p << ) and

Cy: ey — ¢g has no eigenvalues by [6]

Cy: Ip - lp has no eigenvalues either.
o (C) = fel: | = - | < ..sz follows from Leibowitz [4].
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