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The purpose of this paper is to discuss the existence of fixed points for some discontinuous
operators T on a 2-metric space and belonging to a class D (a, b) for which certain sequences
are asymptotically regular.

1. INTRODUCTION

The well known Banach Contraction Principle states that a
self mapping T of a complete metric space (X, d) that satisfies, for
some 3, 0 < A < 1, the inequality

d (Tx, Ty) < % d (x, y)' (1)
for all x, y in X, has a unique fixed points. J. Schauder [15], Tychonotf
[16], S. Lefschetz [13], F. Browder [1], G. Hardy and T. Rogers
[6], K. Goebel, W.A. Kirk and T.N. Shimi [5] and many others have

extended and generalised this basic result.

Recently, Nova G. [14] proved some fixed point theorems for
operators T defined on a closed subset K of a Banach space X that
satisfy

ITx-Ty | < a|xy |+ b [|xTx |+ [y-Ty [] (2)
for all x,y in K, where 0 < a, b << 1. He calls that an operator satis-
fying (2) belongs to the class D (a, b). The contraction operator satis-
fying (1) is in the class D (A, 0), 0 << < 1.

Note that the condition (1) implies the continuity of the operator

T, the condition (2) may hold even if the operator is discontinuous.
In fact any operator is in class D (1, 1). Since by triangle inequality.

ITx-Ty | < [ Txx |+ x| + [y-Ty |
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The concept of 2-metric space was initiated by Gayler [2] and
subsequently enhanced by Gahler [3, 4], White [17] and many others.
On the other hand, Iseki [7, 8, 9], Khan-Fisher [10], Khan [11, 12]
and many others have studied the aspect of fixed point theory in the
setting of 2-metric spaces.

In this paper, we have studied some fixed point theorems in 2-metric
spaces for operators T belonging to the class D (a, b) for which certain
sequences are asymptotically regular.

2. PRELIMINARIES
Following Gahler [2] and White [17], we have the following

definitions.

Definition 2.1. A 2-metric space X is a space in which for each
triple of points x, y, z, there exists real valued function d (x,y, z)
such that

(i) for each pair of distinct points x, y in X, there exists a point z
in X such shat d (x,y,2z) = 0,
(i1) d (x, y, z) = 0, when at least two of x, y, z are equal,
(i) d(x,y,2) = d (v, 2z, x) = d(x, 2, 5),
(iv) d(x,y,2) < d (x, v, w) + d (x, w, z) + d (w, y, z) for all win X.

It is clearly seen that d is non-negative.

Definition 2.2. A 2-metric d on a set X is said to be sequentially
continuous on X if it is sequentially continuous in two of its three
arguments.

It follows that if d is sequentially continuous in two of its three
arguments, it is continuous (sequentially) in all the three arguments.

Definition 2.3. A sequence {xp} in a 2-metric space (X, d) is
said to be a Cauchy sequence if lim d (xm, Xy, p) = 0 for all pin X.
n,m-co

Definition 2.4. A sequence {xp! in a 2—metric space (X, d) is said to
be convergent with limit x in X if lim d (x4, x, p) = 0 for all p in X.
n—wo
It follows that if the sequence {xj} converges to x in X then
lim d (x%p, p> q) = d (x, p, q) for all p, q in X.

n->eo



FIXED POINT THEOREMS 191

Definition 2.5. A 2-metric space (X, d) is said to be complete
if every Cauchy sequence in X converges.

Definition 2.6. Let T: Y - Y, Y © X and x€Y. Then T is said to
asymptotically regular at x if for all natural numbers n, T?(x) € Y and
lim d (To(x), Totl (x), p) = 0 for all p in x.

n-»w

Definition 2.7. A sequence {xy} of elements of Y<=X is said to
asymptotically T-regular if lLim d(x,, T(xy), p)= 0 for all p in X.

n-»>x0

Remark 2.1. It is obvious that T is asymptotically regular at some
x€Y if and only if for all natural numbers n, T%(x) €Y and {T“(X)}
is asymptotically T-regular.

Motivated by Iseki [8], we have the following

Definition 2.8. Let (X, d) be a 2-metric space and x; an
arbitrary point in X. Then a mapping T:X - X is said to
xo=Orbitally Continuous if lim d(TPxy, z, p) =0 for all p in X

N>

implies that lim d(TT"x,, Tz, p) = 0 for all p in X.

n->0

Definition 2.9. Let (X, d) be a 2-metric space and T: X - X.
We say that T e D(a, b) if the inequality

d(Tx, Ty, p) < ad (x,y, p) + b [d (x, Tx, p) + d (y, Ty p)]
holds for all x,y,pin X, 0 << a, b < 1.

3. RESULTS:
Now we present the main results

Theorem 3.1. Let (X, d) be a 2-metric space and T: X — X.
If Te D(a,b), 0 <a, b<1 a-+ 2b< 1. Then T is asymptotically
regular at every point in X,

Proof. Let xy be an arbitrary point in X. Define x; = Trx,.
Then for all p in X, n > 1, we have d(xn, Xn, 1, p) = d(Txn_1, Txn,p)

< ad (Xn—lv Xn, P) -+ b [d (Xn_lo TXn—le P) -+ d (Xm Txm P)]
= ad (xn—h Xn, P) +5b [d (Xn..la Xn, P) 4-d (an Xny1» P)]

]
i
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so that
a-t-b

d (xq, Xnyets P) < 1B d (Xn_le Xn, D)

Hence
at+b \o
a Gonnn 1) = (1) 4 o1 )
. . a+b .

Since by hypothesis, b < 1, it follows that d (xn, Xn,1, p) =

d (Tnxy, Totixgy, p) — 0 as n - oo, Since xg is arbitrary, T is asymp-
cotically regular at every point in x. This completes the proof.

Theorem 3.2. Let X be complete 2-metric space and T: X - X be a
mapping in D (a, b), 0 < a, b < 1. Then a sequence {xp}in X is asymp-
totically T-regular if and only if it converges to a fixed point of T.

Proof: Suppose lim x, = z and z = Tz. Then for all p in X, we have
n->00

d (th TXna P) g d (Xnv Txne Z) + d (XID Z, P) + d (Z7 Txnv P)
= d (xp, Txp, 2) + d (xp, 2, p) -+ d (Tz, Txyp, p)

Thus letting n > o0, we have d (x4, Txy, p) > 0 so that {xp} is asymp-
totically T-regular.

Conversely
d (Txnv TXma P) S ad (XIU Xms P) + b [d (Xn7 TXna P) + d (Xme Tva P)]
< a[d (Xno Xm» TXn) +d (Xna Txp, P) +d (TXIH Xm, TXm)
+d (Txn, Tx 1y, P) +d (TXma Xm, p)]
+b [d (Xnv Txy, P) +d (va Tx m, P)]
So that:
(1-a) d(Txp, Txn, p) < (a-+b) [d(xn, Txyp, p) + d(xm, Txm, p)]
+ b [d(xna Xm, TXm) -+ d(Xno Xm» TXn)]

Letting m, n — o0, we observe that {Txy} is a Cauchy sequence. Since

X is complete {Tx,} converges to, say, z in X. Since lim d(xp, Txp, p)
n-oo

=0, {xp} >z as n—> oo
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We assert that z = Tz. For if z 3£ Tz, then
d(z, Tz, p) < d(z, Tz, Txy) + d(z, Txp, p) + d(Txp, Tz, p)
< d(z, Tz, Tx,) + d(z, Txp, p)
4 ad (xu 7 p) -+ b [d(xu Txas p) + d(z Tz, p)]
Letting n - o0, we obtain
d (z, Tz, p) < bd (z, Tz, p)

a contradiction. Hence z = Tz. This completes the proof.

Theorem 3.3. Let X be a complete 2-metric space and T:X —
X be a mapping in D (a, b), a, b > 0, a + 2b < 1. Then T has unique
fixed point in X.

Proef: By Theorem 3.1, T is asymptotically regular at every point
in X. Let xy be an arbitrary point in X. Define x, = T2x;. Then the
sequence |xy} is asymptotically T-regular (see Remark 2.1). Thus
by Theorem 3.2. the sequence {x,} converges to a point z in X such
that z = Taz.

To show that z is unique, suppose z and z; are two fixed points
of T. Then for all p in X, we have

d (x, z1, p) = d (Tz, Tz, p) < ad (z, z;)
which is inadmissible. Hence z == z;. This completes the proof.

Remark 3.1. Theorem 3.3. is a 2-metric analogue of Theorem 3
due to Nove G. [14]. It may be observed that for establishing the
existence of fixed points in Theorem 3.3, we have used the asymptotic
regularity of T at one point only. Keeping this in mind we obtain an
extension of the above theorem in which the condition a 4 2b < 1
may be relaxed. Thus we have the following theorem. Note that a 4 2b
may exceed 1 in this case.

Theorem 3.4. Let X be a complete 2-metric space and T:X - X
be a mapping in D (a, b), a, b > 0, b < 1. If T is asymptotically regular
at some point in X, then T has a fixed point in X. Further if a < 1,
then the fixed point is unique.

Proof: Let T be asymptotically regular at xye X. Define x, =
Toxy. Then the result immediately follows from Theorem 3.3. This
completes the proof.
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Finally, the following theorem is another extension of Theorem
3.3.in which by assuming T to be xg—orbitally continuous, the condition
of completeness of X has relaxed.

Theorem 3.5. Let X be a 2—metric space and T:X — X be a mapping
in D (a,b), a,b >0, a + 2b < 1. If T is xp—orbitally continuous at
some point X in X and the sequence {T™xy} has a cluster point z in
X, then z is a fixed point of T.

Proof: By Theorem 3.1, T is asymptotically regular at every
point in X. Let {T™xy} = {T"xy} — z. Then for all p in X, we have
d(z, Tz, p) < d(z, Tz, Trixg) + d(z, Trixg, p) + d(Thixg, Tz, p)

' < d(z, Tz, Trixg) + d(z, Trixg, p) -+ d(Trixg, Tz, Tri+ixg)
+ d(Trixg, Tritixg, p) + d(Ti+'xg, Tz, p)

Using asymptotic regularity of T and its xg—orbital continuity,
we find that d(z, Tz, p) = 0 as n; > 0. Therefore z = Tz. This
completes the proof.

It is worth noting that if T is asymptotically regular as well as x¢-
orbitally continuous at some point xg€ X, then using Theorem 3.4
and Theorem 3.5, we have the following:

Corollary 3.1. Let X be a 2—metric space and T:X - X a mapping
in D(a,b), a,b >0, b << 1. If T is asymptotically reqular and x¢-
orbitally continuous at some point x¢ in X and the sequence {TDxg}
has a cluster point z in x, then z is the fixed point T. Moreoverifa < 1,
then the fixed point is unique.

The following is a direct consequence of Theorem 3.2.

~ Corollary 3.2. TLet X be a 2-metric space and T: X > X be a
mapping in D (a, b), 0 < a, b < 1. If a sequence {xp} in X converges
to a fixed z of T, then {x;} is asymptotically T-regular.
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