
Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87

DOI: 10.7240/jeps.897556

Corresponding Author: Yunus Emre ESEN, Tel: +90 554 390 91 97, e-posta: yunus_emre_esen@eskisehir.edu.tr

Submitted: 15.03.2021, Revised: 20.11.2021, Accepted: 20.11.2021

RESEARCH ARTICLE / ARAŞTIRMA MAKALESİ

Low-Latency SoC Design with High-Level Accelerators Specific to

Sound Effects

Ses Efektlerine Özel Yüksek Seviye Hızlandırıcılarla Düşük Gecikmeli SoC Tasarımı

Yunus Emre ESEN1 , İsmail SAN1

1 Eskişehir Technical University, Department of Electrical and Electronics Engineering, 26555,

Eskişehir, Türkiye

Abstract

High-quality sound processing requires hardware acceleration in order to reduce the processing latency of the applied sound

effects. Computational latency of producing enhanced sound from the audio input is an important delay component and

affects the performance especially in artists’ live performance or high-quality sound generation. Artists want to apply a sound

effect in real-time on their music and latency is the main problem when these systems running in real-time. CPU-based

systems present flexibility, but introduce a high amount of latency while processing, which in fact affects the artist

negatively. In this study, to get the flexibility through software and the acceleration via hardware specialization, we present a

system-on-chip (SoC) solution with HW/SW co-design methodology for some sound-effects. We reduce the latency and

increase the frequency by applying pipelining through MATLAB. The system is implemented and tested on a programmable

SoC platform, ZedBoard, which contains ZC7020 Zynq chip with a dual-core ARM-Cortex-A9 processor and a

reconfigurable FPGA part. The ARM processor enables the management of sound-effect hardware accelerator running on

FPGA and provides communication with user. A sound effect is designed with block models provided by MATLAB &

Simulink at high-level. MATLAB HDL Coder then converts these blocks into RTL-level hardware designs. The followed

design methodology provided by MATLAB & Simulink enables high-level block design that can be embedded into FPGA at

RTL-level to benefit from the speed provided by high-speed hardware registers and to have an AXI interconnect interfacing

with software in order to utilize the software flexibility. The study shows that latency is reduced significantly.

Keywords: hardware accelerator; system-on-chip; pipelining; sound effect.

Öz

Yüksek kaliteli ses işleme, ses üzerinde uygulanan efektin sebep olduğu işleme gecikmesini düşürmek için donanım

hızlandırması gerektirir. Ses girişinden gelişmiş ses oluşurken hesaplanan gecikme, önemli bir gecikme bileşenidir ve

özellikle sanatçıların canlı performansında veya yüksek kaliteli ses üretiminde performansı etkiler. Sanatçılar, müziklerine

gerçek zamanlı bir ses efekti eklemek ister ve bu efektler gerçek zamanlı sistemlerde kullanıldığında gecikme ana problem

haline gelir. CPU tabanlı sistemler esneklik sunar, ama işleme esnasında oluşan büyük miktardaki gecikme sanatçıları

olumsuz olarak etkiler. Bu çalışmada, esnekliğin yazılımla ve hızlandırmanın donanım özelleştirmesi ile elde edildiği, bazı

ses efektleri için yazılım/donanım ortak tasarım yöntemi ile bir sistem üzerinde çip (SoC) çözümü sunuyoruz. MATLAB

üzerinden ardışık düzen uygulayarak gecikmeyi azaltıyor ve frekansı artırıyoruz. Sistem, çift çekirdekli ARM Cortex A9

işlemcisi ve yeniden yapılandırılabilir FPGA’e sahip ZC7020 Zynq çipi barındıran programlanabilir bir SoC platformu olan

ZedBoard’da çalıştırılmış ve test edilmiştir. ARM işlemcisi, FPGA üzerinde çalıştırılan ses efekti donanım hızlandırıcısının

yönetilmesine ve kullanıcı ile haberleşilmesine olanak sağlar. Bir ses efekti MATLAB & Simulink tarafından sağlanan

yüksek seviyede blok modeller ile tasarlanmıştır. MATLAB HDL Coder, bu blokları RTL seviyesinde donanım tasarımlarına

dönüştürür. MATLAB & Simulink tarafından sağlanan bu tasarım yöntemi, yüksek hızlı donanım yazmaçlarının sağladığı

hızdan yararlanmak için FPGA’ya RTL seviyesinde gömülebilen yüksek seviyeli blok tasarımı yapılmasına ve yazılım

esnekliğinden yararlanmak için AXI ara bağlantısı ile arayüz oluşturulmasına olanak verir. Bu çalışma gecikmenin önemli bir

ölçüde düşürüldüğünü gösterir.

Anahtar Kelimeler: donanım hızlandırıcısı; çip üzerinde sistem; ardışık düzen; ses efekti.

I. INTRODUCTION
Digital signal processing (DSP) is a key technology in many signal processing applications such as speech and

image compression, audio filtering, classification and coding where processing operations are performed in

digital domain. Many real-life examples which are possible with DSP technology have already been in our daily

life such as video streaming, computer applications, audio effects etc. In real life, signals are in continuous form

such as a sound signal that is heard. In order to process a signal in a conventional computer, continuous signal

must be converted to digital format that computer can understand and perform the processing. First, real-world

signals such as temperature, pressure, audio, or video are transformed into digital domain, then signal processing

algorithms run on digitized signal samples and manipulate the digital signal data to get the desired transform.

mailto:yunus_emre_esen@eskisehir.edu.tr
https://orcid.org/0000-0001-8319-5605
https://orcid.org/0000-0003-3005-1813

Low-Latency Audio HW Design Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87

79

Finally, the digitized data needs to be transformed

back to real-world continuous signal again [1]. The

most important problem here is relatively long

processing delays. There are many delay components

in a processor-based system. Some applications can

tolerate long delays; however, some delay-intolerant

applications require a special attention in order to

reduce the overall delay introduced by computation or

communication. Hence, specialized hardware

architecture with DSP-enabled components that is

tailored to the signal processing algorithm is a

powerful solution.

The demand of people on the low-latency applications

is increasing gradually in every year. Especially in last

30 years, with evolution of technology,

microprocessors and specialized hardware are used

and developed with newer techniques in order to

obtain better throughputs and better execution times.

Some of the solutions are being developed with high-

level software programming language for CPU-based

solutions, which gives more design productivity and

development opportunities, but incurs a cost of

processing time for application being developed [2].

Application-specific hardware design provides very

low latency for the selected application and gives

better processing times with very high-throughput

values (Ahmed Elhossini, Shawki Areibi, Robert

Dony, 2006), but this costs the designer to lose design

flexibility that comes from higher level programming

languages. This article presents a case study to use the

advantages of the two mentioned design flows in a

system-on-chip (SoC) design with a HW/SW codesign

methodology: (1) designing a DSP block with a high-

level programming tool in MATLAB & Simulink, (2)

converting this application-specific design to a

specialized hardware with MATLAB HDL Coder, (3)

managing and controlling the generated this special

hardware design from a software application running

on ARM-based processor and (4) demonstrating how

pipelining can be implemented to DSP designs to

achieve higher frequency and how much its effect on

latency times compared to our previous solution

LowLAG [4].

Many works have been carried out in the past years

for sound effect applications. Some of these have been

carried out only on the software platform [5] and some

have only been carried out on the hardware platform

[6]. On the DSP side, main concentration of this

article is to cover to audio applications, especially in

real-time sound effects. Sound effects are latency-

intolerant application for real-time applications. For

instance, a person speaking to a microphone and

listening the voice with headphones can easily notice a

latency if the latency is greater than 5 milliseconds

[7]. Software applications offer latency values on

these boundaries. Designing complex software

applications with high CPU loads or running an

application that requires high performance on the CPU

can reduce the performance of the software. For such

cases, software solution does not provide enough

performance. High performance or high energy

efficiency in computing can be achieved with compute

and communication specialization for a specific task.

Reconfigurable computing platforms allow us to tailor

our design to perform better in terms of performance

and area. In hardware, arithmetic and memory access

of an application can be defined in spatially if the

application has some parallelism. Spatial execution

defined in hardware brings more performance- or

energy-efficiency compared to serial execution model

compiled into CPU. Because software applications are

being developed with a high level language (such as

C/C++), and even if the computation is described in

one line of code that makes one useful operation at

high-level, it may correspond to many lines of

assembly language code. Among the instructions

compiled from one-line of code, there are many

instructions required to feed the data to the execution

unit and it takes several cycles. However, the same

operation can be described more efficiently in

hardware. This gives the main advantage of low

latency introduced by specialized hardware designs

compared to software designs. As the software part of

the SoC design handles the low load required

processes such as address definitions, providing

parameter inputs, controlling the hardware units etc.,

while hardware handles high load required processes.

This HW/SW co-design methodology brings

advantages of both software and hardware together.

There are several studies on sound effects applications

that are implemented on system on chip platform such

as [8] [9] [10].

In this work, we developed our first work, LowLAG

[4], while following the same methodology. There are

three main contributions compared to first design,

which are: obtaining better latency values with

pipelined design (1), controlling hardware

specification from software side (2), and designing

new sound effects on Simulink that are based on a

filter created via FDA Filter Designer Tool.

II. HARDWARE/SOFTWARE CO-

DESIGN METHODOLOGY FOR

LOW-LATENCY AUDIO

PROCESSING

2.1. Low-Latency Sound Effect Design with

Specialized Hardware

One of the competition points among Today’s Tech

companies is decreasing the latency and producing

real-time products. Music is one of the important area

since there are many real-time products available

today. All techniques for low-latency and high-

performance are utilized in the design stage

(producer’s side) in order for a person who listens to

the music to get the best result. The artists, musicians

and producer want to hear whatever they have done

Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87 Low-Latency Audio HW Design

80

immediately. Because music is all about harmony, and

even a single millisecond delay can disturb the whole

harmony and cause decreasing the creativity. This is

another motivation point that highlights the need for

acceleration on sound effects in terms of low-latency.

Software solutions have limited processing capability,

which make the specialized hardware design

inevitable in low-latency targets. But, designing a

specialized hardware is difficult in terms of design

cost, long development cycles, and huge verification

efforts. We propose a sound effect design with high

level system blocks on Simulink, test and simulate on

a personal computer, convert the MATLAB &

Simulink design to a hardware design in VHDL

language generated via MATLAB HDL Coder,

integrate the design to a SoC architecture containing

ARM processor and implement the whole SoC in

ZedBoard programmable SoC platform. Generated

RTL-level specialized hardware design can be

integrated into a SoC architecture as an IP (Intelligent

Property) core, which can be explained briefly as a

reusable part of hardware system in an FPGA (Field-

Programmable Gate Array) based SoC system [11].

The desired solution for low-latency audio processing

in our design requires processing the audio sample by

sample which is synchronized with system clock.

Generally, 44.1 KHz is used as a sample rate for most

of the audio files, and we designed the system for this

sample rate. In ideal conditions, an audio file that has

two channels (right and left) have 88200 sample for

one second. Our methodology brings the necessity to

run at least 88.2 MHz frequency for system core clock

and supporting this frequency within the IP core.

Pipelining in the IP core design provides to reach

especially this frequency requirements rather

complicated effect designs.

Figure 1. Simulink model to custom IP core

There are two different pipelining methods provided

by HDL Coder that are implemented in this work.

First method is adding new delay blocks to design

stage of the Simulink model and using these blocks as

registers. There is a special parameter to determine

how many cycles are going to be waited at registers

with this method. The second method is adaptive

pipelining. This pipelining method is controlled from

HDL Coder. There is a requirement that specifies the

target platform for using adaptive pipelining. HDL

Coder insert registers to block design if adaptive

pipelining is enabled.

2.2. Hardware Design: Creating Custom IP with

HDL Coder

The sound effect design is described in a Simulink

model; whose used blocks must be supported by HDL

Coder [12]. In this work, as a sound effect, a filter

design is used additional to previous work. A

distortion sound effect with no parameters was

designed for previous work. In this work, this

distortion effect is updated with pipelining registers

and input parameters. The filter design, which is new

sound effect, is made on FDA Filter Designer Tool,

and this design converted to a Simulink block. The

block that is generated uses basic elements such

register, gain, addition and subtraction block, which is

supported by HDL Coder.

When Simulink block design of sound effect is

completed, custom IP block can be generated with that

block using HDL Coder. Vivado 2020.2 provides the

synthesis tool to HDL Coder for converting the block

to IP core design in VHDL. The IP core runs on an

FPGA inside of SoC design and uses AXI4-Lite

interface in order to communicate with whole system.

2.3. Software Design: Hardware Management and

User Interface

The designed custom IP core is controlled over a

software application runs on an ARM processor. The

application handles the basic processes. It makes the

address mapping with BSP (Board Support Package)

of the board that is used, routing the audio data

between IP cores etc. In order to use custom IP core,

driver of the custom IP has to be added to software

and associated with application for accessing the IP

core. The driver includes the address of required

addresses.

Other duty of the software is to provide

communication between system and user. The system

and user communicate over UART (Universal

asynchronous receiver-transmitter) at 115200 baud

rates. The interface is managing from a basic console,

but it can be improving for advance applications.

2.4. Design Environments

Sound effect is designed on Model Composer and

System Generator 2020.2 provided by Xilinx, based

on MATLAB & Simulink version 2020b. Model

Composer provides the full compatibility for Xilinx

boards. Some of the steps for introducing the board,

synthesis settings are already defined with Model

Composer. It gives setting up the system easier than

normal MATLAB environment.

Created custom IP core is implemented to system on

Vivado 2020.2. This Vivado version provides new

software platform rather than previous work. This new

software environment name is Vitis and is used 2020.2

version. Vitis comes up with some change compared

to SDK, which was old software environment for

Vivado. The application and platform are separated on

Vitis, which makes the target platforms configurable.

HDL

Coder

Simulink

Model

Custom

IP

Low-Latency Audio HW Design Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87

81

III. METHODOLOGY AND

IMPELEMENTATION
The main idea behind this work has already

summarized in Section 2. In this section, all details

and project implementation are covered. The path to

the solution is described in subsections below.

3.1. Necessity of HW/SW Co-design Methodology

Software based DSP solutions for audio processing

may be not enough to handle when desired processing

time is real-time. For example, complex sound effects

generate more latency while monitoring the input

audio to an output. Hardware based solutions are

solved this latency problem. But it is hard to

implement and results in the loss of functionality

advantage of software solutions. When HW/SW co-

design methodology is used, the latency results will be

so much better than software, and hardware still can

be manipulated from the software. Therefore HW/SW

co-design methodology offers a solution where is used

advantages of both sides.

3.2. System-on-Chip Design Architecture with

Sound Effects on ZedBoard

In this work, an SoC design is implemented on

ZedBoard, which is provided by Xilinx. ZedBoard

includes a Zynq-based programmable SoC platform.

This platform works within an ARM processor core.

The ZedBoard that we used contains ZC7020 chip.

SoC platform can be explained in two parts, PL

(Programmable Logic) that was mentioned as

hardware and PS (Processing System) that was

mentioned as software. PL side is powered within an

FPGA and PS side is run on an ARM processor. PL

consists of PS, which can be shown in

Figure 2. The IP cores are the changeable components

of the PL which means that IP cores can be used in

different designs again.

Figure 2. Overview of SoC Architecture

3.3. Sound Effect Design on MATLAB & Simulink

Two different sound effect designs are made on

Simulink for this work. First design is related with

previous work, which is distortion effect. Addition to

previous design, parameter inputs for managing effect

from software and pipelining for decreasing latency

more were added. Seconds design is about a lowpass

filter. Many more filter designs can be implemented

like the way is going to explained below.

3.3.1. Distortion Effect Design

Distortion effect distorts the audio signal. It applies a

gain to incoming audio signal and saturates that signal

in order to keep signal in valid area with a saturation

block [13]. In this version, there are 2 parameters for

managing distortion effect. First parameter is drive,

which provides the adjusting level of distortion level,

and second parameter is mix, which provides how

much percentage of clean and distorted audio is going

to mixed. The design of distortion effect can be shown

Figure 3. Components are described in Table 1.

Table 1. Distortion effect block explanations

Block Explanation

audio_in
Audio signal incoming from MATLAB

workspace

ConstantDrive
Input of drive parameter (0 minimum, 1

maximum), that sets intensity of the effect

ConstantMix

Input of mix parameter (0 minimum, 1

maximum), that sets rate of mixing with

distorted and clean audio

distortion

subsy
Distortion sound effect block

convert &

double

Converting blocks between fixed point and

double data types.

output.wav Saves the audio to a multimedia file

As shown in Figure 3, distortion sound effect takes

three input parameters and provides an output to

obtain effected audio. Audio input is obtained from

MATLAB workspace and output audio is saved to a

wav file. The incoming data values and saved data

values are in double data type. Distortion block

performs the computation in fixed point data type with

16 bits length with 14-bit fraction length, which is

proposed in [14]. When looking into the subsystem of

distortion, there can be seen pipelining methodology is

implemented. This methodology uses registers for

accelerating the hardware. Delay blocks are used as

register. They keep the corresponded data for one

clock cycle of the system. It provides to store data in

short distances between blocks where they have

computation processes. When the pipelined design is

implemented, there is no need to wait for completing

the process for one sample, it can take more cycles in

a one subsystem in sequential line. Implementing

pipelined design increases the latency in theorical, but

it improves the throughput, processing power and also

system clock can be run at higher frequencies, which

gives reducing latency values compared to the design

without pipelining. Pipelined design of the distortion

block is shown in Figure 4. There are several blocks

and they are used mainly for multiplication, addition,

Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87 Low-Latency Audio HW Design

82

saturation, delay and supplying a constant to another

block. The delay blocks perform a wait operation for

one clock cycle. These delay blocks must be added in

right places in the design in order to making processes

in parallel. Additional registers can be added for

blocks with heavy processing load. z-1 block is a delay

component and it represents a pipeline register with

reconfigurable clock-cycle.

Registers are implemented as with these parameters:

input pipeline is 1, output pipeline is 1. These

parameters are provided from HDL Coder and, all

used blocks are supported from HDL Coder toolbox in

Simulink library. All multiplication, subtraction and

addition processes are done sample based. In Figure 4,

there can be imagined 5 register stages. Each register

transmits the data on rising edge of a clock cycle of

system to another register stage. Inside of the

subsystem signals are used in signed fixed point data

type with 16 bit data length and 14 bit fraction length

suggested as in [14]. Besides, adaptive pipelining is

also used in this block design.

Figure 3. Simulink model of distortion effect

Figure 4. Subsystem of distortion effect in detail

3.3.2. Lowpass Filter Design

A lowpass filter design is created in order to show

how Simulink gives ease of design for hardware

implementations. This lowpass filter passes lower

frequencies than 3 KHz and stops higher frequencies

than 4 KHz where can be seen in Figure 5 as

magnitude response graph. Filter Designer tool (as

known as FDA Tool) is used for creating filter block.

Filter designer can be used by entering filterDesigner

to MATLAB command window. The tool will be

opened after this process. The tool provides some

parameters to select and it makes easier to design a

filter. In this work, an equiripple FIR filter is used.

Equripple filters are suited for specific tolerance for

passing and stopping for some frequencies [15]. The

order of design may be reduced with other design

methods. It may reduce the latency more because

reducing order means that less blocks are going to

used. Since the methodology is emphasized here, the

most efficient design has not been studied. The filter

design in the Filter Designer is shown on Figure 5.

When filter design is finished, the design can be

converted to a Simulink model from File > Export the

Simulink Model selection. Input processing is selected

as sample based and all optimization selections are

checked before realized model. The block that is

generated is added to another Simulink model. This

block design is generated automatically, which is

shown in Figure 7. In this design, there are 112 delay

blocks which is corresponded to design order in the

Filter Designer and they are used as register as well

with 1 input and 1 output pipeline parameters. The

gain blocks in the design enables to making element

wise multiplication with a constant [16] defined from

Filter Designer. The generated subsystem block is also

shown as in Figure 6. The blocks that are shown in

figure are described in Table 1 before, except

filter_lowpass block. This block is used as lowpass

filter sound effect and created from Filter Designer

Tool as mentioned above.

Low-Latency Audio HW Design Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87

83

Figure 5. Filter design in the Filter Designer tool

Figure 6. Filter block in the Simulink

Figure 7. Inside of designed filter block in Simulink

(dashed lines represent that blocks repeat in the same

way from input to output)

The basic blocks in the design are supported from

HDL Coder. Gain block parameter K has different

values which are defined from Filter Designer tool.

Lowpass filter block is selected as use adaptive

pipelining from HDL Coder properties. Also, all delay

blocks are used as register in order to implement

pipelining for better execution times.

3.4. Creating Custom IP Cores via HDL Coder

After design of sound effect has completed, the sound

effect block in the Simulink is converted to IP core via

HDL Coder. Before converting the filter block to IP

core, model and subsystem compatibility is checked

with HDL Coder. These steps show if there is any

error or warning for better design compatibility. Some

of the warnings that is taken in that stage was about

reset type of clock settings, changing block names etc.

These checking tools gives facility of seeing any

mistake before generating IP core.

HDL Workflow Advisor is a tool that is used for

creating custom IP core provided by HDL Coder. This

tool provides to selecting target platform, preparing

the model for HDL code generation and generating IP

core. Since Simulink is opened from Model Composer

and System Generator, the board that is going to used

is already set up to HDL Coder. It provides pass these

processes faster than normal Simulink environment.

The settings that are used for ZedBoard are described

in Table 2. IP core is generated as used these

parameters.

Table 2. HDL Workflow Adviser Parameters

Parameter Input

Target workflow IP Core Generation

Target platform Generic Xilinx Plaform

Synthesis tool Xilinx Vivado

Tool version 2020.2

Family Zynq

Device xc7z020

Package clg484

Speed -1

Processor/FPGA

synchronization

Coprocessing - blocking

Target platform

interfaces

AXI4-Lite

Language VHDL

Adaptive pipelining Checked

Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87 Low-Latency Audio HW Design

84

3.5. Adding Generated IP Core to a Hardware

Design in Vivado

The hardware design is synthesized, implemented and

routed using Vivado design suite (Vivado v2020.2).

First, a block design is created, and this design uses

ZYNQ7 Processing System IP core to instantiate

ARM processor in the system. An audio codec IP core

is used from Zynq Book Tutorials [11] to obtain audio

signals from microphone inputs and giving back to the

headphone output. All IP cores communicates with

each other over AXI interconnect.

Sound effect IP blocks must be added first to the

repository. For this purpose, new IP repository is

added where is located to generated IP core location in

the IP Catalog, it adds IP’s automatically from the

repository. After adding process is done, IP’s can be

added to the block design. IP block connections are

done automatically thanks to the Vivado. After

synthesis, placing and route operations, a bitstream

file is generated to program FPGA. The bitstream file

must be exported to use this hardware design in

composing software. Final block design of the PL part

of the SoC architecture is shown in Figure 8.

Figure 8. Block design of SoC architecture

3.6. Composing the Software on Vitis

Vitis, which is a recent and unified software

development environment provided by Xilinx, is used

for software part of the design. New application

project and platform project are created first. Platform

project is used to define the hardware specification as

a platform. It defines hardware specifications such as

drivers for hardware design etc. It is used bitstream of

hardware, which is generated on Vivado, and it can be

updated when hardware design is changed. On the

other side, application project is the part of using

hardware IP’s and using algorithms in order to realize

what is desired from software side. The application

project must be created with this platform project

instance. IP core drivers must be added to the

application project for address definitions of

corresponded IP cores.

The application project provides an UART connection

in order to communicating with user. According to

given input parameters to UART, application

transmits the audio signal between the corresponding

addresses of sound effect IP core and input & output

registers of audio codec IP core. These addresses are

determined in HDL Coder IP core generation step and

defined in IP core drivers which are created

Low-Latency Audio HW Design Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87

85

automatically by HDL Coder. Also, input parameters

are managed in here, which was mentioned before

changing the behaviour of sound effect.

3.7. Internal Structure of Lowpass Filter Sound

Effect IP Core

In the lowpass filter IP core there are 4 different

modules. These modules are described in this

subsection. Figure 9 illustrates the internal structure of

lowpass filter IP core.

Lowpass_ip

ip_reset_sync

ip_copip_dut

ip_src

ip_axi_lite

ip_addr_decoder

ip_axi_lite_module

Figure 9. Illustration of Lowpass Filter IP Core in

Detail

3.7.1. ip_dut

This submodule is used for processing the audio

signal. It has one more component sub-module named

ip_src which makes the processing operations and

pipelining management. The input and output are

fixed point data which was defined in Simulink

design. In addition to these, reset, clock and enable

signals goes as input to this block.

3.7.2. ip_reset_sync

This submodule manages the reset state of IP. When a

reset signal is emitted to this IP core, it resets states

for processing and pipelining processes.

3.7.3. ip_cop

This submodule is used as controller of processes. It

manages the states of controller such as strobe, enable

and ready signals. This module generates a set of

signals to control (starting, enabling for write

operation, etc.) the other hardware components in the

design and also checks the ready signals to determine

whether they finished the execution.

3.7.4. ip_axi_lite

This submodule manages the communication of

hardware IP core with other IP’s in the system through

AXI4-Lite interface. It handles the necessary signals

with cooperating other submodules that are mentioned

above. It has two other submodules inside of itself as

component. Input and output signals transfer from this

submodule.

IV. EXPERIMENTAL RESULTS

4.1. Latency for Simulink Solutions

Everything described in the methodology section has

been carried out on Simulink and ZedBoard. The

latency results for Simulink models could not be

obtained. Because the delay blocks that are used for

pipelining are caused delaying in audio, which makes

the simulation results meaningless. But the driver

latency is already known from previous work. The

latency result can be taken minimum value as 2.447

milliseconds without applying an effect and 2.8

milliseconds with distortion IP block from previous

work with ASIO4ALL v2 driver, which can give an

idea for comparison the results obtained from

ZedBoard. These results were evaluated with a

computer which has Intel i7 7700HQ processor,

Realtek High Definition Audio driver version

6.0.1.8142, and audio codec ALC269 at 44.1 kHz.

4.2. Latency Calculation for ZedBoard

The latency values are calculated with a TTC timer

provided by Zynq device on the ZedBoard. When a

sample is processed, it is obtained the time value from

physical timer counter register and stored previous

value in different variable. The latency calculation is

shown in Figure 10 and described below.

TTC Timer Value

Processing
Sample 1

Processing
Sample 2

Processing
Sample 3

Previous Time

Current Time

Previous Time

Current Time

Figure 10. Calculating latency and representation of times

Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87 Low-Latency Audio HW Design

86

The algorithm of obtaining latency is described with a

basic pseudo code below.

previous_time = current_time;

current_time = GetTime();

elapsed_time = current_time –

previous_time;

If relation between the Figure 10 and code above is

examined, previous time is the current time in the

previous processed sample. Previous time is stored in

another variable and elapsed time is calculated as

difference of previous and current time. This method

provides to obtain a latency value with time elapsed

outside the IP core.

4.3. Latency Results for ZedBoard Implementation

Different implementations are tested on ZedBoard.

Distortion sound effect and lowpass filter sound effect

are implemented together and one by one on

hardware. The test specifications and results are

described in Table 3. The average values are obtained

from 10 test records.

Table 3. Test specifications and results implemented

on ZedBoard

Sound

Effect(s)

Latency

from

Pipelining

(cycle)

Clock

Frequency

Average

Clock

Cycle

Spent

Average

Latency

(nano-

seconds)

Distortion

+

Lowpass

Filter

- 100 MHz 710 1065

Distortion 12 150 MHz 588 882

Lowpass

Filter
226 100 MHz 714 1071

Clock frequency shows the frequency that can be

reached at maximum value for the designed sound

effect IP block. Results show while increasing clock

frequency, latency is decreasing. The way of

increasing the clock frequency is using pipelined

register designs. But if these pipelined registers are

increased more than enough, that would be cost of

more latency and this puts the results at a disadvantage

instead of advantage. Different sound effects have

almost same latency values at the same clock

frequency.

Unlike similar studies, in this study specific latency

values are obtained and compared by using MATLAB

& Simulink, which makes much easier to design

development and saves time, for IP core design with

pipelining technique, including previous study [4].

Significant improvement in latency has been

demonstrated. Using pipelining on complex Simulink

designs make it synthesizable to an IP Core that is run

at desired clock frequencies. This gives the

opportunity of processing an audio in a specific time.

As a result, designs with pipelined registers reduce the

latency. The best latency values are under the 1

microsecond (882 nanoseconds). There is 12.75%

decreasing in latency value for distortion block with

pipelined design compared to previous work. Much

better Simulink designs can be made that it is opened

to development for less latency values. This study also

revealed how easy it is and showed have good

performance values for designing DSP system by

using MATLAB & Simulink.

V. CONCLUSION
This study shows the advantages of HW/SW co-

design methodology with a system-on-chip design on

audio processing. Very small latency values can be

obtained with using specialized hardware while

controlling it over a software application for DSP

systems without losing any functionality of software.

Development time and design productivity

significantly improved by making block-based designs

in MATLAB & Simulink. High-level DSP systems

can be implemented easily with this methodology. For

sound-effect applications, the followed methodology

can be a viable solution on real time applications. In

this context, neural network-based audio synthesis

algorithms can also be accelerated as a future work to

provide real-time performance via similar design

methodology with MATLAB or other high-level

synthesis tools.

REFERENCES

[1] Blackledge, J. (2006). In Digital Signal

Processing (2nd ed.). Chichester: Horwood

Publishing.

[2] Pirkle, W. C. (2019). Designing audio effect

plugins in C++: for AAX, AU, and VST3 with

DSP theory (2nd ed.). New York, NY, USA:

Routledge.

[3] Elhossini, A., Areibi, S., and Dony, R. (2006).

An FPGA Implementation of the LMS

Adaptive Filter for Audio Processing. 2006

IEEE International Conference on

Reconfigurable Computing and FPGA's

(ReConFig 2006). San Luis Potosi, Mexico:

IEEE.

[4] Esen, Y. E., and San, İ. (2020). LowLAG:

Low-latency hardware accelerator of a sound

effect with system-on-chip design. ASYU 2020,

Innovations in Intelligent Systems and

Applications Conference. İstanbul.

[5] Juillerat, N., Arisona S. M., and Schubiger-

Banz, S. (2007). REAL-TIME, LOW

LATENCY AUDIO PROCESSING IN JAVA.

Proceeding of the International Computer

Music Conference. Copenhagen.

[6] Meyer-Baese, U. (2007). Digital Signal

Processing with Field Programmable Gate

Arrays (2nd ed.). Berlin: Springer.

Low-Latency Audio HW Design Int. J. Adv. Eng. Pure Sci. 2021, ASYU 2020 Special Issue: 78-87

87

[7] Audio quailty on networked systems, Yamaha,

https://uk.yamaha.com/en/products/contents/pr

oaudio/docs/audio_quality/05_audio_quality.ht

ml (June 2020)

[8] Pfaff, M., Malzner, D., Seifert, J., Traxler, J.,

Weber, H., and Wiendl, G. (2007).

IMPLEMENTING DIGITAL AUDIO

EFFECTS USING A

HARDWARE/SOFTWARE. 10th Int.

Conference on Digital Audio Effects (DAFx-

07). Bordeaux.

[9] Byun, K., Kwon, Y., Park, S., and Eum N.

(2009). Digital Audio Effect System-on-a-Chip

Based on Embedded DSP Core. ETRI Journal.

[10] Byun, K., Kwon Y., Koo B., Eum N., Jeong K.

and Koo J.. (2009). Implementation of digital

audio effect SoC. 2009 IEEE International

Conference on Multimedia and Expo. New

York.

[11] Crockett, L. H., Elliot, R. A., Enderwitz, M.

A., and Stewart, R. W. (2014). The Zynq

Book: Embedded Processing with the ARM

Cortex-A9 on the Xilinx Zynq-7000 All

Programmable SoC (First ed.). Glasgow:

Strathclyde Academic Media.

[12] HDL Coder™ Getting Started Guide, The

MathWorks, Inc.,

https://www.mathworks.com/help/pdf_doc/hdl

coder/hdlcoder_gs.pdf (June 2020)

[13] Limit input signal to the upper and lower

saturation values, The MathWorks, Inc.,

https://www.mathworks.com/help/releases/R2

018b/simulink/slref/saturation.html (June

2020)

[14] Fixed-Point Conversion. In HDL Coder™

User's Guide, The MathWorks, Inc.,

https://ww2.mathworks.cn/help/pdf_doc/hdlco

der/hdlcoder_ug.pdf (June 2020)

[15] Signal Processing Toolbox™ User's Guide,

The MathWorks Inc.,

https://www.mathworks.com/help/pdf_doc/sig

nal/signal.pdf (December 2021)

[16] Multiply input by constant. The MathWorks

Inc.,

https://www.mathworks.com/help/releases/R2

018b/simulink/slref/gain.html (June 2020)

