
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 24, S. 235-239, Nisan 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 24, pp. 235-239, April 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 235

Design and Realization of Online Auto Tuning

PID Controller Based on Cohen-Coon Method

Ali Egemen Taşören1*

1* Hacettepe University, Faculty of Engineering, Department of Computer Engineering, Ankara, Turkey, (ORCID: 0000-0001-8711-2010), taliegemen@gmail.com

(2nd International Conference on Access to Recent Advances in Engineering and Digitalization (ARACONF)-10–12 March 2021)

(DOI: 10.31590/ejosat.897727)

ATIF/REFERENCE: Taşören, A. E. (2021). Design and Realization of Online Auto Tuning PID Controller Based on Cohen-Coon

Method. European Journal of Science and Technology, (24), 235-239.

Abstract

In this paper, a controller which is capable of automatically obtaining proportional integral derivative (PID) parameters using Cohen-

Coon tuning method is developed and tested on a real system consisting of an L298N circuit and a 1.1W brushless DC motor. The

main purpose of this paper is to propose a fast, portable, and model-independent automatic controller. ATmega2560 microcontroller is

programmed as a PID controller and a Raspberry Pi programmed to collect, compute, send and receive data from ATmega2560

through serial communication. Finally, the system is proven for its performance with satisfactory results.

Keywords: PID, Parameter Tuning, Serial Communication.

Cohen-Coon Tabanlı Otomatik Ayarlayıcılı Online

 PID Denetleyici Tasarımı ve Gerçeklenmesi

Özet

Çalışmada, Cohen-Coon yöntemini kullanarak otomatik olarak Oransal-İntegral-Türevsel (PID) katsayılarını elde eden denetleyici

tasarlanır, L298N devresi ve 1.1 W fırçasız doğru akım motoru içeren gerçek sistemde test edilir. Çalışmada hızlı, taşınabilir ve

modelden bağımsız bir otomatik denetleyici önerilir. ATmega2560 mikrodenetleyici PID denetleyici olarak programlanır.

ATmega2560 seri haberleşme aracılığıyla veri eldesi, işleme ve gönderimi için programlanmış Raspberry Pi ile haberleşir. Önerilen

sistemin performansı, yapılan testler ile kanıtlanır.

Anahtar Kelimeler: PID, Parametre Ayarlama, Seri Haberleşme.

http://dergipark.gov.tr/ejosat
mailto:taliegemen@gmail.com

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 236

1. Introduction

Proportional-Integral-Derivative (PID) is a prominent linear

controller, nearly 95% of industrial processes are controlled by

them and most of them are implemented on microcontrollers

(Åström & Hägglund, 1995). PID controllers are easy to set up

for most systems and they can be used for several different

control systems applications namely speed, position, or

temperature control (Ogata, 2010). Although PID controllers

have only three parameters, the proper approach has to be

applied. Without using the appropriate PID parameters, desired

control conditions cannot be obtained (Skogestad, 2003). To

obtain appropriate PID parameters, Ziegler-Nichols (Ziegler &

Nichols, 1942) and Cohen-Coon (Cohen & Coon, 1953) tuning

methods are generally used. However, there are several types of

PID tuning methods in literature (Sheel & Gupta, 2012). A study

on comparing conventional PID tuning methods is recently

published and Cohen-Coon method is found to be the best

performing among compared methods (Taşören, Örenbaş, &

Şahin, 2018).

Tuning a PID controller manually takes the time and effort

of the system operator. To minimize human interaction with PID

controllers, Automatic Tuning Methods have been developed

(Astrom & Hagglund, 2006). Using these methods with

MATLAB, a model dependent Adaptive Automatically Tuning

PID Control for Vertical Take-off and Landing module has been

simulated (Taşören, Gökçen, Şahin & Soydemir, 2020). Also, a

comparison has been made for various Auto-Tuning methods are

proposed (Hang & Sin, 1993).

The main aim of this paper is to design and realize an open-

source model independent online automatically tuning PID

controller based on Cohen-Coon tuning method to obtain

feasible PID parameters. The design also will be portable,

versatile and open sourced [https://github.com/taliegemen/PID-

Autotuner].

In this paper, designed hardware and software which are

used to automatically tune a BLDC system using the Cohen-

Coon method has online properties, which aims to quickly tune a

plant with close to no human interaction. A brief explanation of

the hardware and software of the system that’s used to create

Automatic Tuner is, information about finding proper tuning

parameters for Cohen-Coon without using any transfer function,

and the algorithm of the system, and performance information

about the Automatic Tuner system is given in Section 2. The

third section includes discussions about the obtained results

meanwhile the fourth section concludes the paper also offers

topics for future research.

2. Description of Setup

2. 1. Hardware Design of Plant

The designed test plant consists of a Raspberry Pi 3B+ (A

computer which has a 1.4 GHz quad-core processor and 1 GB

LPDDR2 SDRAM) with Ubuntu Mate 16.04 operating system,

an ATmega2560 based microcontroller unit (Arduino Mega)

which is programmed as a PID Controller, an L298N h-bridge

transistor circuit and a Maxon 344515 BLDC Motor with

Encoder and 1:16 reducer.

Since there can be an interruption from the operating system

of Raspberry Pi, it cannot be used as a standalone PID Controller

also, an Arduino Mega cannot be used for a standalone device

for auto-tuning operation since it struggles with calculations of

big arrays, thus it cannot drive the motor properly and calculate

the parameters at the same time. For better performance, instead

of the approaches mentioned above, Arduino Mega and

Raspberry Pi are connected with a USB cable which allows

serial communication between devices. This configuration will

allow Raspberry Pi to handle array operations and Arduino will

be responsible for controlling the BLDC with calculated gain

parameters which are found after the bump test.

Figure 1. Software Flowchart

There is data that cannot be able to reach from Arduino

Mega to Raspberry Pi because of operating system interruption

but since this only happens once per 7-8 seconds and it takes few

microseconds, there is no loss of big data in the process. Also,

the hardware of Arduino Mega only can run the software

uploaded for this process only once per 1-2 milliseconds, which

sets our sampling rate.

Maxon Motor 344515 has 16000 rpm speed without any

loads, and it runs at 1000 rpm with the reductor on the motor. It

also has a 2-channel encoder which generates 770 pulses per one

revolution of the motor. L298N H-Bridge Transistor circuit is

used to control the revolution direction of the BLDC mentioned

above.

European Journal of Science and Technology

e-ISSN: 2148-2683 237

2. 2. Software Design of Plant

A Raspberry Pi and an Arduino Mega are properly coded

separately to enable serial communication between devices and

PID Control of BLDC. For this setup, the Ideal PID algorithm

has been used for Arduino Mega since the Ideal PID algorithm is

the most widely used PID algorithm for industrial control

purposes (Smuts, 2011). Principles of Ideal PID control

algorithms are discussed in the previous study (Taşören, Örenbaş

& Şahin, 2018). Software on Arduino Mega enables Arduino to

send position and time data of the BLDC to Raspberry Pi using

serial communication. The software on Raspberry Pi enables

Raspberry Pi to do calculations on data gathered from Arduino

Mega, and then send the PID parameters obtained from these

calculations to Arduino Mega with serial communication. A

basic scheme of the algorithm can be found in Figure 1.

Before further software information, the method for

calculating proper PID Control parameters has to be discussed.

2. 2. 1. Obtaining PID Parameters

Finding suitable PID controller parameters is a worthy task

for most systems. To find feasible PID tuning parameters some

calculations have to be made, and these calculations have to be

repeated when there are changes in the system. In this section,

information about the system which automates this process will

be given.

The ideal PID control algorithm scheme consists of 3

parameters. One of the parameters affects the other two

directions. But these two parameters do not affect other

operations. To be precise, the integral tuning parameter only

affects the integral operation of the algorithm meanwhile

derivative tuning parameter only affects the derivative operation

of the algorithm, and the proportional gain parameter affects all

of the operations in the ideal PID algorithm. Ideal PID control

algorithm is also known as noninteractive, ISA, and standard

PID control algorithm. There are many Tuning Methods

proposed for this method namely, Lambda, integral of the

absolute error, and Cohen-Coon Tuning Methods (Smuts, 2011).

A mathematical expression of the ideal PID algorithm can be

found in Equation 1.

 𝐾𝑐 [𝑒 + (
1

𝑇𝑖
) ∫ 𝑒𝑑𝑡 + 𝑇𝑑 (

𝑑𝑒

𝑑𝑡
)] = 𝐶𝑜 (1)

Where Kc is the proportional gain parameter, Ti is the

integral tuning parameter, Td is the derivative tuning parameter,

e is error, t is time and Co is controller output.

Arduino Mega is programmed in a fashion that the software

on it will calculate the Co continuously upon receiving input

from serial communication as time passes using Equation 1. The

first input mentioned in the third row of Algorithm 1 is the input

that starts the Automatic Tuning operation.

At first, the proper parameters have to be calculated to tune

a BLDC and this can be done by using a method called Bump

Test (Smuts, 2011). Bump Test is rather useful when there are

no specifications for the system which will be tuned. This

method does not require any kind of specification knowledge of

a system, rather it only measures the response of the system to

the output of the controller without any amplification, so it can

be used for practical PID tuning operations easily.

There is an initialization process on Arduino Mega which

has to be launched at first. This initialization process settles Kc to

0 to ensure the software won’t work without serial

communication input and it starts the serial communication. The

first input which is given by Raspberry Pi to Arduino Mega

starts the Bump Test of the motor by setting PID parameters on

Arduino Mega. Kc is taken as 1, td has to be 0 and ti should be a

high number to ensure the integral and derivative part of the PID

controller does not interrupt with the Bump Test. Also, Kc is

settled 1 since there is no need for gain in Bump Test.

After the Bump Test has been made, all the position and

time data of the test are collected by Raspberry Pi and recorded

into a Comma Separated Values (CSV) file. After that operation,

the software on Raspberry Pi opens the CSV file and makes the

calculations that are needed to find PID controller parameters. 3

specific values have to be found to calculate PID parameters.

These values are τ, dead time (td), and Process Gain (Gp). To

explain briefly, τ is the time that passes between the end of dead

time and the moment of 0.63 change of motor position, the dead

time is the time that needs to pass to the motor to rotate, and gain

is the percentage change of system compared to the reference

(Equation 2). To find these values, all of the measured position

and time values from the Bump Test have been sent to

Raspberry Pi via serial communication. Since Arduino Mega

cannot handle both controlling the motor and making

calculations at the same time, calculations are made by

Raspberry Pi in this way. Raspberry Pi has calculated these

values with using Equation 2 and Figure 2 as Gp = 0.9, td = 14 ms

and τ = 47.35.

Δ𝑃𝑠𝑦𝑠𝑡𝑒𝑚

Δ𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
= 𝐺𝑝 (2)

Where ∆Psystem is the position change in the system, ∆Preference
is the position change in the reference, Gp is the process gain.

After these calculations, Raspberry Pi obtains the PID

parameters by using the Cohen-Coon Tuning Method formulas

which can be seen in Table I (Smuts, 2011), and the obtained

parameters can be found in Table II.

COHEN-COON TUNING FORMULAS

 Kc Ti Td

PID
1.35τ

𝐺𝑝 × 𝑡𝑑

+
1

4𝐺𝑝

𝑡𝑑(0.4625𝑡𝑑 + 2.5τ)

τ + 0.611𝑡𝑑

0.37τ𝑡𝑑

0.185𝑡𝑑 + τ

EVALUATED PID PARAMETERS

PID Kc Ti Td

Cohen-Coon 5.35 31.27 4.91

2. 2. 2. Online PID Control

After the calculations, Raspberry Pi sends the found PID

parameters to Arduino Mega via serial communication by

packaging them into bytes, and Arduino Mega reads these

parameters and starts to drive the BLDC with the parameters that

have been provided by Raspberry Pi. If it is wanted, the

algorithm can be started again just by relaunching the software

on Raspberry Pi. The algorithm of Arduino Mega and Raspberry

Pi can be found in Algorithm 1 and 2 respectively.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 238

Algorithm 1: Software on Arduino Mega

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

start: the initial setup process

end: the initial setup process

if there is a signal from the serial communication

 set: Kc to 1, ti to 999999, td to 0,

 reference position to 100

end

while

 read: encoder and timer data

 record: encoder data as present position data,

 record timer data as present time data

 calculate: the time difference by subtracting

 previous data from present data

 calculate: error by subtracting the reference from

 encoder position data and Co

 If the Co is positive,

 drive the BLDC motor by sending PWM

 to port number 9

 end

 If the Co is negative,

 drive the BLDC motor by sending PWM

 to port number 10

 end

 record: the present position time as previous

 position data and present time data as the previous

 time data

 if there is incoming serial data

 read: the packaged data and record it as Kc, ti, td

 end

break

end

Algorithm 2: Software on Raspberry Pi

1:
2:
3:
4:
5:
6:
7:
8:
9:

 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:

 start: serial communication with intended baud rate.
 send: start command to Arduino Mega
 If the position from serial communication is
 not the same for the given time variable
 (this time can be changed based on the system
 that’s being used)

 receive: position and time information
 from Arduino Mega
 write: position and time data to the output file

 end
 convert: data on the output file to 2 different arrays
 find: dead time, tau, and Process Gain
 calculate: Kc, ti, td

 prepare: convert the found PID parameters to bytes
 since bytes can be sent via serial communication
 send: PID parameters to Arduino Mega
 end: stop the software

3. Results and Discussion

To measure the performance, a little change to the algorithm

can be made to the software in Raspberry Pi to continue

obtaining position and data values from serial communication.

With this addition, the graph in Figure 2 has been presented

from the data obtained by Raspberry Pi.

In Figure 2, there is a calculation step that takes 50 ms, and

there is a Bump Test which is mentioned detailly at the PID

parameter calculation part of the paper, after these steps BLDC

is controlled with calculated PID parameters which are

calculated with Cohen-Coon Tuning method.

With Automatic Tuner System, BLDC Plant has been

controlled with %7 overshoot, 103 milliseconds of settling time,

46 milliseconds of rising time, and 1% steady-state error. This

result is very satisfactory considering no calculations are made

by humans for this PID tuning operation.

Figure 2. BLDC Response Graph

The motors which are used for various kind of systems have

to be tuned again each time when their friction, load, or position

changes since these changes affect motor transfer function as

well. To apply automatic tuning, there is no need for the model

of the motor which is being used with the system because

proposed algorithm works independent from the model of the

system.

There are lots of required calculations for the process of

getting appropriate tuning parameters. Each of the changes that

has been made to the system also requires new parameters, with

Automatic Tuner Raspberry Pi will do all of the calculations

thus the tuning process will be faster, and easier.

The mentioned Automatic Tuner system is very portable

since it is made up of a small-sized computer (Raspberry Pi), an

H-Bridge Transistor circuit (L298N), and an ATmega2560 based

microcontroller (Arduino Mega) is used. With these components

Automatic Tuner can be used in different places easily, the

proposed controller is also easy to set up with motors that have

2-channel encoders. With a single Automatic Tuner, different

systems can be tuned since there are no required information

about the plant.

4. Conclusion

In this study, an Automatic Tuner System has been designed

to Tune PID systems quickly, reducing the human effort that’s

put into calculations and observations, and with a design as

portable as possible. This design is carried out by using an

ATmega2560 and a Raspberry Pi. ATmega2560 is coded in a

way that is feasible for noninteractive PID control, also the

software on the microcontroller allows it to serially

communicate with other devices. Raspberry Pi is programmed in

a way that allows it to make serial communication with

ATmega2560. Moreover, it records the serial communication

data which is received and makes calculations on these values

using Cohen-Coon parameters and delivers the found parameters

to the ATmega2560, allowing ATmega2560 to drive the BLDC

with appropriate parameters.

European Journal of Science and Technology

e-ISSN: 2148-2683 239

In future work, the automatic tuner system which is

developed in this paper can be improved with machine learning

to obtain optimal controller performance.

References

 Åström, K. J., & Hägglund, T. (1995). PID controllers:

theory, design, and tuning (Vol. 2). Research Triangle Park, NC:

Instrument society of America.

Ogata, K. (2010). Modern control engineering. Prentice hall.

Skogestad, S. (2003). Simple analytic rules for model

reduction and PID controller tuning. Journal of process

control, 13(4), 291-309.

Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings

for automatic controllers. trans. ASME, 64(11).

Cohen, G., & Coon, G. A. (1953). Theoretical consideration

of retarded control. Trans. Asme, 75, 827-834.

Sheel, S., & Gupta, O. (2012). New techniques of PID

controller tuning of a DC motor—development of a

toolbox. MIT International Journal of Electrical and

Instrumentation Engineering, 2(2), 65-69.

Åström, K. J., & Hägglund, T. (2006). PID control. IEEE

Control Systems Magazine, 1066(033X/06). Chicago

Hang, C. C., & Sin, K. K. (1991). A comparative

performance study of PID auto-tuners. IEEE Control Systems

Magazine, 11(5), 41-47.

Smuts, J. F. (2011). Process Control for Practitioners: How

to Tune PID Controllers and Optimize Control Loops.

OptiControls.

O'dwyer, A. (2009). Handbook of PI and PID controller

tuning rules. World Scientific.

Taşören, A. E., Örenbaş, H., & Şahin, S. (2018, October).

Analyze and comparison of different PID tuning methods on a

brushless DC motor using ATmega328 based microcontroller

unit. In 2018 6th International Conference on Control

Engineering & Information Technology (CEIT) (pp. 1-4). IEEE.
Taşören, A. E., Gökçen, A., Soydemir, M. U., Şahin, S.

(2020). Artificial Neural Network-Based Adaptive PID

Controller Design for Vertical Takeoff and Landing Model.

European Journal of Science and Technology, (Special Issue),

87-93.

