Commun. Fac. Sci. Univ. Ank. Series A₁ V. 41. pp. 151-155 (1992)

AN APPLICATION OF THE FIBRATION THEOREM OF EHRESMANN

DORIN ANDRICA., LIVIUE MARE

(CLUJ - NAPOCA)

(Received April 17, 1992; Accepted July 14, 1992)

ABSTRACT

The main purpose of the paper is to prove that the map (7) and also its restriction to GL+(n, IR) is a locally trivial fibration.

From the general theory of fiber bundles we know that a bundle map between two C $^{\infty}$ -differentiable manifolds is a surjective submersion. Here arise a natural problem: given M and N two C $^{\infty}$ -differentiable manifolds and f: M \rightarrow N a smooth surjective submersion, find sufficient conditions in order that f be a locally trivial fibration. A such condition is given by:

Theorem. (Ehresmann [3, Th. 8.12, p. 84]). If $f: M \to N$ is a proper surjective submersion then f is a locally trivial fibration.

We shall consider

$$GL(n, |R) = \{X \in \mathbf{M}_n (|R): \det X \neq 0\}$$
(1)

the real general linear group, which is a n^2 dimensional C^{∞} – differentiable manifold, as an open subset of M_n (IR). It is known that GL(n, |R) has two connected components:

$$\begin{split} GL^+\left(n,\, \mid R\right) &= \left\{X \in GL\left(n,\, \mid R\right); \; \det \; X \sim 0\right\} \; \text{and} \\ GL^-\left(n,\, \mid R\right) &= \left\{\; X \in GL\left(n,\, \mid R\right); \; \det \; X < 0\right\}, \end{split}$$

both open in GL (n, IR).

We also consider

$$S_n(lR) = \{X \in M_n(lR); \ ^tX = X\}, \tag{2}$$

the set of symmetric matrices. Clearly we can identify S_n (IR) with the Euclidean space $[R^{n(n+1)/2}]$. In the following we shall denote by S_n^+ (IR) the subset of S_n (IR) formed of all positive definite matrices.

Finally denote by

$$O_n(|R) = \{X \in GL(n, |R): {}^tX.X = \mathbf{1}_n\}, \tag{3}$$

the set of orthogonal matrices.

In the sequel we shall use the following two results:

(a) Diagonal form of symmetric matrices). For any $A\in S_n$ (IR) there exists $T\in O_n$ (IR) such that

$${}^{t}\mathbf{T} \; \mathbf{A} \; \mathbf{T} = \begin{bmatrix} \lambda_1 & & & & \\ & \cdot & & & \\ & & \cdot & & \\ & 0 & & \lambda_n \end{bmatrix}$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the matrix A. (see, for example, [2, Th. 2, p. 83]).

(b) (Polar decomposition in GL(n, IR)). Any $X \in GL(n, IR)$ admits a unique decomposition in the form:

$$X = OS (4)$$

with $0 \in O_n$ (IR) and $S \in S^+_n(IR)$. Moreover the application O_n (IR) $x S^+_n$ (IR) \rightarrow GL (n, IR) given by

$$(0, S) \longrightarrow 0.S$$
 (5)

is a diffeomorfism.

In this paper, by using the above mentioned result of Ehresmann, we shall obtain a locally trivial fibration of GL (n, IR) (and respectively of GL^+ (n, IR)) and we will put in evidence an interesting connection with the trivial fibration given by det: GL^+ (n, IR) \longrightarrow IR*₊ (we denote by IR*₊ the set of real positive numbers)

Let begin with the proof of two helping results:

Lemma 1. The set S_n^+ (IR) is open in S_n (iR).

Proof: Observe that (a) supply us with the following relation:

$$S_{n} \; (lR) \; = \; \underbrace{ \left[\quad \left[\quad T \right. \; \left\{ D \; (\lambda_{1}, \ldots, \, \lambda_{n}) \colon \, \lambda_{i} \, \in \, IR \right\} \right. \; t_{T}}_{T} \; \label{eq:sn}$$

where

$$\mathbf{D}\left(\lambda_{1},\ldots,\lambda_{n}
ight) = \left|egin{array}{cccc} \lambda_{1} & 0 & - & & & \\ & \ddots & & & & \\ & & \ddots & & & \\ & & & \lambda_{n} & & \end{array}
ight|.$$

In this relation we have

$$S_n{}^+\!(|R) \;=\; \frac{|}{T} \; \frac{|}{\in O_n(|R)} \; T \; \left\{D\;(\lambda_1,\ldots,\lambda_n)\colon \lambda_i > 0 \; \text{for all } i=1,\ldots,n\right\} t_T$$

But every T $\{D$ $(\lambda_1,\ldots,\,\lambda_n);\; \lambda_i>0 \;\; \text{for all}\;\; i=1,\ldots,\,n\}$ t_T is clearly open in T $\{D$ $(\lambda_1,\ldots,\lambda_n)\; \lambda_i\in lR\}$ $t_T;\;\; \text{consequently}\;\; S_n^+$ (lR) is open in S_n (lR). Lemma 1 is proved.

Consider the following sets: for any $A \in GL(n, |R) \subseteq S_n(|R)$ put

$$O_{n}\left(A,\left|R\right)=\left\{ X\in GL\left(n,\left|R\right);\right|{}^{t}XX=A\right\}$$

and if det A > 0

$$O^{+}_{n}\left(A,\, \mathsf{I}R\right) = \ \left\{X \in O_{n}\left(A,\, \mathsf{I}R\right): \ \det \ X = \sqrt{\ \det \ A} \right\}$$

$$O_n^-(A, |R) = \{X \in O_n(A, |R); \det X = -\sqrt{\det A}\}$$

Clearly O_n $(I_n, |R) = O_n$ (|R) and O^+_n $(I_n, |R) = SO_n$ (|R) where SO_n (|R) represents the special orthogonal group.

Lemma 2. (i) The map $\varphi \colon S^+_n(R) \longrightarrow S^+_n(R)$

$$X \varphi (\chi) = \chi^2 \tag{6}$$

is a proper bijection.

(ii) We have the following chain of equivalences:

$$O_n\left(A,\, \mathsf{I} R\right) \neq \varnothing \Leftrightarrow O_n^+\left(A,\, \mathsf{I} R\right) \neq \varnothing \Leftrightarrow A \in S^+_n\left(\mathsf{I} R\right).$$

Proof: (i) The fact that φ is one-to-one is an immediate consequence of (a). Let's show that φ is proper: for $K \subseteq S^+_n(lR)$ compact we have to prove that $\varphi^{-1}(K)$ is bounded.

A very useful norm on M_n (IR), equivalent with the Euclidean norm is

$$\|\mathbf{A}\| = [\max\{|\lambda_i|: \lambda_i \text{ eigenvalue of } {}^tAA\}]^{1/2}.$$

But if $A \in S^{+}_{n}$ (|R) then

$$\|\mathbf{A}\| = [\max \{\lambda_i^2 : \lambda_i \text{ eigenvalue of } \mathbf{A}\}]^{1/2}$$
,

so that $\| \phi^{-1}(A) \| = \sqrt{\| A \|}$. Because K is bounded, $\phi^{-1}(K)$ is bounded, too.

(ii) The first equivalence holds because det $(J_nA) = -$ det A,

Assume $O_n(A, IR) \neq \emptyset$. Therefore $A = {}^t XX$, thus A is symmetric. If λ is an eigenvalue of A and $x \in |R^n|$ is an eigenvector corresponding to λ , then

$$\lambda = \frac{\|\mathbf{X} \cdot \mathbf{x}\|}{\|\mathbf{x}\|^2} > 0.$$

It follows that $A \in S^{+}_{n}$ (|R).

Conversely, if $A \in S^+_n$ (IR), by the surjectivity of ϕ one obtains that O_n (A, IR) $\neq \emptyset$.

Now, we are in position to state the main result of this paper.

Theorem (i) The map $f: GL(n, R) \to S^{+}n$ given by

$$X f(\chi) = {}^{t}\chi\chi \tag{7}$$

is a fibration of GL (n, IR) with the type fiber O_n (IR).

(ii) The restriction
$$f \mid GL^{+}\left(n,\,IR\right) \Rightarrow S^{+}_{n}\left(IR\right)$$

is also a fibration, with the type fiber SO_n (IR).

Proof: First, we will show that f is a submersion. Using the well-known result concerning the equality of the Frechet and Gateaux differentials for smooth maps, we obtain:

$$(\mathrm{d}f)_{\ B}(C) = \lim_{\lambda \to 0} \ \frac{1}{\lambda} \ [f\left(B + \lambda C\right) - f\left(B\right)] =$$

$$= \lim_{\lambda \to 0} \frac{1}{\lambda} \left[{}^{t}(B + \lambda C) (B + \lambda C) - {}^{t}BB \right] = {}^{t}BC + {}^{t}CB.$$

It follows that, for every $B\in GL$ (n, IR) the differential $(df)_B\colon M_n$ (IR) $\to S_n$ (IR) is surjective. Let $D\in S_n$ (IR) and choose $C={}^t(B^{-1})D/2$. Then

$$(df)_{B}(C) = {}^{t}B {}^{t}(B^{-1}) D / 2 + {}^{t}DB^{-1}B / 2 = D / 2 + D / 2 = D.$$

We prove now that f is a proper map. To this end, let's observe that, by using the polar decomposition (b) it follows that $f(X) = S^2$. So that $f = \phi o$ h, where ϕ is given by (6) and h: GL $(n, |R) \rightarrow S^+_n$ (|R) is given by

$$h(X) = S. (8)$$

By Lemma 2, (i), it remains to show that h is proper. If $K \subseteq S^+_n$ (IR) is compact then by (5) the set $h^{-1}(K)$ is diffeomorphic to $K \times O_n$ (IR), so that is compact (don't forget that $O_n(IR)$ is compact).

Now, we can apply Ehresmann's theorem and deduce that f: $GL(n, |R) \rightarrow S^+_n(|R|)$ is a locally trivial fibration. The fiber along the identic matrix I_n is, as we have already seen, $O_n(|R|)$.

The assertion (ii) follows observing that the restriction of f to the open set GL^+ (n, $|R\rangle$) is a proper submersion and applying then Ehresmann's theorem.

Remarks 1. Notice that both fibrations obtained in Theorem are in fact trivial, since the polar decomposition gives allways a diffeomorphism. In addition, we can give an explicit formula for the fiber along a matrix $A \in S^+_n$ (|R) for both fibrations:

if $X_0 \in O^+_n$ $(A, |R) \subseteq O_n$ (A, |R) then the fiber is O_n (|R) $X_0 = \{XX_0: X \in O_n$ $(|R)\}$ for the first fibration, respectively SO_n (|R) X_0 for the second one.

2. It is worth to mention the following interesting connection between the fibration (ii) and the bundle map

g:
$$GL^+(n, lR) \rightarrow lR^*_+, g(X) = (det X)^2$$
.

The correspondence
$$X \to ((\det X)^2, \frac{1}{n\sqrt{\det X}} X)$$

gives a diffeomorphism between GL^+ (n, |R|) and $|R*_+ x SL$ (n, |R|) which shows that g is a trivial fibration of the fiber SL (n, |R|). We denote the fiber along $\alpha \in |R*_+$ by $SL^{(\alpha)}$ (n, |R|); so that

$$SL^{(\alpha)}\left(n,\, lR\right) = \; \left\{X \in GL^{+}\left(n,\, lR\right) \colon \det \; X = \sqrt{\;\alpha}\right\}$$

Denoting
$$S_n^{(\alpha)}(lR) = \{A \in S^+_n(lR): det A = \alpha\}$$
 the

$$\begin{array}{c|c} \text{restriction } f \\ \hline & \mathrm{SL}^{(\alpha)}\left(n,\, \mathsf{IR}\right) \\ \end{array} : \mathrm{SL}^{(\alpha)}\left(n,\, \mathsf{IR}\right) \Rightarrow \mathrm{S_n}^{(\alpha)}\left(\mathsf{IR}\right)$$

will be a proper submersion. We obtain a fibration of the fiber $SL^{(\alpha)}$ (n, |R) with the fiber along $A \in S_n^{(\alpha)}$ (|R)

$$\begin{split} &\{X\in SL\ ^{(\alpha)}\ (n,\, \mathsf{I}R)\colon\ ^t\!XX=A\} = \{X\in GL^+\ (n,\, \mathsf{I}R)\colon\ ^t\!XX=A\ \text{and}\\ &\det\ X=\sqrt{\ \det\ A}\} = SO_n\ (A,\, \mathsf{I}R), \end{split}$$

the same fiber as in (ii).

3. There are serious reasons to believe that some of the results presented here remain valid in the case when GL (n, |R) is replaced by the automorphism group of an infinite dimensional Hilbert space.