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ABSTRACT

The main purpose of the paper is to prove that the map (7) and also its restriction to
GL+ (n, IR) is a locally trivial fibration.

From the geaneral theory of fiber bundles we know that a bundle
map between two C “—differentiable manifolds is a surjeetive submersion.
Here arise a natural problem: given M and N two C* — differentiable
manifolds and f: M >~ N a smooth surjective submersion, find suffi-
cient conditions in order that f be a locally trivial fibration. A such
condition is given by:

Theorem. (Ehresmann [3, Th. 8.12, p. 84]). If f: M - N is a
proper surjective submersion then f is a locally trivial fibration.

We shall consider

GL (n, IR) = {X € My (IR): det X £ 0! (1)

the real general linear group, which is a n2 dimensional C® - differen-
tiable manifold, as an open subset of M, (IR). It is known that
GL(n, |R) has two connected components:

GL* (n, IR) = {X € GL (n, IR): det X ~ 0} and
GL™ (n, IR) = {X € GL (n, IR); det X < 0},
both open in GL (n, IR).
We also consider
Sn (IR) = {Xe M, (IR); X = X}, (2)

the set of symmetric matrices. Clearly we can identify Sy (IR) with
the Euclidean space [Rn(m+1)/2, Tn the following we shall denote by
Sty (IR) the subset of S, (IR) formed of all positive definite matrices.
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Finally denote by
On (JR) = {X € GL (n, |R): X.X = 14}, (3)
the set of orthogonal matrices.
In the sequel we shall use the following two results:

(a) Diagonal form of symmetric matrices). For any A € 5, (IR)
there exists T ¢ O, (IR) such that

0
where %q,..., in are the eigenvalues of the matrix A. (see, for example,
[2, Th. 2, p. 831]).

(b) (Polar decomposition in GL (n, IR)). Any X € GL (n, IR)
admits a unique decomposition in the form:

X = 08 (4)

with 0 € Oy (IR) and S € STy(IR). Moreover the application
Op (IR) x Sty (IR) > GL (n, IR) given by

(0,8) —> 0.8 (5)

is a diffeomorfism.

T AT =

In this paper, by using the above mentioned result of Ehresmann,
we shall obtain a locally trivial fibration of GL (n, IR) (and respectively
of GL+ (n, TR)) and we will put in evidence an interesting connection
with the trivial fibration given by det: GL* (n, IR) —> IR*, (we
denote by IR*. the set of real positive numbers)

Let begin with the proof of two helping results:

Lemma 1. The set S*, (IR) is open in S, (iR).

Proof: Observe that (a) supply us with the following relation:

S, (IR) = | [ T D (goer s hn): 1y € IRD 1ty
T € 0, (IR)

where




FIBRATION THEOREM OF EHRESMANN 153

In this relation we have

ShH(R) = | | T D (hpees 2n): 4 > Oforalli = 1,...,n)! tq
T € O4(IR)

But every T {D (Ay,..., Ag); 24 > 0 for all i = 1,..., n} tp is
clearly open in T {D (Aq,..., %) A € IR} tp; consequently Syt (IR)
is open in Sy (IR). Lemma 1 is proved.

Consider the following sets: for any A € GL (n, IR) < S, (iR) put
On (A, |R) = {X € GL (n, IR); XX = A}
and if det A > 0
07 (A, IR) = {X € 0y (A, IR): det X = 4/ det A}
On (A, IR) = {X € 0, (A, IR); det X — — 4/ det A}
Clearly Oy (I, IR) = Oy (IR) and Oty (In, IR) = SO, (IR) where
SOn (IR) represents the special orthogonal group.
Lemma 2. (i) The map ¢: S+, (IR) — S+, (IR)
Xo(x) = 42 (6)
is a proper bijection.
(i) We have the following chain of equivalences:
O0n (A, IR) £ o <« Oyt (A, IR) £ ¢ < A € St (IR).
Proof: (i) The fact that ¢ is one-to-one is an immediate conse-
quence of (a). Let’s show that ¢ is proper: for K < St (IR) compact
we have to prove that ¢~ 1(K) is bounded.

A very useful norm on M, (IR), equivalent with the Euclidean
norm is

[A | = [max {|% |: % eigenvalue of tAAL L2,

But if A € St (IR) then

[ A | = [max {;2: % eigenvalue of Al jrjz
sothat | ¢~1(A) | = \/TAT Because K is bounded, ¢~1(K} is bounded,
too.

(if) The first equivalence holds because det (JpA) = — det A,

-~ 0 -
where J, = 1 e Oy (|R).
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Assume Oy (A, IR) =% @. Therefore A = tXX, thus A is sym-
metric. If % is an eigenvalue of A and x € |R" is an eigenvector corres-
pording to A, then

It follows that A e 8t (IR).

Conversely, if A € Sty (IR), by the surjectivity of ¢ one obtains
that Oy (A, IR) =% o. '

Now, we are in position to state the main result of this paper.
Theorem (i) The map f: GL (n, IR) - 57, given by
X £ = "y o
is a fibration of GL (n, IR) with the type fiber O, (IR).

(it) The restriction f | : GL* (n, IR) - St (IR)
| GL* (n, IR)

is also a fibration, with the type fiber SO, (IR).

Proof: First, we will show that f is a submession. Using the well-
known result concerning the equality of the Frechet and Gateaux
differentials for smooth maps, we obtain:

(df) (C) = lim Ly -tm) =
B A0 M

[(B + 2C) (B -+ 2C) — tBB] = tBC + tCB.

> =

= lim

=0
It follows that, for every B e GL (n, IR) the differential

(df)g: My (IR) — Sy (IR) is surjective. Let D €8, (IR) and choose
C = YB-1)D/2. Then

(df)s (C) = B YB-1) D/2 + DB-1B/2=D/2+ D/2 = D.

We prove now that f is a proper map. To this end, let’s observe
that, by using the polar decomposition (b) it follows that f(X) = S2.
So that f = ¢o h, where ¢ is given by (6) and h: GL (n, IR) - S, (IR)

is given by
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h (X) = S. (8)

By Lemma 2, (i), it remains to show that h is proper. If K < 5+, (IR)
is compact then by (5) the set h—1(K) is diffeomorphic to K x O, (IR),
so that is compact (don’t forget that Oy(IR) is compact).

Now, we can apply Ehresmann’s theorem and deduce that f:
GL (n, IR) - 87, (IR) is a locally trivial fibration, The fiber along the
identic matrix I, is, as we have already seen, O, (iR).

The assertion (ii) follows observing that the restriction of f to the
open set GL* (n, IR) is a proper submersion and applying then Ehres-
mann’s theorem.

Remarks 1. Notice that both fibrations ebtained in Theorem
are in fact trivial, since the polar decomposition gives allways a dif-
feomorphism. In addition, we can give an explicit formula for the
fiber along a matrix A € 8, (|R) for both fibrations:
if Xy € Oty (A, IR)= Oy (A, IR) then the fiber is Oy (IR) X = {(XXj:
X € Op (IR)} for the first fibration, respectively SO, (IR) X for the
second one.

2. It is worth to mention the following interesting connection bet-
ween the fibration (i) and the bundle map

g: GL* (u, IR) - IR*,, g (X) = (det X)2.
1
n4/ det X
gives a diffeomorphism between GL* (n, |R) and IR*_ x SL (n, IR)

which shows that g is a trivial fibration of the fiber SL (n, |R). We
denote the fiber along o € IR*, by SL® (n, IR); so that

SL® (n, IR) = {X € GL* (n, IR): det X = \/‘oc}

Denoting S5, (IR) = {A € S8+, (IR): det A = «} the
restriction f : SL® (n, IR) - S,® (IR)

SL®) (n, IR)

will be a proper submersion. We obtain a fibration of the fiber
SL® (n, IR) with the fiber along A e S, (IR)
{X € SL @ (m, IR): XX = A} = X € GL* (n, IR): XX = A and
det X = 4/ det A} = SOy (A, IR),

the same fiber as in (ii).

The correspondence X — ((det X)2,

3. There are serious reasons to believe that some of the results
presented here remain valid in the case when GL (n, IR) is replaced
by the automorphism group of an infinite dimensional Hilbert space.





