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ABSTRACT

Let M be a complete differentiable surface in E? whose one of the principal curvature is
identically constant. If M has a geodesic y on itself such that ¥ makes a fixed angle with one of
the parameter curves of M. then M is either a plane, a sphere, or a circular cylinder.

1. INTRODUCTION

We mean by an inclined curve on a surface M a ¢urve which makes

7 ) .
a constant angle ¢, o # 0, ¢ # R < 7w, with a constant di-
rection on E?, at each point of the curve. This definition gives us that the
ratio of the curvatures of an inclined curve is constant at each point
of the curve. We define this ratio as harmonic curvature of the curve.

Let us denote the first curvature by % and the second curvature by
= (torsion) of a space curve, then we know that the harmonic curvature
%

of the curve is h = = . If h is constant on the curve then x = % (s),

T

and 7 = 7 (s), where s is the arc length parameter of the curve, but
h = constant for an inclined curve. Then, it is clear that a circular helix
(which has x = constant and 7 = constant) is a special inclined curve
which lies on a circular cylinder [5 ], which is also a geodesic on the cir-
cular cylinder. Another example of the inclined curve is the ordinary
Lelix on a helicoid in E3. This curve is an intersection of a circular cylin-
der and the helicoid. This means that the ordinary helix on the helicoid
is not different from the circular helix. But the ordinary helix is not a
geodesic on the helicoid, and it is a geodesic on the circular cylinder. Ba-
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sed on this fact, an inclined curve on E? which is, at the same time, a
geodesic on M.

M. Tamura [6] characterized surfaces in 3 which contain helical
geodesics A heii('al goodesic ona surfacc M in F3 is a curve which is a

as a curve on M On the other hand, we know that a circular helix must
lie only on one kind of surface which is a circular cylinder [5].

Some surfaces, like circular cylindes, circular cone and sphere, con-
tain inclined lines [3]. Hewever the only inclined curve among these
which is also a geodesic on the same srrface is the circular helix (which
lines on the circular cylinder):

In this paper, we shall characterize surface in E3 which contain
inclined geodesic. We find that, an inclined geodesic lis only on a circular
cylinder. o o

2. PRELIMINARIES

Let M be a complete differentiable surface in Euclidean 3-space E3
with standard metric g and ¥ (M) be the Lie éﬂgebra of all smooth tan-
gent vector fields to M. Further, let D and D he thc Levi-Civita connec-
tions of £} and M, with the metric induced by g, gij = 3y, respectively.
The second fundamental form 11 of M in E3 is glven by the Gauss equ-
ation:

2.1) II(X,Y) = DxY — DxY, vx.,Y ¢ % (M).

Let N be a unit normal vector field to M and then the shape operator
S of M derived from N is a (1,1)-tensor field on M given by

g (3(X),Y) = g (1) (X. Y), N), yX, Y € 7 (M)
and it is well known that

DxN = $ (X), yxex (M).
Let ‘ ,

y:I IR - M < E3

& —— (9

be an inclined curve parametrized by the arc length. Then. Frenet thri-
hedron fields be {Vy, V,, V,} along y and the curvature functions be

#:I >R and 1:1 >R

s = % (s) 5 — 1(s)
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such that
TDvViT T 0 % 07 TV T
(2.2)  DviV, 1= -x 0 < | | V, |
_ Dv,V; | 0 = 0 _ [V

where Vy, V, and V; denote unit tangent, principal normal and binor-
mal vector fields of .

The following fundamental theorem [4] will play an important role
in this paper.

Theorem 1. If two families of geodesics intersect at a constant
angle everywhere on M, then M is flat (K = 0).

3. CHARACTERZIATION OF SURFACES WHICH CONTAIN
INCLINED GEODESICS '

In this part, we give two characterization theorems for inclined
curves and a characterization theorem for surfaces which contain incli-
ned geodesics.

Let M be a differentiable surface in E* and
- M
s - o)
be a geodesic on M. Then I"')V'I Vi == 0 and Eq. (2.1) implies that
(3.1 Dy, Vi = II (Vy, V) e X (ML

where X(M)L denotes the set of all smooth normal fields to M. (2.2) and
{3.1) give us that

(3.2) II(V, Vi) =« N = »x = g (II (Vy, V3), N).

This means that one has

VZ = N,
and then (2.1) and (2.2) give us that ;
(3.3) I (Vy, Vy) == — 1N =1 = — g (IL (Vq, V3), N).

Let ky and k, be the principal curvatures on M and E; and E, be the
corresponding principal vector fields on M. Denote 6 the angle between
V; and E; then we have

( Vi = cos @ E{ + sin O E,,

UV, = —sin 0 E; + cos 0 E,.
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Since we know that

11 (X, Y) = g ($(X), Y) N
we can write

IT (Ey, Ey) = ky N and II (E,, E,;) = k, N.
On the other hand, the lincar operator S and Egq. (3.4) give us
(3.5) IT (Vy, Vi) = (kg cos? & + k, sin2 6) N, g (E;, Ej) = 8y,
énd ’ .
(3.6).  IL(V; V3 = (ky sin2 0§ 4 1&2 cos2 §) N,
Eq. (3.2) and (3.5) give us
3.7  »x=g I (Vy, Vy), N)orx = k; cos2 6 + k, sin2 0,
and from Eq. (3.4) we have
(3.8) II (V,, V;) = 2H — ») N.
where H = (k; 4 k,)/2 denotes the mean curvatuie of M. In a similar
way from Eq. (3.3) we obtain
(3.9) 7 = (k; — k;) sin 0 cos 6.
From Eq. (3.7) and (3.9) we can write

% ki cos2 6 4 k, sin? O

(3.10) b= T (k= k,) sin 6 cos O

H + \/ﬁm—:*ﬁ cos 2 6
v H —Ksin26

where k; # k,, that ié M has to umbilic péints.

Theorem 2. Let M be a differentiable flat surface in E3. Thus we
have that, the goedesic curve

vy:I M

makes a fixed angle with one of the parameter curves <> v is an inclined
geodesic on M.

Proof: In this case, K = 0 and from Eq. (3.10) we have

%
h = ————
- cotg 0 ,
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. % ' .
and since O = constant then h = —~— = constant and cive versa].
T . . o

" Theorem 3. Let M be a minimal surface in E3. Then. we have that:
the geodesic curve

v:I =M

makes a fixed angle with one of the parameter curves < v is an inclined
curve on M.

Proof: In this case, H = 0 and from Eq. (3.10) we have
h = —ﬂfw = cotg 20

N

¥ .
= constant and vice versa ].

v

and since O = constant then

Now, we are ready to give the characterization theorem for the
surfaces which contain the inclined geodesics.

Theorem 4. Let M be a complete differentiable surface in E3 whose
one of the principal curvatures is identically constant. If M has a ge-
odesic y on itself such that v makes a fixed angle with one of the para-
meter curves of M, then M is either a plane, a sphere, or a circular cylin-

der.
Proof: We can choose {E, E,} as canonical base for (M) such that

Dp,E; = A Ey, DBy, = 0 By

Then we have
DgE, — % Ei, and DBy — — p B,

Since v is a geodesic on M, we can write
Dy, Vi =0, V| = v.

or

(3.11) hecos® + psin 0 =0

On the other hand, using the Codazzi equation;

Drypky) = Mk — ky),
(3.12)
Dri(ky) = — u (ki = ky).

Dry(k;) = A (k; — ky) and k; = constant

give us
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(3.13)  n(k; — k) = 0.
Then, the following two cases occur.
a) Let ky # k,, then M has no umbilic points and (3.13) given us

ro= 0,

and from (3.11) we obtain
o= 0,

so we have
DgiE; = 0 and Dg,E, = 0

This means that the parameter curves v1 and v, are geodesics on M.

- . e
These two families of curves intersect at a constant (~~2—7») angle,

since g (E;, E,) = 0. Hence, by Theorem 1, M is flat. Therefore M is a
circular cylinder (See Berger and Gostiaux [1, p. 425} or O'Neill {2, p.
263 ]). In this case, from Theorem 2 the geodesic -y is an inclined geodesic
on circular cylinder,

b) Let k| = k,, then M is umbilic and k; = k, = constant, so M is
either a plane or a sphere.

This completes the proof of Thecrem 4.
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