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ABSTRACT

In this study. considering matrix norms and companion matrix, we obtainéd some upper
bounds for the roots of a polynomial with real or complex coefficients.

1. INTRODUCTION
Firstly let us give the following definitions [2]:
Definition 1.1. We call a function | . | : My = R a matrix norm
if for all A, B € M, it satisfies the following axioms:
) AL = 0
2) |xA| = || |A] for all complex scalars «
3 A+ Bl = AL+ [B]
4 B = JA] IB]

where M, are nxn complex matrices.

Definition 1.2. The maximum column sum matrix norm | . |; is

‘defined on My by ' . o

n
[Al; = max % jag)

lgjgn i=1

Definition 1.3. The maximum row sum matrix norm | . |wo is

defined on M, by

n
[Alle = max 3 jay|
lgigxl i=1 -

Definition 1.4. The Euclidean norm || . | is defined for AeMy by
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. n 2
Ale = ( .?41 Iaijl‘)

IS
Definition 1.5. The spectral norm | . !, is defined for AeM, by
[A], = max {\/7\- » is an eigenvalue A*A} &7
where A* is the transpose of the conjugate of A.

Definition 1.6. The spectral radius p (A) of a matrix A e M,y
is defined by

0 (A) = max {jA] : 1 is an cigenvalus of A}.
Any polynomial f(z) of degree at least 1 can be written in the form
f(z) = oz¥p(z), where o is a nonzero constant,

plz) = 2 ~oay 71 - agzm - oag (1.1)

and a; # 0. The roots of p(z) = 0 are the nonzero roots of f(z) = 0,
and they ave the roots for which we can give various bounds. In[1] using
operator norms, it was given the bounds for the roots of Algebraic Equ-
ations.

2. THE STATEMENT OF MAIN RESULTS

Lemma 2.1. The characteristic polynomial of the companion
matrix

"——an;l v —ap_ o, ... —ag —ap |
‘ 0 R 0 |
0 1 R (UN
Cp) = . .
0. . 0 ... 1 0

is exactly p(z) and the eigenvalues of C(p) are the same as the roots
of p(z) = 0.

Proof: If we compute det [zI—C(p)], using cofactors of the first
column and use induction then the proof is immediately scen.

Lemma 2.2. If z is any root of p(z) = 0 and if | . | is any matrix
norm on M, then

2] < ICp) |
Proof: For any vector 0 # x & C® we write

Clp) x == zx
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On the other hand since

il =z |x; @.h
and ‘

x | < S| Ix] (2.2)
using (2.1) and (2.2) we get
7 < o)l

Theorem 2.1. If z is any root of p(z) = 0, then the following sta-
tement are satisfied:

1) 2 <1 + max {jao], lai], ..+» lan_1]}

2) lzf =1 + b |ai |

i=0
1.
Dlel <@—1) & % |ayl
i
n-1
) Izl < [ — 1+ T [a2)e
i=1

5) |z] < n max {1, |ao}, laj|, +..-s Jan_1]}-
Proof: In Lemma 2.1., for the companion matrix, considering
. 1
the matrix norms | . I, | . Ju | - | = X jayj, e e
ij=1

n| . |u, respectively, we have

1) jz] < max {ja0], 1 -+ ]31}, cen 1ok Jan g}
= 1 "“}' max { a'O|') |a1}9 LR ]an»_ll}

2) |zl < max {1, |ao| + jay| +...-+ lana|}
< 1.+ ]ao[“i’»-lall‘i“---"fh lan_ll
< (m—1) + lag| + Jag| +-..+ lan_1]

l/\

3) |z
1) [l < [0 —1) + Jaol & a2 4.0t fan 2]
5) |z|] < n max {1, |ao], jag], ---» |an_1]}

Note 2.1. The bound 2) is obviously poorer than the bound 1).
Furthermore the bound 3) is pocrer than the bound 2).

Theorem 2.2. If z is a root of p(z) = 0, thea

[z] < [1 4 jao|? 4 Jai|2 ...+ Jan g [2]V2
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Froof. We can write the companion matrix as C(p) = S + R,
where
-0 0 0 0
1 0 0 0 |
0 1 "0 0
s — |
\
. ;
_0 0 1 0 _!
and
—an_ g —ap_, ce —ay —ap |
0 0 e 0 0
R = . ‘
|
0 0 0 0o |

It is easily seen that S*R=R*S=0 and [$*S|,=1 and |R*R|, ==
lag |2 4 Ja;|2 +...4 lan_{|2. Thus we have
IG(p) 22 = [C(p)* Clp) I
— USR) (SR,
S*S 4 R* R
< 8% S 4 [R* R, .

So the proof follows.

Lemma 2.3. If q(z) = (z—1) p(z) and z is a root of p(z) = 0, then
2] < [ao] + [ao —ay| +...+ |ap ,— an_ ;| + Jan_1— 1]
Proof. If q(z) == (z — 1) p(z), then we have

g(z) = z0t14-(an_1—1)zt+(an_p—ap )28~ 14 .. . (ap—a;)z+ao.
On the other hand considering the matrix nerm | . [ we get

|z| < max {1, |a, |-+ |ag—a, |-+-... 4 lany—an_1 |-+ |an_1—1] }.
In this expression since the sccond term is not less than 1 we write
[Zl' < ]ao H” |ao—31 [+ ee e Ian_z—an_l H“ Ia—n—l"“1 '
Example 2.1. Let us consider
1 1
f(z) = *n’! zh ,‘L 7‘;1?1)—!'—' Zn*1 + .o “}"'

z2-z-+1

which is the n-th partial sum of the power series for the exponential
function e”. Indeed all roots z of f(z) = 0 satisfy the inequality |z| <
1 -+ nl
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Theorem 2.3. Let the polynomial p(z) be (1.1). If z is a roet of
p(z) = 0 then

dn i dll -1

dn_; d, d,
d; »la d;

-+ N ye ey lan n| a, + —d‘;o

|z | <max {|a, |

d
lan1| + _d.zl— (2.3)

where for all d; > 0, D = diag (d;, d,, ..., dn).

Proof. Since p(A) = p(D-! AD) for any nonsingular matrix D, if
we consider the norm | . |; of the matrix D~1C(p) D then the proof
follows.

Carellary 2.1. If all the coefficients ay in (1.1) are nonzero and
z is a root of p(z) == 0, then

a) a an_j
|z|<max{l|ao|, 2| o Lo 2] ai [hooes 2] zn |}
Proof. In Theorem 2.2., if we choose dm = —————d—L—- where

lan_m+1l

m=2,3, ..., n, instead of d; and use the inequality (2.3), then the
proof is immediately seen.

Covollary 2.2. If z is a root of p(z) = 0, then for any r >> 0

1
4+ max {lag| 7K1}
r 0<k<n-1

2] <

Proof. In Theorem 2.3., if we choose djy == ¥, k= 1,2, ..., n for
some T > 0 and use (2.3) then we get

|z|<max {]ao| 71, [ay |72 4 r71, lay 123 4 r71,..., |ang I}

Lo max ] oot

T 6<k<n-—1
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