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SYMMETRIC HOMOTHETIC MOTION OF ORDER k IN THE
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ABSTRACT

In this paper, after presenting a summary of known results of the homothetic motions
and the generalized ruled surfaces in the Euclidean space E®, A symmetric homothetic motion
of order k was defined and it was shown that a symmetric homothetic motion of order k of E?

is a reflection with respect to the (n-k-m)- dimensional subspace of EM,

Moreover, the parameters of distribution, the pitches, and the apex angles of the moving
and fixed ruled surfaces which are correspond to each other under the symmetric homothetie
motion of order k were given.

1. HOMOTHETIC MOTIONS OF En

A homothetic motion of E1 is described in matrix notation in [4] by
x = 59%+ (G, S = hA, AA' =T,

where At is transpozed of the proper orthogenal matrix A, and h is a
homothetic scale and are functions of differentiability class €T (r> 3) on

A:J - O(n), C: J - IRy, h:J - IR (1.2)

real interval J. X and x correspond to the position vectors of the same
point with respect to the rectangular coordinate sysiems of the moving
space E and the fixed space K, respectively. At the initial time t = t,,
we consider the coordinate system of E and E are coincident.

To avoid the case of affine transformation we assume that h = h(t)

# constant and to avoid the case of pure traunslation and pure rotation
we assume that

hA -+ hA £ 0, C £ 0,
where (.) indicates d/ dt.

Let % be fixed in E, then the equation (1.1) defines, by (1.2} a
parametrized curve in E which we call the trajectory curve or path of
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% under the motion. We get the (trajectory) velocity vector x in the
path—point x from (1.1) by differentiation for £ = 0 in the form

x = B (x-() + €, B = 8§, (1.4)

where 5! is the inverse of S. Since S is a regular matrix, (See [31),
IB(t) | # 0 in teJ. Therefore we get exactly one solution p(t) of the
equation

B (p-C) + C 0 (1.5)
p(t) is the center of the instantaneous rotation of the motion in te]J
and called pole of the motion. At a pole p the velocity vector vanishes
by the equation (1.4). Since |B| does not vanish on J, by considering
the regularity condition of the motion we get a differentiable curve
p:J — E of poles in the fixed space E, called the fixed pole curve.
By (1.1) there is uniquely determined the meving pole curve p: J — E
from the fixed pole curve point to point on J: p(t) = S(1)p(t) + C(t).

II. GENERALIZED RULED SURFACES IN En

For the purpose of this paper we first summarize the basic pro-
perties of the generalized ruled surface from the paper [2] and [3]:
In any k-dimensional generator Ex(t) of a (y -+ 1)- dimensional
generalized ruled surface (axoid, in [2] “(k 4 1)-Regelfliche) o < En
there exists a maximal linear subspace Ky_p(t) © Ex(t) of dimension
k-m with the property that in every point of Ky _m(t) no tangent
space of ¢ is determined (Kj_m(t) contains all singularities of & in
Ex(t)) or there exists a maximal linear subspace Zi_m(t) < Ex(t)
of dimension k-m with the property that in every point of Zy_y, the
tangent space of © is orthogonal to the asymptotic bundle of the
tangent spaces in the points of infinity of Ey(t) (all points of Zy_n(t)
have the same tangent space of @). We call Ki_n(t) the edge space
in Ex(t) © ¢ and Zy_(t) the central space in Ex(t) < @. A point
of Zy_m(t) is called a central point. If & possesses generators all of the
same type the edge spaces resp. the central spaces generate a gene-
ralized ruled surface contained in @ which call the edge ruled surface
resp. the central ruled surface. For m = k the edge ruled surface de-
generates in the edge of @, the central ruled surface in te line of
striction. So the ruled surface with edge ruled generalize the tangent
surfaces of Ii3, the ruled surface with central ruled surface generalize
the ruled surfaces with line of striction of E3.
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For the analytical represention of a (k -+ 1)- dimensional ruled
surface @ we choose a leading curve « in the edge resp. central ruled
surface Q < o transversal to the generators. In [2] it is sohwn that
there exists a distinguished moving orthonormal frame (ONF) of
& {e1,..., ex} with the properties:

(i) {e1,...,ex} is an ONF of the Ei(t) < o
(i) iemi1...., ex} is an ONF of the Ky_m(t) resp. Zy_m(t) CEk(t)

. m
(iii) e = X ojjej - yidkei. 1 <1 < m,
i=1

m

ém+1> == 1§1 OC(m+p)e1, With Ki > 0, aij E= —-aji’ (2.1)
%myP) (mey = 0, 1 < p, K; <k-m

(iv) {eg...., ex, axi1,+-+» ak,m} is an ONF.

A moving ONF of & with the properties (i) — (iv) is called a prin-
cipal frame of . If K; > ... > K, > 0, the principal frame of w
is determined up to the signs. By a given principal frame vectors
ax,1y +.., 8,m are well defined.

A leading curve o of (k + 1)~ dimensinoal ruled rurface @ is a
leading curve of the edge resp. central surface = o too iff its tangent
vector has the form

a(t) ==

T MR

A Giet ++ Nmy18k;my1s (2.2)
where Nm, ;1 # 0, ax,m,; is a unit vector well defined up to the
sign with the property that ley,..., ey, Ay 1oe o> Bkyms Akymyl) IS
an ONF of the tangential bundle of . One shows: fmy1(t) = 0, in
t € J iff the genarator Ey(t) © o contains the edge space Ky _n(t).
If v 1(t) £ 0, we call the m-magnitudes

Py = ’)’I‘%“ ,l<i<m
i 2.3)
the principal parameters of distribution. These parameters are direct
generalizations of the parameter of distribution of the ruled surface in
E3 (See [2]). A (k-+1)- dimensional ruled surface with central ruled
surface and no principal parameter of distribution (m = 0) is a (k 4 1)~
dimensional cylinder.
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Moreover the paramcter of distribution of a generalized ruled sur-

face & given in [3] by

' P—~m\/ |P1P2.,.Pml' (2.4)

and the total parameter of distribution of  can be defined in [5] by

D=T1P . (2.5)

[

Suppose that ¢, 1 <i <k, are 2-dimensional closed principal
ruled surfaces such that the generators of #; have the direction of the
unit vectors ei(t), 1 < i < k. Then, in the case m = k, there exist
k-pitches given by

P
Li=- [ G@dt, 1 <i<k, (2.6)
0

where p € IN denotes a period of the motion.

Let {eq1,e -5 €8x 10+ +» Bkims Akrmi 1) e ONF of the tangential
bundle T(t) of & .If we complete this ONF by an arbitrary {ax, m. 2s.---3n}
of the orthogonal complement called a complementary ONF, from the
orthogonality conditions, then we obtain by differentiation, [31:

R ST m Y on—¥em
ag, = —Kie; + 2 7, akH + wlak+m+1 4+ X T, ak+m+x,1 <i<m.
=1 A=2 (2.7)

Suppose that dim T(t) =k + m + 1. If o is a closed ruled sur-
face, the m-apex angles of & can be defined by

= fo wi(t)dt, 1 <i <m, 2.8)

and ‘also the apéx dngle of o is defined, in [5], by

A=/ P1--Am] - ‘ @9
11, THE PATR OF GENERALIZED RULED SURFACES UNDER
THE SYMMETRIC FOMOTHETIC MOTION IN En

o Let &= E and = E be moving and fixed pole curves, resp.
Suppose that {&1(t),. .., &(t)} is an orthonormal vector field system
at «(t) and let Ex(t) = Sp{&(t),..., éx(t);. Then Ex(t) generates
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a(k -+ 1)~ dimensional ruled surface with the leading curve o in the
moving space Ik which called the moving ruled surface @, @ has the
following parameter representation

— — - _ k _ —
o (tug,..oun) = aft) - X wg(t), we [Rotel. - (3.1)

i=1

Let {e4(t),....ck(t)} be an orthogonal vector field system satis-
faying the following equations at the point «(t)in the fixed space E:

S (&) = —¢ (3.2)

and

(S81) & = 0, 1 <i<k. (3.3)

If we denote Ey(t) = Sp ie4(t),. . ., ex(t)} , Ex(t) generates a (k 4 1)-
dimensional ruled surface with leading curve « given by (1.1) in the fixed
space E which is called the fixed ruled surface and denoted by .

Definition 3.1. If a homothetic motion given by (1.1) satisfies
the equations (3.2) and (3.3), then this homothetic motion is called a
symmetric homethetic motion of order k.

We will assume throughout this paper that the homothetic scale
h is a possitive real number. Let ¢ and 2 be the (k + 1)- dimensional
moving and fixed generalized ruled surfaces with the leading curves z and
aresp. If o and 7 are pole curves, then we have following equations, [1].

% = Sz (3.4)
and
ds = hds (3.5)

where 5 and s are the are lengthes of 5 and « resp. From (3.4) and (3.5)
we get the following theorem.

‘Theorem 3.2. Under the symmetric homothetic motion of order
k, the moving and the fixed generalized ruled surfaces touch each other
along every common pair 3 and « for all t € J by rolling and sliding
upon each other.

Let Ex(t) and Ei(t) be the generator spaces of the generalized

ruled surfaces o and o resp. Then we have,
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Ei(t) = Sp{&g,..., éx} (3.6)
and
Ex(t) = S, €150+ -5 €k} - 3.7)
We obtain from (3.2) by differentiation:

S & Sey = 1, 1 <i < k. (3.8)

From this equation and (3.3) we get

S& = ¢, 1 <i<k (3.9)
Then we immediately read off from the equation (3.2) and (3.9):

Theorem 3.3. Under the symmetric homothetic motion of order

k, the generator spaces Ex(t) and Ey(t) correspond to each other by
the equations (3.2) and (3.9).

Let A(t) and A(t) be the astmptotic bundles, with respect to the
Ex(t) and Ek(t), of the generalized ruled surfaces 2 and @ resp. Then
A(t) and A(t) can be given resp. by

A(t) = SP {E1seve» Bk E1pe - +» Bk} (3.10)
and

A(t) = Sp{Etr- + v» €k €15+ - +» Sk}- (3.11)

Suppose that dim A(t) (= dim A(t)) =k + m, 0 < m < k, then

m vectors of el, e2, ces ek are linearly 1ndependent Let the linearly

independent vectors are renumbered as ek i1s Bkyge-- ekmL m- Then
the set

{8100 vy &1 Exy1pe -0 Ekim). (3.12)

is a basis of the asymptotic bundle A (t). Similarly, we get a basis for
the asymptotic bundle A(t) as follows.

{81,...,8k,€.:k+1,..., ék_*_m}- - (3-13)

By the Gram-Schmidt process from (3.12) and (3.13) we get the
following orthogonal bases for A(t) and A(t) resp.



PAIR OF GENERALIZED RULED SURFACES ) 19

{élv"'o éka yk-{.l"--» }_’ker} (3.14«)
and ”

z(sla"'e €k YR41se s y'k+m}- (3.15)

Under the symmetric homothetic motion of order k, the above
orthogonal systems correspond to each other by the equation

S¥xi = ~Ykyir 1 <j < m. - (3.10)
If we set
= Tk €1 YV ki . L.
ak,':__—-“oe':'_vak':—w71£1£k91§J£m7
T Fxkl T h T Iyl
then we get the following ONFs for A(t) and A(t) resp. (3.17)
{61,...,61{, ak+19-'-7ék+m} (318)
and
{€150 -5 €k By 1senes @kpm} - (3.19)

We have the following theorem.

Theorem 3.4. Under the symmetric homothetic motion of order
k, the asymptotic bundles A(t) and A(t) correspond to each other by
the following equations. .

Sé; = —hey : | (3.20)
Six,y = -hag, l <i<k 1< j<m. (3.21)
Let T(t) and T(t) be the tangential bundles of & and g resp. If
dim T(t) (= dim T(t)) = k -+ m - 1 (3.22)

then

{élv' LY ékv ék+17- LR ék+m7 5’.} (323)

is a basis for T(t) and

{€0se v s Cko Elyls « v v Clamy ) (3.24)
is a basis for T(t).

Using the Gram—Schmidt process we get the followmg ONFs for
T(t) and T(t) resp.
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{él,---,ék, ak+17~-‘aik+m9 5k+m+1} (325)
and
{e15e .. sep, ARy lre -+ Akems Akymyl) - (3.26)
From (3.25), (3.26) and Theorem 3.4 we have:

Theorem 3.5. Under the symmetric homothetic motion of order

k, the tangential bundles T(t) and T(t) correspond to each other by the
following equations.

Séi = —hei (327)
Sak,y = ~hay,; ,
Sak-}-m_(.l = hak+m+17 1 1£ < ke 1 SJ < m.

Let dim T(t) = k + m + 1. Then we can complete the ONF

1€10c v s 8 Ak 10 -slk myq) Oof T(t) to the ONF .

181se e s 8k Bkyfoe v oy Blymyls Blomy2se - -5 Apb (3.28)
of En. The orthogonal complement

Yax, mi2se - -y an} (3.29)
is called a complementary ONF of .

If we set
Sk mn = Yiympn 2 < A< n-k-m (3.30)

then we get an orthogonal complement {yx,m.2..., o} of @ under
the symmetric homothetic motion of order k. If we set.

Ykimyt

—_T" 2 > ) > n-k-m, (3.31)
”yk+ my1 ”

Akimy] =

we get the following complementary ONF of o
{ak+m+29- s an} . ) (323)

Theorem 3.6. Under the symmetric homothetic motion of order
k, the complementary ONFs (3.29) and (3.32) satisfy the following

equation.
Sar, mp1 = hag,my1, 2 <A <nkm (3.33)

From the Theorem 3.5 and Theorem 3.6 we can get the following
corollaries.
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Corollary 3.7. Let T(t) and T(t) be two tangehtial bundles which
are correspond to each other under the symmetric homothetic motion
and Let

J\élv-"véka 51{4-17"‘9 5k+mv 5'1{+n1+19"'7 an} and
{egs 0.5 €k Ak lse s Bkyms Akpmylse - apt be two ONFs of )En
with respect to the T(t) and T(t) resp. Then we have the following

equations.
S&; = —he; , 1 <i<k

Sikyy = ~hag,;  ,1<j<m (3.34)
Sak+m+1 = hak+m+1 ) 1 <r < n—k—m.

Corollary 3.8. A symmetric homothetic motion of order k of
En is a reflection with respect to the subspace Sp {ax,my1s:--» an} 0f
dimension n-k-m.

4. THE INTEGRAL INVARIANTS OF THE PAIR OF GENE-
RALIZED RULED SURFACES WHICH CORRESPOND TO EACH
OTHER UNDER THE SYMMETRIC HOMOTHETIC MOTION

Theorem 4.1. Let o and & be the (k -~ 1)~ dimensional moving
and fixed generalized ruled surfaces which correspond to each other
under the symmetric homothetic motion with the leading curves &
and_oc resp. If {&1,..., &) and ‘{el,. ey €k} “are the principal ONFs
of & and @ resp., then we have the following results:

gi=(h/h) + oy ,i=3j, 1 <i<m,
By = oy i l<j<k (41
Ki =Ky

Proofi Since {&1,..., 8k} and {ey,..., ey} are the principal
ONFs of o and o resp., we have the equations (2.1). Therefore we have

: oiyEy + Ridpg o (4.2)

[«:21%

{ —

I M= ,

j
and

oije;j -+ Kiak+ia 1 <i<m. ‘ - (43)

&
I
T b
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From (3.17) we have
gg = he;, 1 <j < k. “4.4)

From (4.4.) by differentiation we observe that

s'i=l'lei+h(;i, 1l <i<m.
Using (4.3) and (4.4) we get

. . k
g = (hb7)l ¢ 4+ h ( % agjej + Kiak+i>
=1
K ,
et = (hh1) & + X oy (hej) + Ki (hag,i)
=1
. - k
et = (hh1 4 ay) o + X ayyeyd-(bgi) axys, 1 <i < m. (4.5)
jis1

Moreover, if we set the equation (4.2) in the equation (3.9), we get

. k
gg=-S8 ( p &ij€; - Kik+i) 1 <1 < m.

i=1 (4.6)
Since S is a linear transformation, we get
. k —
g = j§1 &ij (——Séj) -- Kj (-Sik_,_j) .
From this last equation, (3.2) and (3.21), we find
k ey
g1 = 2 Fjej + (hK;) ax, 1 <1 < m. 4.7)
j=1

If we consider the equations (4.5) and (4.7), then the theorem is proved.

Theorem 4.2. Let ¢ and 2 be the moving and fixed ruled sur-
faces with the leading curves & and « resp. under the symmetric ho-
mothetic motion of order k. Then we have following results.

G=-h{;, 1 <j <Kk, (4.8)

Nmyt1 == hﬁm“o

where
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k
# o= X :jé + fmet Aximy1 (49)
J=1
and
k
& = El Ciej + Nmey 8k, my1- (4.10)

=1

Proof: From (3.4) we get

. kK .
- - "
Sg = ( Z 58 b fmat 31{+1n+1) .

=1

Since S is a linear transformation,we have

S_

I
l
[ i

Zj (Séj) + ;)m+1 (S;k-e-m.i.ly (4*.11)
From this last equation, (3.4) and (3.27) we find

. k _ _
o = '21 (=h%) e + (hnm,1) ax,m.q- (4.12)
j=
If we consider the equations (4.10) and (4.12), then the theorem is
proved.
From the Theorem 4.1, Theorem 4.2 and the equations (2.3),
(2.4), (2.5), (2.6), (2,7), (2.8) we get the following corolaries.
Corgllary 4.3.
szhpi, 1 <i<m,
P == hP, (4.13)
D = h2D.
Corollary 4.4. Let L; and L; be i-pitches of & and = resp. under
the closed symm ciric homothetic motion of orderk, Then we have
dL; = -hdL;, 1 <i < m = k. (4.14)

Theorem 4.5. Let {&y,..., &y, Ay, gpe ..y B, ml and
{€1se« vy €0 8k, 15..., @k .m! be ONFs of asymptotic bundles A(t)
and A(t) resp. which correspond to each other under the symmetric
homothetic motion of order k. Then we have the following results.
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3 (4.15)

Wi = —Wi

Yo = Yp, 1 <i<m 2 << nk-m, (4.10)

Proof: From the equation (2.7) and since S is a linear transfor-

mation, we observe that
g : Q- Qs
S(axy) = ~KiS(@) -+ X =iy S(Akyg) + WiS (Brsmyer) +
j=1
n_k.-m = _
ri)\s (ak+ nu,?\)-
2=1

If we set (3.27) and (3.33) in this last equation we get

. — m _ -
S(ak.s) = (hKi) e; + X (-hty) axy; + (hwi) agemey +

i=1

n-k-m —
2 (h71) ax.mn (4.18)
A=1
Moreover, since
Sag,; = —hay,;,
by differentiation, we observe that
Sﬁk+i = ~hak+i - (—h + hSSAl) ak,is 1 <1< m. (4.19)
On the other hand, from the (2.7) we can write
. m n-_k-m
ax,g = —Kiei + X Tijak,g + Widkeme1 2 Vii@kemea (4.20)
i=1 =1

If we set (4.20) in (4.19), we get

. ' m . .
Sdg,; = (hK;) e; -+ 2 [h (SS71- 1) - hlayg,; + (~hwi) ax. my1
j=1
n—li_m
-+ ?Z (-hyn) ak myn
=1

From (4.18) and (4.21) we find
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Wi = —Wj

= —vie 1 <i<m, 2 <A< n-k-m.
Now, we can give the following corollary.

Corollary 4.6. Let 2; and 2 i-apex-angles of o and @ resp. under
the closed symmetric homothetic motion of order k. Then we have the
following results.

M= Ay 1

IA

i<m (4.22)
and

A == A, (4.23)
where 2 and 2 the apex of » and © resp.

Proof: From the definition of i-apex angle of @ and @, we have

- | L
A= f Wi(t) dt
0

and

AN o= J Wi(t) dt, 1 <1 < m.
0

Using (4.15) we get

_ %
R f Wi(t) dt = 3.
0

Moreover, from the definition of apex angle of a closed generalized
ruled surface we have

A= m/\// ]7\1)\2 “os Xmi
If we set 2; == —3; in this last equation we find

7\:-.111\/ |7\1)\27\m‘::7t
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