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ABSTRACT

In this paper ve classify the condimension two immersions in constantly curved 4 - mani-
folds with parallel mean curvature by reproving the Proposition 1 in {1} in the case of K = 0.

PRELIMINARIES

Let i: M2 -> M+ (c) be an isometric immerison of a 2—dimensional
Riemannian manifold M2 in a 4- dimensional Riemannian manifold
M+ (c) of constant sectional curvature ¢ and let X and Y be two tangent
vector fields on M2; i.e., two members of I" (TM2), the space of smooth
sections of TM2 . If <<, > denotes the metric tensor on TM* than that
of TM2 is given by

<i,X,i,Y> = g(X.Y) (1.1)

For all local formulas and computations we may consider i as an imbed-
ding thus identify M2 with i(M2) and TM?2 with i, (TM?) < THM4, dele-
ting reference to i and its induced maps wherever possible. As a result,
for X, Y e T(M2), we write << X, Y > for g(X,Y), which we can do via
the identification. We consider TM* restricted to the base space M2 .
Let [ ]T denote projection in TM* onto TM2. Then the normal bundle
NM2 is the bundle whose fibre at p is

NM2p = {x e T(R)p|[x ] = 0} (1.2)

which is the orthogonal complement (with respect to <(,>) of T(M2);
in T(M4)p. NM?2 has an induced metrie, the restriction of <, > to NM2.
We let [ N denote projection onto NM2. Let 7 and ¥/ be the Rieman-
nian connections of M2 and M+ respectively. </ related to va by

[VxY]T = UxY Z : (1.3)
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Then the second fundamental form of the immersion is given by
VxY = vxY + B(X,Y) (1.4)

and is a section of I' (TM2 ® TM2, NM2), the tensor bundle over M2
whose fibre at p is the spacc of blhnear maps from T (M2)p XT (Mz)p
to N (M?),.

BX)Y) = [VxY¥ S ; <15>

is a normal vector fleld on M2 and is symmetrlc on X and Y Let N e
r (TMZ), ‘we write S

VxN ="ANX) 4 DxN - - SR : (1.0)
where A(N,X) and DxN denote the tangential and normal components
of 7 xN. A is a section of T (NM2 @ TM2, TM2) defined by

<ANX), Y> = —< B(X,Y), N> (1.7)

and D is the Riemannian connection on NM? induced by the immersion

defined by
DxN = [VN]¥ S (1.8)

D is easily seen to be compatlble with the metric of NM2. A normal vec-
tor field N on M2 is said to be parallel in the normal hundle if
DX N = 0 for all tangent vector fields X. The mean curvature Veutor
H is the section of NM2 defined by

.H = } trace B | | (1 9)
The surface M2 in M* (c) is said to be minimal if H = 0 identically. If
the mean curvature vector H and the second fundamental form B sa-
tisfy

<BXY),H>=1< XY >

for all tangent vector fields X, Y at p with the same™ then M2.is sald to
be pseude-umbilical at p. If M2 is pseudo - umbilical at every point of
M2, then M2 is called a pseudo - umbilical surface of M+ (c). The curva-

tures associated with ¥V, V and D are denoted R, R and R respectively.
For example, Ris given by o ,

C R (XY) N = DxDyN — DyDxN — DIxy]N (11D
R, like R and R is skew - symmetric'on ‘eéch of NMZ, bﬂinear in ‘X 'énd
Y. Also, as is obvious, R (X, Y)p depends only on X and Yp. A local
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orthonormal frame of TM* (resp., TM?) we mean four (resp., two) sec-
tions e; of TM* (resp., TM2) defined on an open set U (resp., U) such
that <Cej, ;> == §;;. For an immersed manifold M2 - M*, we often
consider the frame as defined on U|M2. It will be convenient to choose
frame of TM* that have the property that {e,, e,} are sections of TM2 <
T™+, and {ey, e,} are sections of NM2. Such a frame is called an adapted

. . . e
orthonormal frame. Given a basis of coordinate vectors 3 R
a1
J . . e ;
e s of TM2, a completion to a basis of TM* is a choice of two ort-
2

honormal sections of {ea}'o;a of NM2 {ey}d_yis a frame of the normal

17 7]
» —— » €3, ¢, ; an adapted coor-

bundle NM2, We will call %
31
dinate frame of THM4,
For a unit normal section e, of NM2 and a frame {ey }%=1 of TM2
» A% = << B(’ei, ej), €y > b (1.12)
is the second fundamental form matrix, in the e, direction, expressed

in terms of frame {e;}3_; of TM2. Similarly for a coordinate basis

y o p
T
0 0
O — .
Loy = <B (—p o Joea> (1.13)

A normal (or adapted) frame for an immersion M2 — M4 (c) is said to
be on Otsuki frame if e; = H/|H| where H is the mean curvature vec-
tor of the immersion.

SURFACES WITH PARALLEL MEAN CURVATURE VECTOR
FIELD o :

The immersion M2 -~ M*(e) has parallel mean curvature vector field
H if H is parallel in the normal bundle. Sometimes this condition will
be stated by saying merely that H is parallel. The following lemma is
based on the fact that in the case of codimension two, the existence of
one parallel vector field implies the existence of another. (Hoffman [2]).
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. Lemma 1. Let M2 - M4 (c) be an isometric immersion. If H # O
parallel then the curvature of the normal connection is zero.

- Proof: Since H # O parallel ”H |is a nenzero constant. Let {ey };=;
be the Otsuki frame of the normal bundle, that is e; = H/|H |, <e;,
0 = X <e3, e4>
= <Dxeje> + <es, DXe4>
= <e3,Dye,>, since e; is parallel.
But, 2 < Dxey, e,> = 0 which implies Dxe, = 0, i.e., ¢4 is parallel.
Let Y € I'(TM2). For o = 3,4

A

R (X, Y)e, = DxDy e, — DyDx e; — Dix.y; e

= 0, since e, is parallel.

Hence, R =0 identically.
As a corollary of this we have

Corollary 1. Let M2 — M# (¢) be an isometric immersion. If H #
O parallel then the second fundamental forms are simultaneously diago-
nalizable.

Proof: The prbof follows from the following fact (Hoffman [2])

R=0atp< AjA, = AA; at p
which is precisely the condition for simultaneous diagonalization, where
A, = Aeg, —), « = 3.4. R=o0 identically by Lemma 1.

Proposition 1. Let M2 — M+ (c) be an isometric immersion given
locally in conformal coordinates (uy, u,) with conformal parameter

0 0

*

> = E §j; and ds? = E (du;? + duy?).

oug

E, }.e, < e

If H # O parallel and {ey }2=3 is the Otsuki frame of the normal bundle
then :

’ 3. — I3 : ‘
o = = “-2—L_2L — i L3y, @.1)

and -
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Lty — Ld . | R
= M2 g, @2

are real analytic functions of z = u; + iuy, where Loy = < B

o 0 ; . o
( s - ) , 6 > , « = 3, 4. Furthermore, either @3 = 0
ouy ouy

or ¢, = K @3 where K is a real constant.

" Proof: Hoffman [2].
In Theorem 1 and Theorem 2, M+ (c) will be assumed to be 51mply

connected an complete.

Theorem 1. Let M2 - Mi(c), ¢ > 0, be an isometric immersion.
IfH # O parallel and K = 0 then M2 lies in an affine 3- jlane 73 in E4
(in the case ¢ = 0) or in a great or small 3-spherc (in the case ¢ > 0)

Proof: First assume ¢ — 0 and therefore M2 — E+. The proof will
follow from the following lemma: (Hoffman [2]).

Lemma 2. Suppose M2 — E27k has an r- dimensional distributiop
6Pm NM2 such that

(a) The range of B is in GP
(b) If V is a smooth section of P then DXV € ?for all v e T(TMZ)
Then M2 lies in a (2 -+ r) — plane n2*r in EZJrk :

Now we return to the proof of the Theorem 1. Let {e“}a_3 be the
Otsuki frame of the normal bundle. Since K = 0, M2 is isometric to the
plane and we may choose conformal coordinates locally on M2 with
E = 1. Henee (\%;) = (L%;) for « = 3,4. Proposition 1 and Corollary
1 give () and (M%) as constant diagonalized miatrices. ‘Namely, if
@3 Z 0 then by Proposition 1, ¢, = K ¢; for a real constant G]{ From
the equation,

E2 = ( [H]? —(K—0) ) = [gs]? + [ea]* e
((3.1) in [2]) we obtain that [cp3] is constant. Therefore ¢, is constant
and after a possible rotation of coordinates it may be assumed ‘to be
1ea1 If o; = v then 23;; = [H| + y and 23, = [H| — v since Wi +

23, = 2 |H | and since A}y, = 33y = 0 by Corollary 1. Similarly; M7 =
Ky and A%y, =— vy since Mty + My = 0 and My = My = 0 by Co-
rollary 1. All the real constants v, % and [H | are related to each.other
wsy2 — [ER/L T T2 -
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If *{ = 0 then define,

P = fe e NM2| < e, ¢, > = 0} - (2.3)
) isal - dimensional distribution in NM2. Since, 0 = Yy =
< B(ei,e;), ¢4 > , the range of B is in ). If V is a smooth section of Ds
for all pin M2, V; is in 9),. Hence < V. ¢4 > = 0 with

0= <DXVD,E4> + <Vp9DXe4> = <DX‘7D904> (2'4)
which implies DxV is in ). '

If 7+ 0 then we may put ¥ = —tanx then~7\ij = Al with e — (sina)e,
+ (cosg)e, and A = sing H .

Hence ¢; = 0.

All that remains to complete the proof of this theorem is to study

for the case ¢ > 0. We do that by reducing the case to the euclidian case
¢ = 0. For ¢ > 0 we take as a model for M+ (c) the hypersarface

S4(14/c) = 31; e B3| x[r= -7%‘— % < Es (2.5)

Let {ey}*«_3 be the Otsuki frame of the normal bundle. By Proposition
1 and Corollary 1, the second fundamental forms in the e; and e, direc-
tions are constant diagonalized matrices. If we Iet-e5 be the normal to
the sphere in ES, then the second fundamental form of the composed
immersion M2 — S%(1 l\/a - E5 in the es direction is also a constant

diagonalized matrix. Hence we can find real constants 2 £, u such
that,

ARy) + e Ovhy) +0 Gig) = 0 AR + p2 402 = 1

The unit normal vector field he; uey -+ ves = s parallel since 3, ¢,
and es are parallel. Let

D= {ecNM2 | fe| = 1 A <e, 6> = 0} (2.6)

¢ is a 2 - dimensional distribution which contains the image of second
fundamental form of the immersion M2 - ES, It satisfies condition b

of Lemma 2 since ¢ is parallel. Therefore Lemma 2 applies M2 — xt
where nt is some affine plane. If 1+ passes through the orijin, M2 — S4
(l\/a < wt lies in a great 3 - sphere and in a small 3 - sphere other
wise.

Remark: Here, we are reducing the codimension of an immersion
M2 - M#*c) which is not pscudo-umbilical. Tt is known that pseudo-
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umbilical immersions with parallel nonzero mean curvature lie ‘mini-
mally in hyperspheres -and flat mimimal surfaces in 3-spheres must be
pieces ‘of a- Clifford torus. v P : -

HOFFMAN SURFACES

On an analytic function ¢ = 0 of z = u2 + iwy, defmed ina nelgh-
borhood of the origin in the (ul, u2) plane, and constants &, 8 with o > 0
Hoffman proved that, up to euclidian motions and isothermal COOI‘dl-
nates E(u;, u,), locally there exist ine and enly one surface in. M+(c),
denoted by M* (cp, «, B), with parallel mean curvature vector H such that
« = |[H|and ¢ = g3, Bp = ¢, where ¢; and ¢, are given in Proposition
1. These surfaces are easy to check that they are contained in either in
an affine 3 - space or in a great or small 3 - sphere of M4(c) and they are
neither minimal surfaces in M*(c) nor minimal surfaces of hyperspheres
of M*(c).

Theevem 2. (CLASSIFICATION), Let M2 — M4(c), ¢ > 0, be an

isometric immersion with parallel mean curvature vector field H. Then
M2 is one of the following surfaces:

(a) Minimal surfaces of M#c),
(b) Minimal surfaces of hyperspheres of M# (c),

(c) Surfaces in an affine 3 - space or in a great or small 3 -

sphere of M4(c) and locally given by Hoffman surfaces.

Proof. Since, H is parallel, |H|| is constant. If [H| = 0 then M2
lies minimally in M#(c). If [H| # 0 and M2 does not lic minimally in a
hypersphere of M4 (c) then by Proposition 1 in [1] M2 is contained in an
affine 3 - space or in a great or small 3 - sphere of M4 (c). If M2 is con-
tained in an affine3 - space or in great or small 3 - sphere of M# (c) with
parallel mean curvature vector H which is neither a minimal surface
of M# (c) nor a minimal surface of a hypersphere of M+ (c) then by Pro-
position 1 we see that there exist a triple (®, «, B) in which ® = 0is an
analytic quadratic differential given by @ = ¢; dz2, « = < H, H >1/2
and B is real constant given by ¢, = B ¢;. Let p be a point in M2 and U
be a coordinate neighborhood of P with isothermal coordinates (up,
u,). We may construct a Hoffman surface M(g, «, B) in §it (c) with o,
«, B satisfying the properties in the introduction of this section. Since
locally, this Hoffman surface is unique up to euclidian motions of E4,
the surface M2 around p must coincide with the Hoffman surface M

(@, B)
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Remark: If M2 lies minimally in some hypersphere then its mean
curvature vector mast be the same as that of hypersphere. Therefore, it
must be pseudo - umbilical at each point. But this impies ¢ = ¢ == 0.
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