SURFACES OF PARALLEL MEAN CURVATURE IN FOUR DIMENSIONAL MANIFOLDS OF CONSTANT CURVATURE

FAZÎLET ERKEKOĞLU¹ and H. HÎLMÎ HACISALÎHOĞLU²

- 1 Department of Mathematics, GAZI UNIVERSITY, ANKARA, TURKEY
- 2 Department of Mathematics, UNIVERSITY OF ANKARA, TURKEY

ABSTRACT

In this paper we classify the condimension two immersions in constantly curved 4 - manifolds with parallel mean curvature by reproving the Proposition 1 in [1] in the case of $K \equiv 0$.

PRELIMINARIES

Let i: $M^2 \to \overline{M}^4$ (c) be an isometric immerison of a 2-dimensional Riemannian manifold M^2 in a 4- dimensional Riemannian manifold M^4 (c) of constant sectional curvature c and let X and Y be two tangent vector fields on M^2 ; i.e., two members of Γ (TM²), the space of smooth sections of TM². If <, > denotes the metric tensor on TM⁴ than that of TM² is given by

$$\langle i_{\star}X, i_{\star}Y \rangle = g(X,Y) \tag{1.1}$$

For all local formulas and computations we may consider i as an imbedding thus identify M^2 with $i(M^2)$ and TM^2 with i_* $(TM^2) \subset T\bar{M}^4$, deleting reference to i and its induced maps wherever possible. As a result, for $X,\,Y\in T(M^2)_p$ we write $< X,\,Y>$ for g(X,Y), which we can do via the identification. We consider $T\bar{M}^4$ restricted to the base space M^2 . Let $[\]^T$ denote projection in $T\bar{M}^4$ onto TM^2 . Then the normal bundle NM^2 is the bundle whose fibre at p is

$$N(M^{2})p = \{x \in T(\overline{M}^{4})_{p} | [\times]^{T} = 0\}$$
(1.2)

which is the orthogonal complement (with respect to <,>) of $T(M^2)_p$ in $T(\overline{M}^4)_p$. NM^2 has an induced metric, the restriction of <,> to NM^2 . We let $[\]^N$ denote projection onto NM^2 . Let ∇ and $\overline{\nabla}$ be the Riemannian connections of M^2 and \overline{M}^4 respectively. ∇ related to $\overline{\nabla}$ by

$$[\overline{\nabla}_{\mathbf{X}}\mathbf{Y}]^{\mathrm{T}} = \nabla_{\mathbf{X}}\mathbf{Y} \tag{1.3}$$

Then the second fundamental form of the immersion is given by

$$\overline{\nabla}_{X}Y = \nabla_{X}Y + B(X,Y) \tag{1.4}$$

and is a section of Γ (TM² \otimes TM², NM²), the tensor bundle over M² whose fibre at p is the space of bilinear maps from T (M²)_p X T (M²)_p to N (M²)_p.

$$B(X,Y) = [\overrightarrow{\nabla}_X Y]^N \qquad (1.5)$$

is a normal vector field on M^2 and is symmetric on X and Y. Let $N \in \Gamma$ (TM2), we write

$$\overline{\nabla}_{X}N = A(N,X) + D_{X}N \tag{1.6}$$

where A(N,X) and D_XN denote the tangential and normal components of $\overline{\bigtriangledown}_XN$. A is a section of Γ (NM² \otimes TM², TM²) defined by

$$< A(N,X), Y> = - < B(X,Y), N>$$
 (1.7)

and D is the Riemannian connection on NM2 induced by the immersion defined by

$$\mathbf{D}_{\mathbf{X}}\mathbf{N} = [\overline{\nabla}\,\mathbf{N}\,]^{\mathbf{N}} \tag{1.8}$$

D is easily seen to be compatible with the metric of NM². A normal vector field N on M² is said to be parallel in the normal bundle if $D_X N = 0$ for all tangent vector fields X. The mean curvature vector H is the section of NM² defined by

$$H = \frac{1}{2} \text{ trace } B \tag{1.9}$$

The surface M^2 in \overline{M}^4 (c) is said to be minimal if H=0 identically. If the mean curvature vector H and the second fundamental form B satisfy

$$< B (X,Y), H > = \lambda < X,Y >$$

for all tangent vector fields X, Y at p with the same λ then M^2 is said to be pseudo-umbilical at p. If M^2 is pseudo - umbilical at every point of M^2 , then M^2 is called a pseudo - umbilical surface of \overline{M}^4 (c). The curva-

tures associated with \bigtriangledown , $\overline{\bigtriangledown}$ and D are denoted R, \bar{R} and \widetilde{R} respectively.

For example, R is given by

$$\tilde{R} (X,Y) N = D_X D_Y N - D_Y D_X N - D_{[X,Y]} N$$
 (1.11)

 \widetilde{R} , like R and R is skew - symmetric on each of NM², bilinear in X and Y. Also, as is obvious, \widetilde{R} $(X, Y)_p$ depends only on X_p and Y_p . A local

orthonormal frame of $T\bar{M}^4$ (resp., TM^2) we mean four (resp., two) sections e_i of $T\bar{M}^4$ (resp., TM^2) defined on an open set \bar{U} (resp., U) such that $\langle e_i, e_j \rangle = \delta_{ij}$. For an immersed manifold $M^2 \to \bar{M}^4$, we often consider the frame as defined on $\bar{U} \mid M^2$. It will be convenient to choose frame of $T\bar{M}^4$ that have the property that $\{e_1, e_2\}$ are sections of $TM^2 \subset T\bar{M}^4$, and $\{e_3, e_4\}$ are sections of NM^2 . Such a frame is called an adapted

orthonormal frame. Given a basis of coordinate vectors $\begin{cases} \frac{\partial}{\partial u_1} \end{cases}$,

 $-\frac{\partial}{\partial u_2}$ of TM2, a completion to a basis of TM4 is a choice of two ort-

honormal sections of $\{e_{\alpha}\}_{\alpha=3}^4$ of NM² $\{e_{\alpha}\}_{\alpha=3}^4$ is a frame of the normal

bundle NM2. We will call $\left\{ \begin{array}{c} \partial \\ -\partial u_1 \end{array} \right.$, $\left\{ \begin{array}{c} \partial \\ -\partial u_2 \end{array} \right.$, $e_3,e_4 \left\{ \begin{array}{c} an \ adapted \ coor- \end{array} \right.$

dinate frame of TM4.

For a unit normal section e_{α} of NM2 and a frame $\{e_i\}_{i=1}^2$ of TM2

$$\lambda^{\alpha}_{ij} = \langle B(e_i, e_j), e_{\alpha} \rangle \qquad (1.12)$$

is the second fundamental form matrix, in the e_{α} direction, expressed in terms of frame $\{e_i\}_{i=1}^2$ of TM². Similarly for a coordinate basis

$$\left\{ \begin{array}{c} \frac{\partial}{\partial \mathbf{u_i}} - \left\{ \begin{array}{c} 2 \\ \mathbf{i} = 1 \end{array} \right. \right.$$

$$L^{\alpha_{ij}} = \langle B \left(\frac{\partial}{\partial u_i} , \frac{\partial}{\partial u_i} \right), e_{\alpha} \rangle$$
 (1.13)

A normal (or adapted) frame for an immersion $M^2 \to \bar{M}^4$ (c) is said to be on Otsuki frame if $e_3 = H/\|H\|$ where H is the mean curvature vector of the immersion.

SURFACES WITH PARALLEL MEAN CURVATURE VECTOR FIELD

The immersion $M^2 \to \overline{M}^4(c)$ has parallel mean curvature vector field H if H is parallel in the normal bundle. Sometimes this condition will be stated by saying merely that H is parallel. The following lemma is based on the fact that in the case of codimension two, the existence of one parallel vector field implies the existence of another. (Hoffman [2]).

Lemma 1. Let $M^2 \to \overline{M}^4$ (c) be an isometric immersion. If $H \neq 0$ parallel then the curvature of the normal connection is zero.

Proof: Since $H \neq 0$ parallel $\|H\|$ is a nenzero constant. Let $\{e_{\alpha}\}_{\alpha=3}^{4}$ be the Otsuki frame of the normal bundle, that is $e_{3} = H/\|H\|$, $\langle e_{3}, e_{3} \rangle = \langle e_{4}, e_{4} \rangle = 1$, $\langle e_{3}, e_{4} \rangle = 0$. If $X \in \Gamma$ (TM²) then

$$0 = X < e_3, e_4 >$$
 $= < D_X e_3, e_4 > + < e_3, D_X e_4 >$
 $= < e_3, D_X e_4 >$, since e_3 is parallel.

But, $2 < D_X e_4$, $e_4 > = 0$ which implies $D_X e_4 = 0$, i.e., e_4 is parallel. Let $Y \in \Gamma(TM^2)$. For $\alpha = 3.4$

$$\widetilde{R}$$
 (X, Y) $e_{\alpha} = D_{X}D_{Y} e_{\alpha} - D_{Y}D_{X} e_{\alpha} - D_{[X,Y]} e_{\alpha}$

$$= 0, \text{ since } e_{\alpha} \text{ is parallel.}$$

Hence, $\tilde{R} = 0$ identically.

As a corollary of this we have

Corollary 1. Let $M^2 \to \overline{M}^4$ (c) be an isometric immersion. If $H \neq 0$ parallel then the second fundamental forms are simultaneously diagonalizable.

Proof: The proof follows from the following fact (Hoffman [2])

$$\widetilde{R}=0$$
 at $p\Leftrightarrow A_3A_4=A_4A_3$ at p which is precisely the condition for simultaneous diagonalization, where $A_\alpha=A(e_\alpha,-),\ \alpha=3,4.\ \widetilde{R}=0$ identically by Lemma 1.

Proposition 1. Let $M^2 \rightarrow \overline{M}^4$ (c) be an isometric immersion given locally in conformal coordinates (u_1, u_2) with conformal parameter

E, i.e,
$$<\frac{\partial}{\partial u_1}$$
 , $\frac{\partial}{\partial u_j}$ > = E δ_{ij} and ds^2 = E $(du_1^2+du_2^2)$.

If $H \neq 0$ parallel and $\{e_{\alpha}\}_{\alpha=3}^4$ is the Otsuki frame of the normal bundle then

$$\varphi_3 = \frac{L^3_{11} - L^3_{22}}{2} - i L^3_{12} \qquad (2.1)$$

and we are the second of the second

$$\varphi_4 = \frac{L^4_{11} - L^4_{22}}{2} - i L^4_{12}$$
 (2.2)

are real analytic functions of $z=u_1+iu_2$, where $L^{\alpha}{}_{ij}=< B$ $\left(\begin{array}{c} \partial \\ \partial u_i \end{array}\right)$, $e_{\alpha}>$, $\alpha=3,4$. Furthermore, either $\phi_3\equiv 0$ or $\phi_4=\mathcal{K}$ ϕ_3 where \mathcal{K} is a real constant.

Proof: Hoffman [2].

In Theorem 1 and Theorem 2, \overline{M}^4 (c) will be assumed to be simply connected an complete.

Theorem 1. Let $M^2 \to \overline{M}^4(c)$, c > 0, be an isometric immersion. If $H \neq 0$ parallel and $K \equiv 0$ then M^2 lies in an affine 3- plane π^3 in E^4 (in the case c = 0) or in a great or small 3-sphere (in the case c > 0)

Proof: First assume c=0 and therefore $M^2\to E^4$. The proof will follow from the following lemma: (Hoffman [2]).

Lemma 2. Suppose $M^2 \to E^{2+k}$ has an r-dimensional distribution $\mathscr P$ in NM2 such that

- (a) The range of B is in \mathcal{P}
- (b) If V is a smooth section of \mathcal{P} then $D_X V \in \mathcal{P}$ for all $V \in \Gamma(TM^2)$. Then M^2 lies in a (2 + r) — plane π^{2+r} in E^{2+k} .

Now we return to the proof of the Theorem 1. Let $\{e_{\alpha}\}_{\alpha=3}^4$ be the Otsuki frame of the normal bundle. Since $K\equiv 0$, M^2 is isometric to the plane and we may choose conformal coordinates locally on M^2 with E=1. Hence $(\lambda^{\alpha}{}_{ij})=(L^{\alpha}{}_{ij})$ for $\alpha=3,4$. Proposition 1 and Corollary 1 give $(\lambda^3{}_{ij})$ and $(\lambda^4{}_{ij})$ as constant diagonalized matrices. Namely, if $\phi_3\not\equiv 0$ then by Proposition 1, $\phi_4=\mathcal{K}$ ϕ_3 for a real constant \mathcal{K} . From the equation,

$$E^2=(\|\mathbf{H}\|^2-(\mathbf{K}-\mathbf{c}))=|\phi_3|^2+|\phi_4|^2$$
 ((3.1) in [2]) we obtain that $|\phi_3|$ is constant. Therefore ϕ_3 is constant and after a possible rotation of coordinates it may be assumed to be real. If $\phi_3=\gamma$ then $\lambda^3_{11}=\|\mathbf{H}\|+\gamma$ and $\lambda^3_{22}=\|\mathbf{H}\|-\gamma$ since $\lambda^3_{11}+\lambda^3_{22}=2$ $\|\mathbf{H}\|$ and since $\lambda^3_{12}=\lambda^3_{21}=0$ by Corollary 1. Similarly; $\lambda^4_{11}=\mathcal{K}\gamma$ and $\lambda^4_{22}=-\mathcal{K}\gamma$ since $\lambda^4_{11}+\lambda^4_{22}=0$ and $\lambda^4_{12}=\lambda^4_{21}=0$ by Corollary 1. All the real constants γ , \mathcal{K} and $\|\mathbf{H}\|$ are related to each other as $\gamma^2=\|\mathbf{H}\|^2/1+\mathcal{K}^2$.

If K = 0 then define,

$$\mathcal{D} = \{ e \in NM^2 | < e, e_4 > = 0 \}$$
 (2.3)

 $\mathcal D$ is a 1-dimensional distribution in NM2. Since, $0=\lambda^4{}_{ij}=< B(e_i,e_j),\,e_4>$, the range of B is in $\mathcal D$. If V is a smooth section of $\mathcal D$; for all p in M2, V_p is in $\mathcal D_p$. Hence < V_p, $e_4>=0$ with

$$0 = \langle D_X V_p, e_4 \rangle + \langle V_p, D_X e_4 \rangle = \langle D_X V_p, e_4 \rangle$$
 which implies $D_X V$ is in \mathcal{D} .

If $\mathcal{K} \neq 0$ then we may put $\mathcal{K} = -\tan\alpha$ then $\lambda_{ij} = \lambda I$ with $e = (\sin\alpha)e_3 + (\cos_a)e_4$ and $\lambda = \sin\alpha$ $\|H\|$.

Hence $\ddot{\varphi}_3 \equiv 0$.

All that remains to complete the proof of this theorem is to study for the case c > 0. We do that by reducing the case to the euclidian case c = 0. For c > 0 we take as a model for \overline{M}^{\sharp} (c) the hypersurface

$$S^{4}(1\sqrt{c}) = \left\{ x \in E^{5} | \|x\|^{2} = \frac{1}{c} \right\} \subset E^{5}$$
 (2.5)

Let $\{e_{\alpha}\}^4_{\alpha=3}$ be the Otsuki frame of the normal bundle. By Proposition 1 and Corollary 1, the second fundamental forms in the e_3 and e_4 directions are constant diagonalized matrices. If we let e_5 be the normal to the sphere in E^5 , then the second fundamental form of the composed immersion $M^2 \to S^4(1|\sqrt{c}) \to E^5$ in the e_5 direction is also a constant diagonalized matrix. Hence we can find real constants λ , μ , ν such that,

$$\lambda(\lambda^3{}_{ij}) + \mu\; (\lambda^4{}_{ij}) + \upsilon\; (^5{}_{ij}) = 0\; \Lambda\; \lambda^2 + \mu^2 + \upsilon^2 = 1$$

The unit normal vector field $\lambda e_3 + \mu e_4 + \nu e_5 = e$ is parallel since e_3 , e_4 and e_5 are parallel. Let

$$\mathcal{D} = \{ \mathbf{e} \in \mathbf{NM}^2 \mid \|\mathbf{e}\| = 1 \ \Lambda < \mathbf{e}, \ \stackrel{\sim}{\mathbf{e}} > = 0 \}$$
 (2.6)

 $\mathfrak D$ is a 2 - dimensional distribution which contains the image of second fundamental form of the immersion $M^2 \to E^5$. It satisfies condition (b) of Lemma 2 since \widetilde{e} is parallel. Therefore Lemma 2 applies $M^2 \to \pi^4$ where π^4 is some affine plane. If π^4 passes through the orijin, $M^2 \to S^4$ ($1\sqrt{c}$) $\subset \pi^4$ lies in a great 3 - sphere and in a small 3 - sphere other wise.

Remark: Here, we are reducing the codimension of an immersion $M^2 \to \bar{M}^4(c)$ which is not pseudo-umbilical. It is known that pseudo-

umbilical immersions with parallel nonzero mean curvature lie minimally in hyperspheres and flat minimal surfaces in 3-spheres must be pieces of a Clifford torus.

HOFFMAN SURFACES

On an analytic function $\phi\not\equiv 0$ of $z=u^2+i\ u_1$, defined in a neighborhood of the origin in the (u_1,u_2) -plane, and constants α,β with $\alpha>0$ Hoffman proved that, up to euclidian motions and isothermal coordinates $E(u_1,\ u_2)$, locally there exist ine and only one surface in $\overline{M}^4(c)$, denoted by M^4 (ϕ,α,β) , with parallel mean curvature vector H such that $\alpha=\|H\|$ and $\phi=\phi_3,\beta\phi=\phi_4$ where ϕ_3 and ϕ_4 are given in Proposition 1. These surfaces are easy to check that they are contained in either in an affine 3 - space or in a great or small 3 - sphere of $\overline{M}^4(c)$ and they are neither minimal surfaces in $\overline{M}^4(c)$ nor minimal surfaces of hyperspheres of $\overline{M}^4(c)$.

Theorem 2. (CLASSIFICATION), Let $M^2 \to \overline{M}^4(c)$, c>0, be an isometric immersion with parallel mean curvature vector field H. Then M^2 is one of the following surfaces:

- (a) Minimal surfaces of $\overline{M}^4(c)$,
- (b) Minimal surfaces of hyperspheres of \overline{M}^4 (c),
- (c) Surfaces in an affine 3 space or in a great or small 3 sphere of $\overline{M}^4(c)$ and locally given by Hoffman surfaces.

Proof. Since, H is parallel, $\|H\|$ is constant. If $\|H\| = 0$ then M^2 lies minimally in $\overline{M}^4(c)$. If $||H|| \neq 0$ and M^2 does not lie minimally in a hypersphere of M4 (c) then by Proposition 1 in [1] M2 is contained in an affine 3 - space or in a great or small 3 - sphere of M4 (c). If M2 is contained in an affine3 - space or in great or small 3 - sphere of \overline{M}^4 (c) with parallel mean curvature vector H which is neither a minimal surface of M4 (c) nor a minimal surface of a hypersphere of M4 (c) then by Proposition 1 we see that there exist a triple (Φ, α, β) in which $\Phi \not\equiv 0$ is an analytic quadratic differential given by $\Phi=\phi_3\;\mathrm{d}\mathbf{z}^2,\,\alpha=<\mathrm{H},\,\mathrm{H}>^{1/2}$ and β is real constant given by $\phi_4=\beta$ ϕ_3 . Let p be a point in M² and U be a coordinate neighborhood of P with isothermal coordinates (u1, u₂). We may construct a Hoffman surface $M(\phi, \alpha, \beta)$ in \bar{M}^4 (c) with ϕ , a, B satisfying the properties in the introduction of this section. Since locally, this Hoffman surface is unique up to euclidian motions of E4, the surface M² around p must coincide with the Hoffman surface M $(\varphi, \alpha, \beta).$

Remark: If M^2 lies minimally in some hypersphere then its mean curvature vector must be the same as that of hypersphere. Therefore, it must be pseudo - umbilical at each point. But this impies $\varphi_3 = \varphi = 0$.

REFERENCES

- CHEN, B. YEN, On the surface with parallel mean curvature vector, Indiana University Mathematics Journal, Vol. 22, No. 7 (1973), 655-666.
- HOFFMAN, D., Surfaces of constant mean curvature in manifolds of constant curvature,
 J. Differential Geometry, 8 (1973), 161-176.