ON THE BLASCHKE INVARIANTS OF THE PAIR OF THE GENERA-LIZED RULED SURFACES UNDER THE HOMOTHETIC MOTIONS

A.I. SIVRIDAG - S. KELES

Faculty of Arts and Sciences,

Inönü University, MALATYA

(Received March 12, 1991; Revised sept. 23, 1991; Accepted Apr. 12. 1992).

In this paper we discuss the relations between the Blaschke invariants of the pair of the moving and fixed (k + 1)-ruled surfaces $\overline{\Phi}$ and Φ under the homotheric motion in E^n . Moreover we find the relations for the pair of $\overline{\Psi} \subset \overline{\Phi}$ and $\Psi \subset \Phi$. As a special case of these relations we obtained some relations between the principal Blaschke invariants.

1. Homothetic Motions Of En And Blasebke Invariants

A homothetic motion of E^n is described in matrix notation [4] by

$$\mathbf{x} = \mathbf{S}\bar{\mathbf{x}} + \mathbf{C}, \ \mathbf{S} = \mathbf{h}\mathbf{A}, \ \mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{I} \tag{1}$$

where \mathbf{A}^{T} is the transpose of the orthogonal matrix \mathbf{A} , \mathbf{h} is a real scalar matrix and

$$A:J \rightarrow O(n), C: J \rightarrow IR^n, h: J \rightarrow IR$$
 (2)

are functions of differentiability class of C^r on a real interval J, and \bar{x} and x are corresponding position vectors of the same point with respect to the rectangular co–ordinate systems of the so–called moving space \bar{E} and fixed space E, respectively. At the initial time $t=t_0$ we assume that the co–ordinate systems of \bar{E} and E coincides. To avoid the case of general affine transformations we assume that $h=h(t)\neq constant$ and to avoid the case of pure translations and pure rotations we also assume that

$$\dot{\mathbf{h}}\mathbf{A} + \mathbf{h}\dot{\mathbf{A}} \neq \mathbf{0}, \ \dot{\mathbf{C}} \neq \mathbf{0}$$
 (3)

where (.) indicates d/dt.

Let \bar{x} be fixed in \bar{E} then (1) defines a parametrized curve, by (2), in E which we call it trajectory curve of \bar{x} under the motion. Since

we have $\dot{\bar{x}} = 0$, differentiating (1) we get the (trajectory) velocity vector \dot{x} , at the path-point x, in the form

$$\dot{x} = B (x-C) + \dot{C}, B = \dot{S}S^{-1}$$
 (4)

Since the matrix S is regular matrix, (see [3]), $\mid B \mid$ doesn't vanish on J. So, for each $t \in J$ we get exactly one solution y(t) of the equation

B (t)
$$(y-C(t)) + \dot{C}(t) = 0$$
 (5)

y(t) is the center of the instantaneous rotation of the motion at $t\in J$ and it is called the pole of the motion at $t\in J$. At a pole the velocity vector vanishes by the equation (4). Since |B| does not vanish on J, by considering the regularity condition of the motion we get a differentiable curve $y\colon J\to E$ of poles in the fixed space E, called the fixed pole curve. By(1)' we can determin the moving pole curve $\bar{y}\colon J\to \bar{E}$ from the fixed pole curve point to point on J:

$$y(t) = S(t) \bar{y}(t) + C(t).$$
 (6)

Let $\bar{y} \subset \bar{E}$ and $y \subset E$ be the moving and the fixed pole curves under the homothetic motion given by (1), respectively. Suppose that $\{\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_k\}$ is an orthonormal vector field system at $\bar{y}(t)$ and $\bar{E}_k(t) = \mathrm{Sp}\ \{\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_k\}$. Then $\bar{E}_k(t)$ generates a (k+1)-dimensional ruled surface with the leading curve y in the moving space \bar{E} which is called the moving ruled sirface and it is denoted by $\overline{\Phi}$. $\overline{\Phi}$ has the following parameter representation on the interval J:

$$\bar{\mathbf{z}}(\mathbf{t}, \bar{\mathbf{u}}_1, \dots, \bar{\mathbf{u}}_k) = \bar{\mathbf{y}}(\mathbf{t}) + \sum_{\nu=1}^k \bar{\mathbf{u}}_{\nu} \bar{\mathbf{e}}_{\nu}(\mathbf{t}). \ \bar{\mathbf{u}}_{\nu} \in \mathbf{IR}, \ \mathbf{t} \in \mathbf{J}. \tag{7}$$

Let $\{\epsilon_1(t), \ldots, \epsilon_k(t)\}$ be an orthogonal vector field system satisfying the following equations (8) and (9) at the point y(t) in the fixed space E:

$$S(\bar{e}_{\nu}) = \bar{\epsilon}_{\nu} \tag{8}$$

and

$$(\mathring{A}A^{-1}) \in_{\mathbf{v}} = 0, \ 1 \le \mathbf{v} \le \mathbf{k}. \tag{9}$$

If we set

$$\in_{\mathsf{V}} = \mathsf{he}_{\mathsf{V}} \ 1 \le \mathsf{V} \le \mathsf{k} \tag{10}$$

then we get the orthonormal vector field system $\{e_1,\ldots,e_k\}$. If $S_p\{e_1,\ldots,e_k\}$ is denoted by $E_k(t)$ then $E_k(t)$ generates a (k+1)-ruled

surface with the leading curve y by (1) in the fixed space E. Under a homothetic motion such a ruled surface corresponds to the moving ruled surface $\overline{\Phi}$. This ruled surface is called the fixed ruled surface and denoted by Φ . The fixed ruled surface has the following parameter respresentation on the interval J:

$$Z(t, u_1, ..., u_k) = y(t) + \sum_{\nu=1}^{k} u_{\nu} e_{\nu}, u_{\nu} \epsilon R, t \epsilon J.$$
 (11)

Theorem: Let $\overline{\Phi}$ and Φ be the (k+1)-dimensional moving and fixed surfaces with the leading curves \overline{y} , y such that \overline{y} and y are the moving and the fixed pole curves of $\overline{\Phi}$ and Φ , respectively. If $\{\overline{e}_1, \ldots, \overline{e}_k\}$ and $\{e_1, \ldots, e_k\}$ are the principal frames of $\overline{\Phi}$ and Φ then we have the following results [1]

$$\begin{split} &i. \ \ \bar{\alpha}_{\sigma\nu}=\alpha_{\sigma\nu}, \ \big[\leq \sigma \leq m, \ 1<\nu < k \\ &ii. \ \ \bar{\alpha}_{(m+\rho)}.=\alpha_{(m+\rho)} \ \sigma, \ 1<\rho < k\!-\!m \\ &iii. \ \ \bar{K}_{\sigma}=K_{\sigma} \\ &iv. \ \ A\bar{a}_{k+\sigma}=a_{k+\sigma}, \ 1<\sigma < m. \end{split} \label{eq:constraint} \end{split}$$

Let a 2-ruled surface (not cylinder) ϕ in E^n be given. Then the magnitude $b=\xi/K$ is called the Blaschke invariant of ϕ where ξ and K are obtained from the following equations for k=1 [2]:

$$\dot{e}_{\sigma} = \sum_{\nu=1}^{k} \alpha_{\sigma\nu} e_{\nu} + K_{\sigma} a_{k+\sigma}, \ K_{\sigma} > 0, 1 \leq \sigma \leq m \ . \eqno(13)$$

$$\dot{y} = \sum_{\nu=1}^{k} \xi_{\nu} e_{\nu} + \eta_{m+1} a_{k+m+1}, \ \eta_{m+1} \neq 0.$$

Let Φ be a (k+1)-ruled surface in E^n . The dimension of the asymptotic bundle of Φ being k+m, m>0 the magnitudes

$$b_i = \xi_i / K_i, \ 1 \le i \le m \tag{14} \label{eq:14}$$

are called the principal Blaschke invariants of Φ and also

$$B = \sqrt[m]{\mid b_1 \dots b_m \mid} \tag{15}$$

is called the Blaschke invariant of Φ [5].

In the case m=k, the central ruled surface $\Omega \subset \varnothing$ degene rates in the line of striction. Thus, the Blaschke invariant b of the 2-ruled surface ψ generated by 1-dimensional supspace $E(t) = Sp \{e(t)\} \subset E_k(t)$ can be given by

$$\mathbf{b} = rac{\sum\limits_{egin{subarray}{c} egin{subarray}{c} \egin{subarray}{c} egin{subarray}{c} egin{subarray$$

where
$$e(t) = \sum\limits_{\nu=1}^k \, \cos\!\theta_{\nu} e_{\nu}, \; \theta_{\nu} = \, \mathrm{constant},, \; || \; e \; || \; = 1 \; [5].$$

2. On The Blaschke Invariants Of The Pair Of Generalized Ruled Surfaces Under The Homothetic Motion In The Euclidean n-Space ${\bf E}^n$

In this section we discus the relations between the Blaschke invariants of the fixed ruled surfaces and of the moving ruled surfaces under the homothetic motion in E^n .

Let $\overline{\Phi}$ and Φ be the (k+1)-dimensional moving and fixed ruled surfaces with the leading curves \overline{y} and y, where \overline{y} and y are the moving and the fixed pole curves under the homothetic motion, respectively. And suppose that dimension of the asymptotic bundle of $\overline{\Phi}$ is k+m, m>0. Then it can be easily shown that the dimension of the asymptotic bundle of Φ is also k+m. Let $\{\overline{e}_1,\ldots,\overline{e}_k\}$ and $\{e_1,\ldots,e_k\}$ be the ONF of the generators $\overline{E}_k(t)\subset\overline{\Phi}$ and $E_k(t)\subset\Phi$, respectively. For the leading curves we have, from (1), (5) and (6)

$$\dot{y} = S\bar{y}, S = hA. \tag{17}$$

On the other hand from (8), (13) and (17) we obtain that

$$\xi_{\nu} = h \ \overline{\xi}_{\nu}. \tag{18}$$

If \overline{b}_i and b_i are the i^{th} principal Blaschke invariants of the moving and fixed ruled surfaces $\overline{\Phi}$ and Φ , respectively, from (12) and (18) we get

$$b_i = h\overline{b_i} \tag{19}$$

so we have the following results:

Corollary 1: We have the following relations between the principal Blaschke invariants of the moving (k+1)-ruled surface $\overline{\Phi}$ and of the fixed (k+1)-ruled surface Φ under the homothetic motion

$$b_i = h\overline{b}_i$$
.

Corollary 2: \overline{B} and B being the Blaschke invariants of $\overline{\Phi}$ and Φ , respectively, we have

$$B = h\overline{B}$$
.

Let e_k(t) be a unit vector in the generator E_k(t) satisfying

$$e = \sum_{\gamma=1}^{k} \cos \theta_{\gamma} e_{\gamma}, \ \theta_{\gamma} = constant.$$
 (20)

Under the homothetic motion then we obtain a 2-ruled surface generated by $E(t) = Sp \{e(t)\}$ with the leading curve y in the fixed space E, say ψ . If we put $S(\bar{\mathfrak{e}}) = he$, in the same way, we obtain a 2-ruled surface $\bar{\psi}$ generated by $\bar{E}(t) = Sp \{\bar{\mathfrak{e}}\}$ with the leading curve $\bar{\mathfrak{p}}$ in the moving space \bar{E} where $\bar{\mathfrak{p}}$ and y are the moving and the fixed pole curves, respectively. We have

$$\cos \widetilde{\theta_{\nu}} = \cos \theta_{\nu}, \ 1 \leq \nu \leq k.$$
 (21)

Using (12), (21) and (18) in (16) we obtain

$$b = \frac{h \sum_{\nu=1}^{k} \overline{\xi_{\nu}} \cos \theta_{\nu}}{\sqrt{\sum_{\mu=1}^{k} \left[\left(\sum_{\nu=1}^{k} \cos \overline{\theta}_{\nu} \overline{\alpha}_{\nu} \mu \right)^{2} + (\cos \overline{\theta} \mu \overline{K} \mu)^{2} \right]}}$$
(22)

 \mathbf{or}

$$b = h\overline{b}. (23)$$

Corollary 3: The relation (23) holds between the Blaschke invariants of $\overline{\psi}$ and ψ .

In this case, taking $\bar{e} = \bar{e}_i$, $1 \le i \le m$ we obtain (19) from (22). So (22) can be considered as a generalization of (19).

HOMOTETİK HAREKETLER ALTINDA GENELLEŞTİRİLMİŞ REGLE YÜZEYLERİN BLASCHKE İNVARYANTLARI ÜZERİNE

ÖZET

Bu çalışmada, homotetik hareketler altındaki hareketli ve sabit $\overline{\Phi}$ ve Φ (k + 1)-regle yüzey çiftlerinin Blaschke invaryantları arasında

bazı bağıntılar bulundu. Ayrıca $\overline{\psi} \subset \overline{\Phi}$ ve $\psi \subset \Phi$ 2–regle yüzey çiftlerinin Blaschke invaryantları arasındaki ilişkiler elde edildi. Bu bulunan ilişkilerden, özel bir hal olarak asli Blaschke invaryantları arasındaki bağıntılar elde edildi.

REFERENCES

- [1] FRANK, H., "On kinematics of the n-dimensional Euclidean Space" Contributions to Geometry, Proceedings of the Geometry Symposium in Siegen (1978).
- [2] FRAN, H., GIERING, O., "Verallgemeinerte Regelflachen im Grossen II." Journal of Geo. Vol. 23, 1984.
- [3] HACISALİHOĞLU, H.H., "On the rolling of one curve or surface upon another." Proc. of Royal Irish Acad. Vol. 71, Sec. A, Number 2 (1971), 13-18.
- [4] NOMIZU, K., "Fundamentals of Linear Algebra" P. 269, New York McGraw-Hill Book Company.
- [5] KELEŞ, S., ASLANER, R., " ${\bf E^n}$ de $({\bf k+1})$ -regle yüzeylerin Blaschke invaryantları üzerine". Erciyes Üniversitesi, Fen Bilimleri Dergisi, 1990 (To appear).