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ABSTRACT

In this study, the polar inertia momentum of the trajectory curve (X) generated by a
fixed point X of the moving plane under the l-parameter closed planar homothetic motion is
calculated. And it is seen that all the fixed points of the moving plane the trajectory curves of
which have equal polar inertia momentum lie on the same circle of the moving plane such that
the center of the circle is generally different from the Steiner point (Theorem 1). Obtaining a
a formula which is analogoue of Holditch formula from that we get some corollaries (Corol-
laries 3, 4 and 5). Moreover we have given a relation between theareas of orbits and the polar
inertia momentums of them (Theorem 2).

INTRODUCTION

1. Parameter Closed Planar Homothetic Motions

In this section we are going to consider planes as being complex
planes, that is, each point X of the plane is to be observed as the rep-
resentative of a complex number x = x; + ix;. A 1- parameter ho-
mothetic motion of plane is described in complex number notation by

x'=hxely + u : ~ @)

where x is a complex number which corresponds to a point given in the
so—called moving plane, say E, and x’ is the complex number corresponds
to the same point in the so—called fixed plane, say E’, and h = h(t),
u’ = u’(t) and @ = @ (t) are functions of a real single parameter t.
Moreover u represents the origin of moving system in the coordinates of
the fixed system. Then we have '

u’ = - ueld. 2)
If T is the smallest positive number satisfying the following esualities

uj (t 4 T) = u; (v)
(3)
@ (t-+T)= o (t)+ 2nv
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then the motion given by (1) is called 1-parameter closed planar homo-
thetic motion with the period T and rotation number v[1]. Such a motion
will be denoted by B.

For the moving pole points P of the motion B we find that
p=p1+ipy=(u+iou/(h+ish) @)
After some calculation, from (1), (3) and (4) we get
du; = p; dh—pohd & + vwd o, duy = py dh + pihd g-uwdgo
or (5)
u; = pith + (p2dh)/d o —duy/do,
up =prh-(p;dh)/d o + du,/d .
From (1) we can write
x' % = (h x el 4 u’) (hke~i2 4 u’)
where %’ is the comlex conjugate of x’, that is, ¥’ = x’; —ix’;. On
account of the facts that
u’ = —ueld and v’ = ~ue19 (7N
we obtain
x'x’ = u’#’ ~ hug - hix + h2 xx, (8)
II. On The Polar Inertia Momentum Of A Curve Drawn By A

Fixed Point Of The Moving Plane Under The 1-Parameter Closed
Planar Homohetic Motins

Let X be a fixed point of the moving plane and consider the
trajetory curve (X) of X under the motion B. The polar inertia mom-
entum of the curve (X), Tx, is given by

Tx=§X’ild@ (9)

therei the integration is taken along the closed curve (X) in the fixed

plane E’ [2]. By using (6), (7) and (8) in (9) we get
Tx = To + XX $h2d@ -2x, § (pth2dz -+ prhdh-hdu,)-
— 2%, § (p2h2 d @—py hdh + hdu,). (10)

Let us consider the Steiner point s = s; -~ is; of the moving
centrode (p) for the distribution of mass with the density h2d @ . Hence
we have
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o §Pjh2d® .
SJ—W,I—I,z (11)

where the integrations are taken along the closed curve (P). Let
$ h2dg = 2kII. (12)

Then, from (10), (11) and (12) we obtain that

Tx = To + klI (xXx — x5 - %s) - 2x; § (pohdh-hdu,) -
2x, ¢ (hdu;— py hdh). (13)

As a result of (13) we can give the following theorem.

Theorem 1: All the fixed points of the moving plane the Vtrajrectory
curves of which have equal polar inertia momentum lie on the same
circle of the moving plane.

On the -other hand, for the area Fx enclosed by the trajectory
curve (X) we have, [3],

Fx = kIl (x% —xs - xs) -+ Fo + { x; § (-2p,hdh + hdu, + uzdh
+ x5 ¢ (2p;hdh-hdu~u; dh) (14).

Considering (13) and (14) we find that
Tx = To -+ 2 (Fx-Fo)-x; § (uzdh-hdus)—x, § (hduj- u; dh) (15)
Corollary 1. If h = 1 then we have

—x1 § (uz dh-hdu,)—x, § (hdu;—u; dh) = 0.
In this special case we obtain the relation
Tx = 2(Fx-Fo) + To
which is the result given by H.R. Miler [2].

Now, let us consider two fixed points X and Y of the moving plaae,
and choose an another fixed point Z on the line segment XY, that is

z=Ax+py, A+ p=1

Thus, by using (1) it can be easily shown that
7’ = x4 py'.

For the polar inertia momentum T, we have

Tz =22Tx + p2 Ty + 20uTyy -(16)
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where
Txy=Tyx=2¢§x'§y +xy)dgo

and it is the mixture polar inertia momentum of the trajectory curves
(X) and (Y). After some calculation we obtain

Txy = To 4+ kIl (xy—=xy) — (x; + yi1) 2klls; — (x5 + y2) 2klls;
—(x1 + y1) § (p2hdh-hduy) - (x5 + y3) § (-pihdh + hdu,). 17)

Taking s = 0 in (13) and (17) we get

Tx = Tg + 2kIIxx - 2x; § (pohdh-hdu,)-2x, § (-p; hdh + hduy)
Ty = Tg + 2kllyy-2y; § (pshdh-hduy)-2y; § (-p; hdh + hdu;) (18)
Txy = Ts + kIl (xy + xy) - (x1 + y1) § (p2hdh-hduy)-

(x2 + y2) § (hdu;— pihdh).

As a result of (18) we can give the following result:
Corollary 2. If k > 0 and X # Y then we have the inequality
Tx-2Txy + Ty > 0.
Proof: From (18) we obtain
Tx - 2Txy -+ Ty = 2kIld2, d = | XY | (19)

where | XY | is the length of the line segment XY. So, from (19), the
assertion is clear.

Combining (16) and (19) we have
Ty = 2Tx + pTy - 2apklld2. (20)

On the other hand the motion does not depend on the choice of
the co—ordinate systems. So we can choose the moving system such
that the points X and Y lie on the real-axis. Hence, from (20), we obtain

1

T; = — (aTx -+ bTy) -2kIlab (21)

where a=y-z=Ad, b=z-x=ud, d=a + b. If the points
X and Y draw the same convex trajectory curve (X) under the motion
B then we have Tx = Ty. In this case, from (21), we get

Tx - Ty = 2kIlab. (22)

Thus, we can give the following corollary
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Corolary 3. The difference between the polar inertia momentums
of the curves (X) and (Z) depends on the homothetic motion bhecause
it is a function of k. If h = 1 we have k = v. In this special case, taking
v = 1 we obtain the result given by H.R. Miiller [2].

Let us choose another two fixed points Z; and Z, of the moving

plane on the line segment XY determined by the two fixed points X
and Y of the moving plane. Let two of them, say X and Y, move on
the same convex curve (X) while the other two describe different curves
(Zy) and (Z,) under the motion B. If the difference between the polar
inertia momentums of the curves (X) and (Z;) is T and the difference
between the polar inertia momentums of the curves (X) and (Z,) is
T, then, for the ratio T/T’, we have

T Xz ) _ IXZy | |YZy |
T 7| TIXZ, | |0 YT TRz T Y2, |

where the magnitude p is the cross ratio of the four points X,Y.Z,
and Zy, i.e. w = (XYZ,Z{). Hence we see that the ratio T/ T’ depends
on neither the curve (X) nor the length of the line segment XY but only

on the relative positions of these four points. So we can give the following
corollary

Corollary 4. Let us consider the l-parameter closed planar ho-
mothetic motion and a fixed straight line k on the moving plane.
In addition to this, let us choose four points X, Y, Z; and Z, on the
line k such that during the motion two of them move on the same curve
(X), while the other two describe different trajectory curves (Z;) and
(Z,). If the difference between the polar inertia momentums of the curves
(X)and (Z;) is T and the difference between the polar inertia momentums
of the curves (X) and (Z,) is T’ then the ratio T/ T’ depends only on
the relative positions of these four points.

Corollary 5. Let X, Y, A and B be four points of the moving plane
such that the polar inertia momentums of the trajectory curves of
them are equal and let the line segments XY and AB meet in Z. Then
the necessary and sufficient condition for the points X, Y, A and B
to lie on the same circle of the moving plane is

|XZ |. |2Y | = |AZ |. |ZB |. (23)

Proof: All of the line segment XY, AB, XA, YA, XB, and YB are
consant. Using (22) we obtain that
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T,-Ty,=2kll|AZ |. |ZB |. (24)
Comparison of (22) and (24) yields (23).

Theorem 2. Let X and Y be two choosen fixed points of the moving

plane, and Z be an another fixed point on the line segment XY. If
X and Y draw the same closed curve (X) in the fixed plane under the
motion, then the ratio of the area of the annulus between the trajectory
curves (X) and (Z) to the difference of the polar inertia momentums
of the trajectory curves depends on neither the homothetic motion nor

the position of Z on the line segment XY.

Proof: For the area of the ring—shaped region between the trajec-
tory curves (X) and (Z) we have, [3],

Fx-F, = kIl | XZ |. |ZY |. (25)

From (22) and {(25) we obtain that

FX - FZ o 1
TX - TZ - 2

So, the assertion is clear.

OZET

1-parametreli kapali diizlemsel homotetik hareketler igin hareketli
diizlemde sabit bir noktamin sabit diizlemde ¢izdigi yoriingenin
(eylemsizlik) momenti hesapland: ve esit kutupsal atalet momentine
sahip yoringeler cizen biitiin sabit ncktalarin hareketli diizlemde
merkezi Steiner noktasi olmayan bir ¢ember iizerinde oldugu goriildii
(Teorem 1). Atalet momentleri i¢in Holditch formiiliine benzer bir
bagint1 elde edilerek baz sonug¢lar verildi (Sonug 3, 4, ve 5). Ayrica
yoringe egrilerinin alanlan ile atalet momentleri arasinda bir bagint:
verildi (Teorem 2).
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