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ABSTRACT

In this paper, we have shown that if (n-2)-th mean curvature M-, of a hypersurface
M is zero, then the sum of principal radii of curvatures of the parallel hypersurface Mr is cons-
tant. Secondly, we generalize a theorem of Bonnet which is for the parallel hypersurfaces in
E3, to EM

1. INTRODUCTION

In this section, we will give some fundamental definitions and
theorems, which are necessary for the following sections.

Definition 1.1: Let M be an oriented hypersurface in Er. Define
a map f as follows:

M- En
P->f(P)= P + rNp,

Where N is the unit normal vector field on M, which gives the
orientiation of M, and r is a given real number. Then My = f (M) is a
hypersurface in E and furthermore M is called a parallel hypersurface
to M, in En [4].

Definition 1.2: Let M be a hypersurface in E». Let ky,..., ky_4
be the principal curvatures of M. Put

n-1
( ) M, — s kig ... kis, Mg=1,
s 1 <ij<... <ig<mn-l

where (n:) = (n-1)!/ (n-1-8)! s!.

We call My the s—th mean curvature of M [1]).
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Theorem 1.1: Let M and M; be parallel hypersurfaces in- En,
If k is a principal curvature of M at P, in the direction of X, then

k/ (1 4 rk) is the corresponding principal curvature of M; at f (P) in
the direction of f* (X), [4].

Theorem 1.2: Let M and M, be parallel hypersurfaces in E2. Then

oy N
o Tk
and
n_1 ki
Kr— 1 &
i=1 1+ rky

where ki, 1 << i < n-1, denote the principal curvatures of M and H'
and K* stands for mean and Gaussian curvatures of M, respectively

[21-

Theorem 1.3: Let M and M; be parallel surfaces in E2. If M = E3.
is a minimal surface (H = 0), then

1
T + l% = 2r = constant,

1 2
where kr; and kr, denote principal curvatures of My, [3].

The following Theorem due to Bonnet.

Theorem 1.4: (Bonnet): Let M be a surface of constant positive

Gauss curvature K with no umbilies. Let ry = —— and
1 . .

Iy = — W define parallel sents M; and M,, respectively.

Then,

i) M; and M, are immersions of M which have constant mean
curvatures 4/K and — /K, respectively.

ii) If M is a surface with constant mean curvature H (non zero)
and non-zero Gauss curvature, letting r = -1/ H yields a parallel set
that is an immersion of M with constant positive Gauss curvature H2,

[4].
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2. GENERALIZATIONS OF THE THEOREM 1.3 AND THE
THEOREM 1.4.

Theorem 2.1: Let M and M; be parallel hypersurfaces in En. If

(n-2)-th mean curvature My_, of M is zero, then

n-1
2 —— = (n-1) r = constant
i— kT ’

where k’;, 1 <(i <_ n—1, denote principal curvature of M; at the point f (P).

Proof: From the Defition 1.2, (n-2)-th mean curvature M, ,
of M 1s
n—-1
( ) Mp_s — o [
n-2 1

§II< PPN <in_2£n"1

n-1 ~
= S k;...k... ko,
i=1

or

n-1 ~
(11—1) I\’In‘z = 2 kl [T ki o e kn—lv
i=1

where the symbol A means that the term is omitted. On the otherhand,
by the Theorem 1.1. we have

ki .
Ty - —_— . —
kry = 1+rk1’1<1<n1'

Now, we can show that,

1-

i
—

£

~ n—-1
ki ook oo kyog 4 (0-]) r_H k;

n-1 i i=1 i=1
o =
i=1 KT -1

M k4

i=1

Since,

n-1 A~
2 kl ...ki...kn 1 =

i=1 B

thus, we get
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n—1
(n-1yr II k;
n-1 1 i=1
i k& n—1
.H k;

= (n-1) r = constant,
as desired.
Special case, n = 3: In this case, we find that,

2
py

i=

1 .
o 2r = constant, which is the same as the Theorem 1.3.
i

—_

Theorem 2.2: Let M and M; be parallel hypersurfaces, in E2.
Let M;, 1 < i << n-1, i-th constant mean curvature of M. If the fol-

lowing relation
n--i n'—].
5 ( ) G-1) ri M = 1,
=2\

among the i-th mean curvatures of M holds then, the mean curvature
Hr of the hypersurface M; is equal to constant (1/r).

Proof: From the Theorem 1.2, we can write

Hr— ¥ N
i L4k

On the otherhand, one can easily show that

n-1
-1 —’rE T8 (S~].) p kil...kis
n-1 k; 1 s=2 1 <ig<... < ig<<{n-1
L . |
j=1 1 -+ I‘ki T n-1s
1 ~[— 2 r Z kil--- kis
s72 1 <iy < ... <ig<n-1
Since,
n-1
( ) MS: b kil"' kiS .
s igi1<... <is£n—1

So we have the following,
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n-| n_1
14 E r(s-1) ( )MS

1 §=2 s

r n--1 n_1
13 1 ( ) M,

Hr —

which completes the proof.

Special case, n == 3: In this case,

s (2 ) (i-1) ri M == 1

i=2 \i
or
1'2 M2 =1
From that, we obtain
1
Tr — p—
VM,
Thus,
or— L
r
= 4 /M,

On the otherhand, from the definition of M, we know that
M, =kik, =K.
So we get
Hr = | 4/K

that is to say;

89
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Ifr=

1__ , then Hr = \/K
vK
and

If r= - 17, then Hr — — /K,
vK

This gives us the Theorem 1.4. (i).

Theorem 2.3: Let M and M, be parallel hypersurfaces in E2,
Denote My, 1 < i <~ n-1, for i~th constant mean curvatures of M.
If the following relation

n-2 (n-1

) i M; = -1,

i=1 i

among the i-th mean curvatures of M holds then, the Gaussian curva-
ture KT of the hypersurface M, is equal to 1/ rn-2.

Prosf: From the Theorem 1.2,

Kr— T B
r o
i=1 1+ rky

On the otherhand, we can calculate that

n—1
k;
nﬁl ki _ i=1
i=1 1+ rly n-1
1 - r’ 2 kig.. . kis
=1 1<ij< ... <ig<n-1
Since,
n-1 3
( )MS _ s kiy -+ kiss
3 1 <ig< ... <ig<<n-l
So we can write that,
Kr = M1
n—_2 Il—].
1+ ( ) ‘Mg + 1 My ¢
s=1 s

From the hypotehesis,
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n-1

( ) I‘iMi == -] .
i

1

rl]*l

ik
= ¥

Thus,
Kr —

So we obtain the desired equation.

Special Case, n — 3: In this case, from the hypothesis,

2tM; = ~ 1
or
_ 1
2M,
On the otherhand, since
2M; = H
we have
P o b
H

Thus, we find the following result,
K_T prm— i.,

:HZ

which is the same as Theorem 1.4. (ii).
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